JPH0638354A - Bus protective relay unit - Google Patents

Bus protective relay unit

Info

Publication number
JPH0638354A
JPH0638354A JP4204320A JP20432092A JPH0638354A JP H0638354 A JPH0638354 A JP H0638354A JP 4204320 A JP4204320 A JP 4204320A JP 20432092 A JP20432092 A JP 20432092A JP H0638354 A JPH0638354 A JP H0638354A
Authority
JP
Japan
Prior art keywords
current
differential
zero
suppression
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4204320A
Other languages
Japanese (ja)
Other versions
JP2781102B2 (en
Inventor
Masaji Usui
正司 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4204320A priority Critical patent/JP2781102B2/en
Publication of JPH0638354A publication Critical patent/JPH0638354A/en
Application granted granted Critical
Publication of JP2781102B2 publication Critical patent/JP2781102B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To stabilize relay unit by determining a ratio between a differential current obtained from vector sum of zero-phase currents at respective terminals and a restraining current obtained from maximum values of zero-phase currents at respective terminals, and locking the output from a ratio operating means upon detection of an eddy current when the restraining current is higher than a predetermined level. CONSTITUTION:A difference derivation means 21 determines a differential current ID from vector sum of zero-phase currents at respective terminals. A restrain derivation means 22 determines a restrain current IR from maximum values or scalar sum of zero-phase currents at respective terminals. A ratio operating means 23 determines the ratio between the currents ID and IR and produces an output if ID>IR. An eddy current detecting means 24 outputs an eddy current signal if the restrain current IR is higher than a value KV0 which is proportional to a zero-phase voltage V0. Upon receiving the eddy current signal, a lock means 25 locks output from the ratio operating means 23. Output is delivered from the ratio operating means 23 on condition that no output is delivered from the eddy current detecting means 24. This constitution enhances safety, accuracy, and coordination in setting of the relay unit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高抵抗接地系におけ
る母線保護継電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a busbar protective relay device in a high resistance grounding system.

【0002】[0002]

【従来の技術】高抵抗接地系における地絡保護は検出感
度を高める必要がある反面、系統の潮流の増大による変
流器(以下、CTという)誤差の増加、地絡事故発生時
の線路充電電流の放電および充電電流補償用リアクトル
の電流等、接地抵抗による地絡電流以外の電流の存在
(地絡発生時の零相電圧との関係から、接地抵抗による
地絡電流を有効分電流、線路充電電流,リアクトル電流
等を無効分電流と一般にいう)等による検出感度の低下
という、相反する要求があり、従来より各種方式が提案
されている(特公昭50−27574号、特公昭53−
18090号等)。
2. Description of the Related Art In order to protect a ground fault in a high resistance grounding system, it is necessary to improve the detection sensitivity, but on the other hand, an error in a current transformer (hereinafter referred to as CT) due to an increase in power flow in the system increases, and line charging occurs when a ground fault occurs. Existence of current other than ground fault current due to ground resistance, such as the current of the current discharge and charging current compensating reactor (from the relationship with the zero-phase voltage when a ground fault occurs, the ground fault current due to ground resistance is used as an effective component current, line There is a contradictory need to lower the detection sensitivity due to charging current, reactor current, etc. (generally referred to as reactive current), etc., and various methods have been proposed in the past (Japanese Patent Publication Nos. 50-27475 and 53-53).
18090).

【0003】また、もう一方の問題点として、短絡を伴
う地絡事故時、特に外部異相地絡事故や内外部異相地絡
事故等で短絡電流なみの零相電流が保護継電装置に流入
することである。
Another problem is that at the time of a ground fault involving a short circuit, especially a zero-phase current similar to a short-circuit current flows into the protective relay device due to an external different-phase ground fault accident, an internal-external different-phase ground fault accident, or the like. That is.

【0004】図5は外部異相地絡におけるこの様子を示
す。すなわち、同図において、1は被保護母線、2は電
源側線路、3,4は負荷側線路で、負荷側線路3ではF
1 点でa相地絡、負荷側線路4ではF2 点でb相地絡が
発生している。
FIG. 5 shows this state in an external out-of-phase ground fault. That is, in the figure, 1 is a protected bus, 2 is a power supply side line, 3 and 4 are load side lines, and F is a load side line 3.
An a-phase ground fault occurs at one point, and a b-phase ground fault occurs at the F 2 point on the load side line 4.

【0005】また、5,6,7はCTで、地絡継電装置
の入力となるのは一般に3相CTの残留回路(I0 =I
a +Ib +Ic :対称座標法ではIa +Ib +Ic =3
0とおくが、この電流が継電装置の入力となることか
ら、一般に単にI0 と称している)となるので、以降C
Tは零相電流を導出しているものとする。8は電源、9
は電源側接地抵抗(以下NGRという)、10は差動継
電装置である。ここで、INGR はNGR電流である。
Further, reference numerals 5, 6 and 7 are CTs, and the input to the ground fault relay is generally a residual circuit of three-phase CT (I 0 = I
a + I b + I c: Symmetric coordinate method I a + I b + I c = 3
I 0, but since this current is input to the relay device, it is generally referred to as I 0 ).
It is assumed that T derives a zero-phase current. 8 is a power source, 9
Is a power supply side ground resistance (hereinafter referred to as NGR), and 10 is a differential relay device. Where I NGR is the NGR current.

【0006】次に、この図5において各CT5〜7の零
相電流出力を考えてみると、CT5の電流はI01=I
NGR ,CT6の電流はI02=Ia ,CT7の電流はI03
=Ibとなり、一般に、CT誤差がなければI01+I02
+I03=0である。
Next, considering the zero-phase current output of each CT 5 to 7 in FIG. 5, the current of CT 5 is I 01 = I
The current of NGR and CT6 is I 02 = I a , and the current of CT7 is I 03
= I b , and generally, if there is no CT error, I 01 + I 02
+ I 03 = 0.

【0007】ここで、この系統が高抵抗接地系であるこ
とを考えると、Ia ≒Ib でかつIa >>INGR となる
ことになる。そして、母線地絡保護継電装置ではINGR
を検出すべく高感度化を計っていることから、短絡電流
なみの入力電流が印加されると、入力トランスの飽和等
を起す可能性がある。CT5〜7の出力も大電流域での
精度が問題となり、誤差が大きくなる。
Considering that this system is a high resistance grounding system, I a ≈I b and I a >> I NGR . And in the busbar ground fault protection relay, I NGR
Since the sensitivity is increased in order to detect, the input transformer may be saturated when an input current equal to the short-circuit current is applied. The accuracy of the outputs of CT5 to CT7 in the large current region becomes a problem, and the error becomes large.

【0008】この対策として例えば、特開昭50−61
646号,特開昭55−86321号の各公報に記載の
ものがある。これらは大入力域で動作量を抑え込んだも
ので、概要を示せば図6に示す通りである。同図におい
て、16は整流回路、11は差動電流入力回路、12は
抵抗、13は抑制電流入力回路、14は比率演算回路、
15はゼナーダイオードである。
As a countermeasure against this, for example, Japanese Patent Laid-Open No. 50-61.
646 and JP-A-55-86321. These are those in which the operation amount is suppressed in the large input range, and the outline is as shown in FIG. In the figure, 16 is a rectifier circuit, 11 is a differential current input circuit, 12 is a resistor, 13 is a suppression current input circuit, 14 is a ratio calculation circuit,
Reference numeral 15 is a Zener diode.

【0009】また、図7はこの母線保護継電装置の特性
を示し、I1 ,I2 は流入,流出電流である。なお、図
5において差動電流、抑制電流の導出について図示して
いないが、差動電流ID =|I1 −I2 |,抑制電流I
R =|I1 |+|I2 |であり、この導出は入力トラン
ス一次合成でも入力トランス二次合成でもかまわない。
FIG. 7 shows the characteristics of this busbar protective relay device, where I 1 and I 2 are inflow and outflow currents. Although the derivation of the differential current and the suppression current is not shown in FIG. 5, the differential current I D = | I 1 −I 2 |, the suppression current I
R = | I 1 | + | I 2 |, and this derivation may be either input transformer primary synthesis or input transformer secondary synthesis.

【0010】図7において、P点よりID が大きくなる
と、ゼナーダイオード15により差動量はそれ以上大き
くならなくなり、比率演算回路14の演算結果は見かけ
上不動作となる(図7のような書き方をすると比率が非
常に大となる)。ゼナーダイオード15のきき方により
〜のように比率が変化する。ところが、図7の一点
鎖線で示すINGR の線上に故障点は存在し、100%地
絡のINGR が大きいと上記P点の設定は困難となる。
In FIG. 7, when ID becomes larger than point P, the differential amount does not increase any more due to the Zener diode 15, and the calculation result of the ratio calculation circuit 14 becomes apparently inoperative (as shown in FIG. 7). If you write it like this, the ratio becomes very large). Depending on how the Zener diode 15 is operated, the ratio changes as shown by. However, there is a failure point on the I NGR line indicated by the alternate long and short dash line in FIG. 7, and if the 100% ground fault I NGR is large, it will be difficult to set the P point.

【0011】[0011]

【発明が解決しようとする課題】従来の母線保護継電装
置は以上のように構成されているので、接地抵抗値によ
り、大入力域で動作量を抑え込むようにゼナーダイオー
ド15のアバランシェ作用を利用するなどハードウェア
的な協調を考慮して製作しなければならず、汎用的な装
置の製作が困難で、装置が安価にできないなどの問題点
があった。
Since the conventional busbar protective relay device is constructed as described above, the avalanche action of the Zener diode 15 is controlled by the ground resistance value so as to suppress the operation amount in the large input region. Since it has to be manufactured in consideration of hardware cooperation such as use, it is difficult to manufacture a general-purpose device, and there is a problem that the device cannot be inexpensive.

【0012】請求項1の発明は上記のような問題点を解
消するためになされたもので、外部仕様(接地抵抗電流
等)との協調がとり易く、故障状況により連続的に外部
故障との識別能力を変えることができる母線保護継電装
置を得ることを目的とする。
The invention of claim 1 is made in order to solve the above-mentioned problems, and it is easy to coordinate with external specifications (ground resistance current, etc.), and it is possible to detect continuous external failures depending on failure conditions. It is an object of the present invention to obtain a busbar protection relay device that can change the discrimination ability.

【0013】また、請求項2の発明は外部事故時の誤差
差動電流に対しても安定動作が図れるとともに、外部仕
様との協調をとり易くし、故障状況により連続的に外部
故障との識別能力を変えることができる母線保護継電装
置を得ることを目的とする。
Further, according to the invention of claim 2, stable operation can be achieved against an error differential current at the time of an external accident, coordination with external specifications can be facilitated, and continuous external failures can be identified according to failure conditions. The purpose is to obtain a busbar protection relay device whose ability can be changed.

【0014】[0014]

【課題を解決するための手段】請求項1の発明に係る母
線保護継電装置は、各端子零相電流のベクトル和をとる
差動導出手段と、各端子電流の最大値またはスカラー和
をとる抑制導出手段と、上記差動導出手段からの差動電
流と抑制導出手段からの抑制電流とにもとづき比率演算
を行う比率演算手段と、上記抑制電流が零相電圧に比例
する所定値以上のとき信号を出力する過電流検出手段と
を備えて、ロック手段に、該過電流検出手段が信号を出
力したときに上記比率演算手段の出力をロックさせるよ
うにしたものである。
According to a first aspect of the present invention, there is provided a busbar protective relay device, wherein differential deriving means for calculating a vector sum of zero-phase currents at respective terminals and maximum or scalar sum of currents at each terminal are obtained. Suppression derivation means, a ratio calculation means for performing a ratio calculation based on the differential current from the differential derivation means and the suppression current from the suppression derivation means, and when the suppression current is equal to or greater than a predetermined value proportional to the zero-phase voltage An overcurrent detecting unit that outputs a signal is provided, and the lock unit locks the output of the ratio calculating unit when the overcurrent detecting unit outputs a signal.

【0015】また、請求項2の発明に係る母線保護継電
装置は、各端子零相電流のベクトル和をとる差動導出手
段と、該差動導出手段からの差動電流より有効分差動電
流を導出する有効分差動導出手段と、各端子零相電流と
零相電圧から有効分抑制量を導出する有効分抑制導出手
段と、上記有効分差動導出手段からの有効分差動電流と
上記有効分抑制導出手段からの有効分抑制量とにより比
率演算を行う比率演算手段と、上記有効分抑制導出手段
の出力が零相電圧に比例する所定値以上のとき信号を出
力する過電流検出手段とを備えて、ロック手段に、該過
電流検出手段が信号を出力したときに比率演算手段の出
力をロックさせるようにしたものである。
According to a second aspect of the present invention, there is provided a busbar protective relay apparatus in which differential derivation means for taking a vector sum of zero-phase currents at respective terminals, and effective differential differential from the differential current from the differential derivation means. Effective component differential deriving means for deriving current, active component suppression deriving component for deriving effective component suppression amount from each terminal zero-phase current and zero-phase voltage, and effective component differential current from the effective component differential deriving device. And a ratio calculation means for performing a ratio calculation based on the effective component suppression amount from the effective component suppression derivation means, and an overcurrent which outputs a signal when the output of the effective component suppression derivation means is equal to or greater than a predetermined value proportional to the zero-phase voltage. And a lock means for locking the output of the ratio calculation means when the overcurrent detection means outputs a signal.

【0016】[0016]

【作用】請求項1の発明における母線保護継電装置は、
地絡故障の程度に比例する性質を持つ零相電圧により、
抑制電流を検出する所定値を連動させ、この検出により
比率差動演算出力をロックする。
The busbar protection relay device according to the invention of claim 1 is
By the zero-phase voltage, which has a property proportional to the degree of ground fault,
A predetermined value for detecting the suppression current is linked, and the ratio differential operation output is locked by this detection.

【0017】また、請求項2の発明における母線保護継
電装置は、差動電流および抑制電流の各有効分を得るこ
とによって無効電流による過抑制を防止して、外部事故
時の誤差差動電流に対しても安定化を図りながら、過電
流検出手段の信号の出力時に比率演算出力にロックをか
けられるようにして、外部故障安定性を向上する。
Further, in the busbar protection relay device according to the invention of claim 2, the active differential of the differential current and the suppression current is obtained to prevent oversuppression due to the reactive current, and the error differential current in the event of an external accident. With respect to the above, the ratio calculation output can be locked when the signal of the overcurrent detection means is output while improving the external failure stability.

【0018】[0018]

【実施例】実施例1.以下、この発明の一実施例を図に
ついて説明する。図1において、21は各端子零相電流
のベクトル和をとる差動導出手段、22は各端子零相電
流の最大値またはスカラー和をとる抑制導出手段、23
は差動導出手段21の出力(差動電流という)と抑制導
出手段の出力(抑制電流という)とにより比率演算を行
う比率演算手段である。
EXAMPLES Example 1. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 21 is a differential derivation means for taking the vector sum of the zero-phase current of each terminal, 22 is a suppression derivation means for taking the maximum value or a scalar sum of the zero-phase current of each terminal, and 23.
Is a ratio calculation means for performing a ratio calculation using the output of the differential derivation means 21 (referred to as differential current) and the output of the suppression derivation means (referred to as suppression current).

【0019】また、24は抑制電流が零相電圧に比例し
た所定値以上の時に出力する過電流検出手段、25は比
率演算手段23の出力を過電流検出手段24の出力があ
るときにロックするロック手段としての論理積手段であ
る。
Further, 24 is an overcurrent detecting means for outputting when the suppression current is a predetermined value proportional to the zero phase voltage or more, and 25 is an output of the ratio calculating means 23 is locked when there is an output of the overcurrent detecting means 24. It is a logical product means as a lock means.

【0020】また、図2はこの発明による母線保護継電
装置の特性図であり、図中IR100,IR50 なる記号は各
々零相電圧100%,50%時の過電流検出手段24の
検出値を示す。また、図3(a),(b)は零相電流と
零相電圧の関係を説明するための、一線地絡(1ΦG)
および二線地絡(2ΦG)時の対称座標法等価回路であ
る。
FIG. 2 is a characteristic diagram of the busbar protective relay device according to the present invention. In the figure, the symbols I R100 and I R50 are detected by the overcurrent detecting means 24 when the zero-phase voltage is 100% and 50%, respectively. Indicates a value. In addition, FIGS. 3A and 3B are one-line ground faults (1ΦG) for explaining the relationship between the zero-phase current and the zero-phase voltage.
And a symmetric coordinate method equivalent circuit at the time of two-line ground fault (2ΦG).

【0021】次に動作について説明する。図3におい
て、零相電流はI0 =V0 /RN で表され、零相電圧は
一線地絡においてはV0 =E・RN /(2Z1 +RF
N )、ここで、RN >>Z1 であることを考慮する
と、V0 =E・RN /(RF +RN )、RF が0である
ときが100%地絡となる。
Next, the operation will be described. In FIG. 3, the zero-phase current is represented by I 0 = V 0 / R N , and the zero-phase voltage is V 0 = E · R N / (2Z 1 + R F + in a one -line ground fault.
R N ), where R N >> Z 1 is taken into account, V 0 = E · R N / (R F + R N ), and when R F is 0, there is a 100% ground fault.

【0022】このときI0 が最大となり、高抵抗接地系
ではこのI0 の値を接地系の呼び値としている。二線地
絡においては同様にV0 =E・RN /2/(RF +R
N )となる。これはRF が0であるときでもV0 =E/
2にしかならないことを示している。もちろん、I0
一線地絡における値の1/2となる。
At this time, I 0 becomes maximum, and the value of I 0 is used as the nominal value of the grounding system in the high resistance grounding system. In the case of a two-wire ground fault, V 0 = E · R N / 2 / (R F + R
N ). This means that V 0 = E / even when R F is 0.
It shows that it is only 2. Of course, I 0 is also ½ of the value at the one-line ground fault.

【0023】従来例の説明で述べたように、外部異相地
絡時は、系統的零相電流は上記の通りであるが、リレー
入力電流としては短絡電流なみとなっており、何らかの
対策が必要となっている。外部異相地絡時では、本来、
零相電流は1/2以下であることから、より低レベルで
リレーロックしてもかまわないとの着目でこの発明はな
されている。この関係を示したものが図2である。
As described in the description of the conventional example, the systematic zero-phase current is as described above at the time of an external different-phase ground fault, but the relay input current is similar to the short-circuit current, and some measure is required. Has become. At the time of external out-of-phase ground fault, originally,
Since the zero-phase current is ½ or less, the present invention has been made with a focus on relay locking at a lower level. FIG. 2 shows this relationship.

【0024】100%地絡時にはリレー特性はこれに対
応する内部事故電流を保護範囲に含んでおり、各地絡%
(V0 の大きさに比例)に対応してその保護範囲が変化
する。すなわち、過電流検出手段24の検出感度はK*
0 で表され、外部異相地絡では過電流検出手段24の
検出感度は1/2となる。
In the case of 100% ground fault, the relay characteristics include the internal fault current corresponding to this in the protection range.
The protection range changes corresponding to (proportional to the magnitude of V 0 ). That is, the detection sensitivity of the overcurrent detection means 24 is K *.
It is represented by V 0 , and the detection sensitivity of the overcurrent detection means 24 becomes 1/2 in the case of an external phase ground fault.

【0025】これにより外部異相地絡時の短絡電流なみ
のリレー入力電流を、抑制導出手段22により過電流検
出手段24に抑制電流として与える。外部異相地絡時の
短絡電流なみのリレー入力電流によりCT飽和等が発生
するため、差動導出手段21の出力は大となり、比率演
算手段23が動作する可能性があるが、過電流検出手段
24の出力との論理積手段25により、安定が保たれる
こととなる。
As a result, the relay deriving current, which is similar to the short-circuit current at the time of the external ground fault, is applied to the overcurrent detecting means 24 by the suppression deriving means 22 as the suppression current. Since the CT saturation or the like occurs due to the relay input current similar to the short-circuit current at the time of the external different-phase ground fault, the output of the differential deriving means 21 becomes large and the ratio calculating means 23 may operate, but the overcurrent detecting means is present. By the logical product means 25 with the output of 24, the stability is maintained.

【0026】実施例2.図4はこの発明の他の実施例を
示す。同図において、26は有効分差動導出手段、27
は同じく有効分抑制導出手段、28は有効分差動導出手
段26の出力(有効分差動電流という)と有効分抑制導
出手段27の出力(有効分抑制電流という)たる有効分
制御量とにより比率演算を行う比率演算手段である。
Example 2. FIG. 4 shows another embodiment of the present invention. In the figure, 26 is an effective differential deriving means, 27
Is an effective component suppression derivation unit, and 28 is an output of the effective component differential derivation unit 26 (referred to as an effective component differential current) and an effective component control amount that is an output of the effective component suppression derivation unit 27 (referred to as an effective component suppression current). It is a ratio calculation means for performing a ratio calculation.

【0027】また、29は抑制電流が零相電圧に比例し
た所定値以上の時に出力する過電流検出手段、30は比
率演算手段28の出力を過電流検出手段29へ出力があ
るときにはロックする論理積手段である。
Further, 29 is an overcurrent detecting means for outputting when the suppression current is a predetermined value or more proportional to the zero-phase voltage, and 30 is a logic for locking the output of the ratio calculating means 28 when there is an output to the overcurrent detecting means 29. It is a product means.

【0028】次に動作について説明する。有効分差動量
と抑制量の演算による地絡母線保護の有用性は、本願発
明には関係ないのでここでは説明を省略する。この実施
例では、有効分差動をとることにより、外部故障による
安定性は増すが、外部異相地絡時は系統的零相電流は上
記の通りであるが、リレー入力電流としては短絡電流な
みとなっており、何らかの対策が必要となっている。
Next, the operation will be described. The usefulness of the ground fault bus protection by the calculation of the effective differential amount and the suppression amount is not related to the present invention, and therefore the description thereof is omitted here. In this embodiment, by taking the effective differential, the stability due to an external fault is increased, but the systematic zero-phase current is as described above when an external phase-to-ground fault occurs, but the relay input current is similar to the short-circuit current. And some measures are needed.

【0029】外部異相地絡時では、本来、零相電流は1
/2以下であることから、より低レベルでリレーロック
してもかまわないのは、上記実施例で述べたとおりであ
る。すなわち、過電流検出手段29の検出感度はK*V
0 で表され、外部異相地絡では過電流検出手段29の検
出感度は1/2となる。
At the time of an external phase-to-ground fault, the zero-phase current is originally 1
Since it is / 2 or less, relay lock may be performed at a lower level as described in the above embodiment. That is, the detection sensitivity of the overcurrent detection means 29 is K * V.
It is represented by 0 , and the detection sensitivity of the overcurrent detection means 29 is 1/2 in the case of an external different-phase ground fault.

【0030】これにより、外部異相地絡時の短絡電流な
みのリレー入力電流を、有効分抑制導出手段27により
過電流検出手段29に抑制電流として与える。外部異相
地絡時のリレー入力電流によりCT飽和等が発生するた
め、有効分差動導出手段26の出力は大となり、比率演
算手段28が動作する可能性があるが、過電流検出手段
29の出力との論理積手段30により、安定性が保たれ
ることとなる。
As a result, the relay input current equivalent to the short-circuit current at the time of the external different-phase ground fault is given to the overcurrent detection means 29 by the effective component suppression derivation means 27 as the suppression current. Since CT saturation or the like occurs due to the relay input current at the time of the external different-phase ground fault, the output of the effective component differential deriving means 26 becomes large and the ratio calculating means 28 may operate, but the overcurrent detecting means 29 does not operate. Stability is maintained by the logical product means 30 with the output.

【0031】なお、この実施例では抑制電流も有効分を
とっているため、図1の実施例に対して、デジタルリレ
ーでのフルスケールの設定,過電流検出要素の感度設定
が容易になる。すなわち、系統条件の制約がなくなり、
従って、外部異相地絡検出が容易になる。
In this embodiment, since the suppression current also takes an effective part, it becomes easier to set the full scale in the digital relay and the sensitivity of the overcurrent detection element as compared with the embodiment shown in FIG. In other words, there are no restrictions on system conditions,
Therefore, the external out-of-phase ground fault can be easily detected.

【0032】このことは、単純内部故障時のリレー流入
電流はINGR +IC +IL となるため、図1の実施例で
は過電流検出感度については、系統条件としてIC ,I
L を想定する必要があるが、この実施例ではIC ,IL
が無効分であることからING R のみを考慮すればよいこ
とによる。
This means that the relay inflow current at the time of a simple internal failure is I NGR + I C + I L , so that in the embodiment of FIG. 1, the overcurrent detection sensitivity is I C , I as a system condition.
Although it is necessary to assume L , in this embodiment, I C and I L
Is an invalid part, so that only I NG R need be considered.

【0033】なお上記実施例では有効分抑制導出手段2
7について細かく言及していないが、一般に採用されて
いるスカラー和抑制方式、最大抑制方式のどちらにこの
発明を適用してもよく、上記実施例と同様の効果を奏す
る。又、スカラー和方式では全端子の電流を極性によら
ず加算するため、外部事故時にはスカラー和が故障電流
の2倍となるため、スカラー和においては、過電流検出
手段の検出値は、最大値抑制方式の2倍とすると、協調
が取り易くなる。
In the above embodiment, the effective component suppression derivation means 2
7 is not described in detail, the present invention may be applied to either the scalar sum suppression method or the maximum suppression method that is generally adopted, and the same effect as that of the above-described embodiment is obtained. In addition, in the scalar sum method, the currents of all terminals are added regardless of the polarity, so the scalar sum becomes twice the failure current in the event of an external accident. Therefore, in the scalar sum, the detected value of the overcurrent detection means is the maximum value. If the suppression method is twice as large as the suppression method, it becomes easier to achieve cooperation.

【0034】また、図1および図4において、100%
地絡時の過電流検出手段24,29の検出値は最大零相
電流に対応する抑制電流以上であれば任意であるので、
接地抵抗を最大値とすればよい。
Further, in FIGS. 1 and 4, 100%
The detection values of the overcurrent detection means 24 and 29 at the time of the ground fault are arbitrary as long as they are equal to or more than the suppression current corresponding to the maximum zero-phase current.
The ground resistance should be the maximum value.

【0035】さらに、100%地絡時の過電流検出手段
24,29の検出値は最大零相電流に対応する抑制電流
以上であれば任意であるが、近年採用されているデジタ
ルリレーでは、そのフルスケール値が最大零相電流に対
応して設計されているので、この値と一致させても良
い。
Further, the detection value of the overcurrent detection means 24, 29 at the time of 100% ground fault is arbitrary as long as it is equal to or higher than the suppression current corresponding to the maximum zero-phase current. Since the full-scale value is designed corresponding to the maximum zero-phase current, it may be matched with this value.

【0036】[0036]

【発明の効果】以上のように、請求項1の発明によれ
ば、各端子零相電流のベクトル和をとる差動導出手段
と、各端子電流の最大値またはスカラー和をとる抑制導
出手段と、上記差動導出手段からの差動電流と抑制導出
手段からの抑制電流とにもとづき比率演算を行う比率演
算手段と、上記抑制電流が零相電圧に比例する所定値以
上のとき信号を出力する過電流検出手段とを備えて、ロ
ック手段に、該過電流検出手段が信号を出力したときに
上記比率演算手段の出力をロックさせるように構成した
ので、比率差動演算結果の出力を過電流検出手段の出力
がないことを条件とするようにし、過電流検出手段の検
出値を零相電圧に比例するようにすることによって、装
置の安定性が増し、整定上の協調も取り易くなり、ま
た、精度の高いものが得られる効果がある。
As described above, according to the invention of claim 1, the differential deriving means for taking the vector sum of the zero-phase currents at each terminal and the suppression deriving means for taking the maximum value or the scalar sum of the terminal currents. A ratio calculation means for performing a ratio calculation based on the differential current from the differential derivation means and the suppression current from the suppression derivation means, and a signal when the suppression current is equal to or larger than a predetermined value proportional to the zero-phase voltage. The overcurrent detection means is provided, and the lock means is configured to lock the output of the ratio calculation means when the overcurrent detection means outputs a signal. By making the condition that there is no output of the detection means, and by making the detection value of the overcurrent detection means proportional to the zero-phase voltage, the stability of the device is increased, and it becomes easier to coordinate the settling. Also, you can get high precision There is an effect.

【0037】また、請求項2の発明によれば、各端子零
相電流のベクトル和をとる差動導出手段と、該差動導出
手段からの差動電流より有効分差動電流を導出する有効
分差動導出手段と、各端子零相電流と零相電圧から有効
分抑制量を導出する有効分抑制導出手段と、上記有効分
差動導出手段からの有効分差動電流と上記有効分抑制導
出手段からの有効分抑制量とにより比率演算を行う比率
演算手段と、上記有効分抑制導出手段の出力が零相電圧
に比例する所定値以上のとき信号を出力する過電流検出
手段とを備えて、ロック手段に、該過電流検出手段が信
号を出力したときに比率演算手段の出力をロックさせる
ように構成したので、差動電流および抑制電流の各有効
分を得ることによって無効電流による過抑制を防止し
て、外部事故時の誤差差動電流に対しても安定化を図り
ながら、過電流検出手段の信号の出力時に比率演算出力
にロックをかけられるようにして、外部故障安定性を向
上できるものが得られる効果がある。
According to the second aspect of the invention, the differential deriving means for taking the vector sum of the zero-phase current of each terminal, and the effective differential current deriving from the differential current from the differential deriving means. Differential differential deriving means, effective component suppression deriving means for deriving an effective component suppression amount from each terminal zero-phase current and zero-phase voltage, effective component differential current from the effective component differential deriving means and the effective component suppression A ratio calculation means for performing a ratio calculation based on the effective component suppression amount from the derivation means, and an overcurrent detection means for outputting a signal when the output of the effective component suppression derivation means is equal to or greater than a predetermined value proportional to the zero-phase voltage. Since the lock means is configured to lock the output of the ratio calculation means when the overcurrent detection means outputs a signal, the excess current due to the reactive current is obtained by obtaining each effective component of the differential current and the suppression current. Preventing suppression and making mistakes during external accidents While also achieving stabilized against differential current, so as to be a lock to the ratio calculation output when the output signal of the overcurrent detecting unit, the effect of which can improve the external fault stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例による母線保護継電装置を
示すブロック図である。
FIG. 1 is a block diagram showing a busbar protective relay device according to an embodiment of the present invention.

【図2】この発明の一実施例による母線保護継電装置の
差動電流対抑制電流の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the differential current and the suppression current of the busbar protective relay device according to the embodiment of the present invention.

【図3】この発明の説明のための対称座標法等価回路を
示す回路図である。
FIG. 3 is a circuit diagram showing a symmetrical coordinate method equivalent circuit for explaining the present invention.

【図4】この発明の他の実施例による母線保護継電装置
を示すブロック図である。
FIG. 4 is a block diagram showing a busbar protective relay device according to another embodiment of the present invention.

【図5】この発明の母線保護継電装置による保護対象と
なる系統を示す回路図である。
FIG. 5 is a circuit diagram showing a system to be protected by the busbar protective relay device of the present invention.

【図6】従来の母線保護継電装置を示す回路図である。FIG. 6 is a circuit diagram showing a conventional busbar protection relay device.

【図7】従来の母線保護継電装置の差動電流対抑制電流
の関係を示す特性図である。
FIG. 7 is a characteristic diagram showing a relationship between a differential current and a suppression current of a conventional busbar protection relay device.

【符号の説明】 21 差動導出手段 22 抑制導出手段 23 比率演算手段 24 過電流検出手段 25,30 論理積手段(ロック手段) 26 有効分差動導出手段 27 有効分抑制導出手段 28 比率演算手段 29 過電流検出手段[Description of Reference Signs] 21 Differential Derivation Means 22 Suppression Derivation Means 23 Ratio Calculation Means 24 Overcurrent Detection Means 25, 30 ANDing Means (Lock Means) 26 Effective Component Differential Derivation Means 27 Effective Component Suppression Means 28 Ratio Calculation Means 29 Overcurrent detection means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 各端子零相電流のベクトル和をとる差動
導出手段と、各端子電流の最大値またはスカラー和をと
る抑制導出手段と、上記差動導出手段からの差動電流と
抑制導出手段からの抑制電流とにもとづき比率演算を行
う比率演算手段と、上記抑制電流が零相電圧に比例する
所定値以上のとき信号を出力する過電流検出手段と、該
過電流検出手段が信号を出力したときに上記比率演算手
段の出力をロックするロック手段とを備えた母線保護継
電装置。
1. A differential derivation means for taking a vector sum of each terminal zero-phase current, a suppression derivation means for taking a maximum value or a scalar sum of each terminal current, and a differential current and a suppression derivation from the differential derivation means. A ratio calculation means for performing a ratio calculation based on the suppression current from the means, an overcurrent detection means for outputting a signal when the suppression current is equal to or greater than a predetermined value proportional to the zero-phase voltage, and the overcurrent detection means outputs a signal. A busbar protection relay device, comprising: a lock unit that locks the output of the ratio calculation unit when it is output.
【請求項2】 各端子零相電流のベクトル和をとる差動
導出手段と、該差動導出手段からの差動電流より有効分
差動電流を導出する有効分差動導出手段と、各端子零相
電流と零相電圧から有効分抑制量を導出する有効分抑制
導出手段と、上記有効分差動導出手段からの有効分差動
電流と上記有効分抑制導出手段からの有効分抑制量とに
より比率演算を行う比率演算手段と、上記有効分抑制導
出手段の出力が零相電圧に比例する所定値以上のとき信
号を出力する過電流検出手段と、該過電流検出手段が信
号を出力したときに比率演算手段の出力をロックするロ
ック手段とを備えた母線保護継電装置。
2. A differential derivation means for taking a vector sum of zero-phase currents at respective terminals, an effective differential derivation means for deriving an effective differential current from the differential current from the differential derivation means, and each terminal. An effective component suppression derivation means for deriving an effective component suppression amount from a zero-phase current and a zero-phase voltage; an effective component differential current from the effective component differential derivation means and an effective component suppression amount from the effective component suppression derivation means. The ratio calculation means for calculating the ratio by means of the above, the overcurrent detection means for outputting a signal when the output of the effective component suppression derivation means is equal to or greater than a predetermined value proportional to the zero phase voltage, and the overcurrent detection means for outputting the signal. A bus protection relay device, which is sometimes provided with a lock means for locking the output of the ratio calculation means.
JP4204320A 1992-07-09 1992-07-09 Bus protection relay Expired - Fee Related JP2781102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4204320A JP2781102B2 (en) 1992-07-09 1992-07-09 Bus protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4204320A JP2781102B2 (en) 1992-07-09 1992-07-09 Bus protection relay

Publications (2)

Publication Number Publication Date
JPH0638354A true JPH0638354A (en) 1994-02-10
JP2781102B2 JP2781102B2 (en) 1998-07-30

Family

ID=16488537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4204320A Expired - Fee Related JP2781102B2 (en) 1992-07-09 1992-07-09 Bus protection relay

Country Status (1)

Country Link
JP (1) JP2781102B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424242B1 (en) 1996-08-09 2002-07-23 Omron Corporation Switch for high frequency
WO2015000227A1 (en) * 2013-07-04 2015-01-08 Wen Jie Bus protection method for quick locking in ct asymmetrical wire breakage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424242B1 (en) 1996-08-09 2002-07-23 Omron Corporation Switch for high frequency
WO2015000227A1 (en) * 2013-07-04 2015-01-08 Wen Jie Bus protection method for quick locking in ct asymmetrical wire breakage

Also Published As

Publication number Publication date
JP2781102B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
US6442010B1 (en) Differential protective relay for electrical buses with improved immunity to saturation of current transformers
US20060152866A1 (en) System for maintaining fault-type selection during an out-of-step condition
JPS62293927A (en) Differential relay
WO2016199293A1 (en) Protection relay device
US3732464A (en) Distance relay system
JPH0638354A (en) Bus protective relay unit
JPS6356121A (en) Ratio differential relay
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP3011420B2 (en) Digital bus protection relay
JPH07322476A (en) Multiple failure detection method and failure phase discrimination method
JPH0974660A (en) Harmonic detector
JPS5843402Y2 (en) Hogokeiden Sochi
Sezi A new approach for transformer ground differential protection
JP3053533B2 (en) Current differential relay
JPS63121423A (en) Digital current differential relay
JPH01238420A (en) Ground-fault protective relay
JP2540897B2 (en) Digital type ratio differential relay
JPH082137B2 (en) Transmission line current differential protection device
SU955329A1 (en) Device for indicating transformer saturation mode
JPH02266817A (en) Power system-protective relay
JPH0744777B2 (en) Excitation inrush current detection method
JPH0210655B2 (en)
JPS62293928A (en) Ratio differential relay method
JPS6258210B2 (en)
JPS60135775A (en) Detection system for insulating level to the earth of low-voltage facility

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees