JPS61246638A - Noncontact temperature monitoring method - Google Patents

Noncontact temperature monitoring method

Info

Publication number
JPS61246638A
JPS61246638A JP8836585A JP8836585A JPS61246638A JP S61246638 A JPS61246638 A JP S61246638A JP 8836585 A JP8836585 A JP 8836585A JP 8836585 A JP8836585 A JP 8836585A JP S61246638 A JPS61246638 A JP S61246638A
Authority
JP
Japan
Prior art keywords
temperature
sensor
sound wave
heated
curie temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8836585A
Other languages
Japanese (ja)
Inventor
Junichi Shinagawa
潤一 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP8836585A priority Critical patent/JPS61246638A/en
Publication of JPS61246638A publication Critical patent/JPS61246638A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/36Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using magnetic elements, e.g. magnets, coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects

Abstract

PURPOSE:To obtain a noncontact type temperature monitoring system dispensing with leads or the like, by applying an alternating magnetic field to a sensor comparing magnetic bodies with the known Curie temperature having a fine gap arranged at a measuring section from the circumference to detect changes in the oscillation thereof caused. CONSTITUTION:An induction heating coil 2 is arranged on the circumference of a conductive body 1 to be heated and a high frequency current is fed to the coil 2 from a power source 3 to cause an induction heating of the body 1 being heated, the temperature of which is monitored with a sensor 4 arranged at a measuring section. The sensor 4 is provided with a cylindrical magnetic body 4a having the Curie temperature in the temperature range somewhat higher than a desired heating temperature with two fine gaps G in such a manner as to be housed in a non-magnetic case 4b. A high frequency current flows to the coil 2 to raise the temperature of the body 1 being heated while an alternating magnetic field is applied to the sensor 4 to cause a force between the two magnetic bodies 4a so that they vibrate at the frequency doubling the alternating magnetic field to generate a sound wave, which is detected with a sound wave detector 5. When the temperature of the measuring section is below the Curie temperature, a tense sound wave is generated and as it reaches the Curie temperature, the sound wave becomes weak. This facilitates the judgment of a specified temperature.

Description

【発明の詳細な説明】 【発明の技術分野】 本発明は、磁性体がキュリー温度においてその磁気特性
を不連続的に変化させることを利用した非接触温度監視
方法である。 [発明の技術的背景とその問題点] 従来から、CVケーブル等のケーブル接続部を形成する
にあたり、導体接続部上に絶縁性ポリエチレンテープを
紡錘状に杏回し、この外周に耐熱テープを押え巻きした
後、It導導熱熱コイル高周波電流を通電して導体を誘
導加熱し、絶縁性ポリエチレンテープを加熱融着させる
ことが行なわれている。 この方法においては、通常130〜150℃程度まで加
熱するが、誘導加熱に伴う導体の過熱を防ぐために導体
温度を監視する必要がある。 このような温度監視方法としては、従来から熱雷対等の
温度センサを用いる等の種々の方法が知られているが、
いずれも温度センサと検出部をリード線等で直接接続す
る必要があるため、上記の誘導加熱におけるようにリー
ド線を使用できない場合には、適用することができなか
った。 〔発明の目的〕 本発明はこのような従来の不都合を解消するためになさ
れたもので、従来方法のように測定部に配置したセンサ
と検出部を直接リード線等で接続する必要のない、いわ
ゆる非接触式の温度監視方法を提供しようとするもので
ある。 [発明の概要] すなわち本発明の非接触温度監視方法は、キュリー温度
既知の磁性体を2個微小ギャップを設けて非磁性体で包
囲してなるセンサを測定部に配置し、その外周から交番
磁場を加えて前記センサを発振させることにより、測定
部の温度を非接触的にFM視し得るようにしたものであ
る。 [発明の実施例] 以下本発明の実施例を図面を参照しながら説明する。 第1図に示す実施例は、導電性の被加熱体1の外周に誘
導加熱コイル2を配設し、この誘導加熱コイル2に高周
波電流を通電して被加熱体1を誘導加熱し、その温度を
監視するようにした例である。符号3は高周波電源を示
している。 本発明においては、誘導加熱開始に先立ち、被加熱体1
上の測定部にセンサ4を配置し、その近傍の被加熱体1
から離れた位置にマイクロホン等の音波検出器5を配設
する。このセンサ4は、たとえば第2図に示すように、
所望の加熱温度よりやや高い温度領域にキュリー温度7
cを有する、直径3〜5n1長さ5〜Ionの円筒状の
磁性体4aが2個、0.5〜1n程度の微小ギャップG
を設けて非磁性体ケース4bに収容されて構成されてい
る。 しかしてこの実施例では、この後誘導加熱コイル2に高
周波電流を通電するが、この通電にともない、被加熱体
1は誘導加熱されて温度が上昇し、同時にセンサ4にも
交番磁場が加えられることになる。 ここで上記のように構成されたセンサ4では、磁性体4
a 、4a間に次式で示される力Fが働き、交番111
1の2倍の同波数で振動して力Fに対応する音波を発生
する。 F−CB’  (1/μo 71/μ)/2B:磁性体
中の磁束密度 μ0:真空透磁率 μ:磁性体透磁率 上記μ0およびμの関係は、測定部の温度■がキュリー
温度Tcより高い温度ではμ÷μo1また低いrIAr
tlではμ〉〉μ0であるので、力Fはキュリー温度T
Cを境に急変する。すなわら、測定部の81度丁がキュ
リー温度Tcより低いときには、磁性体4a 、 4a
 ffiに大きな力Fが働いて強い音波を発生し、Tc
に達すると力Fが急に低下して発生する音波は極めて微
弱となる。 しかして、上記誘導加熱時にセンサ4から発信される音
波を、音波検出@5でモニタすることにより、測定部の
温度Tがキュリー澗度丁C1すなわち所望の加熱温度よ
り高いか低いかを容易に判定することができる。 なお上式において、B(11性体中の磁束密度)は、磁
性体のキュリー温度以下の温度で、第3図に示すように
温度と相同しており、したがってFもその範囲で温度に
相図する。したがって予め温度と音波の強さとの標準曲
線を求めておけば、加熱途中におけるrIA度変比変化
ることもできる。 上記実施例は、本発明を誘導加熱の温度監視に適用した
一般的な例を示であるが、具体的には例えばケーブル接
続部形成時の誘導加熱にともなう導体温度の監視をあげ
ることができる。この場合には、上記センサ4を、ケー
ブルの導体接続部のスリーブ装着前に、導体内に配設し
ておき、また音波検出器5をケーブル接続部の外周に配
置して、第1図の実施例と同様にして本発明方法が実施
される。 このようなケーブル接続部の温度監視においては、本発
明の方法は特に有効である。 なお本発明においては、磁性体のキュリー温度により監
視または測定可能な温度が制限されるが、磁性体のキュ
リー8度はその組成によって変化するので任意のキュリ
ー温度を有する磁性体を作ることが可能である。したが
って適用例にあわせて好適な磁性体を選択し、使用すれ
ば、本発明を広範囲に適用することができる。 [発明の効果] 以上説明したように本発明によれば、温度に依存して交
番磁場により発振するセンサを測定部に配置して行なう
ので、いわゆる非接触的に温度を測定し監視することが
できる。したがって従来方法のように適用範囲が制限さ
れることはない。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention is a non-contact temperature monitoring method that utilizes the fact that a magnetic material discontinuously changes its magnetic properties at the Curie temperature. [Technical background of the invention and its problems] Conventionally, when forming a cable connection part such as a CV cable, an insulating polyethylene tape is twisted in a spindle shape on the conductor connection part, and a heat-resistant tape is wrapped around the outer circumference of the tape. Thereafter, the conductor is heated by induction by passing a high-frequency current through the It heat-conducting heating coil to heat-seal the insulating polyethylene tape. In this method, the conductor is usually heated to about 130 to 150°C, but it is necessary to monitor the conductor temperature to prevent overheating of the conductor due to induction heating. Various methods have been known for such temperature monitoring, such as using a temperature sensor such as a thermal lightning pair.
In either case, it is necessary to directly connect the temperature sensor and the detection section with a lead wire or the like, so they cannot be applied in cases where lead wires cannot be used, such as in the case of induction heating. [Object of the Invention] The present invention has been made in order to eliminate such conventional inconveniences, and there is no need to directly connect the sensor placed in the measurement unit and the detection unit with a lead wire etc. as in the conventional method. The present invention aims to provide a so-called non-contact temperature monitoring method. [Summary of the Invention] That is, the non-contact temperature monitoring method of the present invention includes a sensor consisting of two magnetic materials with a known Curie temperature surrounded by a non-magnetic material with a small gap, arranged in a measuring section, By applying a magnetic field to cause the sensor to oscillate, the temperature of the measuring section can be viewed in a non-contact FM manner. [Embodiments of the Invention] Examples of the present invention will be described below with reference to the drawings. In the embodiment shown in FIG. 1, an induction heating coil 2 is arranged around the outer periphery of a conductive object to be heated 1, and a high-frequency current is passed through the induction heating coil 2 to inductively heat the object to be heated. This is an example of monitoring the temperature. Reference numeral 3 indicates a high frequency power source. In the present invention, prior to the start of induction heating, the object to be heated 1
The sensor 4 is placed in the upper measurement part, and the heated object 1 is placed in the vicinity of the sensor 4.
A sound wave detector 5 such as a microphone is arranged at a position away from the sound source. This sensor 4, for example, as shown in FIG.
Curie temperature 7 in a temperature range slightly higher than the desired heating temperature
c, two cylindrical magnetic bodies 4a with a diameter of 3 to 5n and a length of 5 to Ion, and a minute gap G of about 0.5 to 1n.
is provided and housed in a non-magnetic case 4b. However, in this embodiment, a high-frequency current is then applied to the induction heating coil 2, and with this energization, the heated object 1 is inductively heated and its temperature rises, and at the same time, an alternating magnetic field is applied to the sensor 4. It turns out. Here, in the sensor 4 configured as described above, the magnetic body 4
A force F expressed by the following formula acts between a and 4a, and the alternation 111
It vibrates with the same wave number twice that of 1 and generates a sound wave corresponding to the force F. F-CB' (1/μo 71/μ)/2B: Magnetic flux density in magnetic material μ0: Vacuum permeability μ: Magnetic material permeability At high temperature μ÷μo1 and low rIAr
Since μ〉〉μ0 at tl, the force F is equal to the Curie temperature T
It suddenly changes after C. That is, when 81 degrees of the measurement part is lower than the Curie temperature Tc, the magnetic bodies 4a, 4a
A large force F acts on ffi and generates a strong sound wave, Tc
When it reaches , the force F suddenly decreases and the generated sound waves become extremely weak. By monitoring the sound waves emitted from the sensor 4 during the induction heating using the sound wave detection@5, it is possible to easily determine whether the temperature T of the measuring section is higher or lower than the Curie temperature C1, that is, the desired heating temperature. can be determined. In the above equation, B (magnetic flux density in an 11-mer material) is a temperature below the Curie temperature of the magnetic material, and is homologous to temperature as shown in Figure 3. Therefore, F is also homologous to temperature within that range. Figure. Therefore, if a standard curve of temperature and sound wave intensity is determined in advance, it is possible to change the rIA degree ratio during heating. The above embodiment shows a general example in which the present invention is applied to temperature monitoring of induction heating, but specifically, for example, monitoring of conductor temperature accompanying induction heating when forming a cable connection part can be cited. . In this case, the sensor 4 is placed inside the conductor before the sleeve is attached to the conductor connection part of the cable, and the sonic wave detector 5 is placed on the outer periphery of the cable connection part, as shown in FIG. The method of the invention is carried out in the same manner as in the Examples. The method of the present invention is particularly effective in monitoring the temperature of such cable connections. In the present invention, the temperature that can be monitored or measured is limited by the Curie temperature of the magnetic material, but since the Curie 8 degrees of the magnetic material changes depending on its composition, it is possible to create a magnetic material with any Curie temperature. It is. Therefore, by selecting and using a suitable magnetic material according to the application, the present invention can be widely applied. [Effects of the Invention] As explained above, according to the present invention, a sensor that oscillates with an alternating magnetic field depending on the temperature is placed in the measurement section, so that temperature can be measured and monitored in a so-called non-contact manner. can. Therefore, the scope of application is not limited as in the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を説明する図、第2図はその
実施例に使用されるセンサ4の縦断面図、第3図は飽和
磁束密度(BS)の温度依存性を示すグラフである。 1・・・・・・・・・被加熱体 2・・・・・・・・・Itl加熱コイル3・・・・・・
・・・高周波電源 4・・・・・・・・・センサ 4a・・・・・・磁性体 4b・・・・・・非磁性体ケース 5・・・・・・・・・音波検出器 G・・・・・・・・・微小ギャップ 出願人      昭和iWIm電纜株式会社代理人弁
理士   須 山 佐 − (ほか1名) 第1(!1 一 第2図
FIG. 1 is a diagram explaining an embodiment of the present invention, FIG. 2 is a longitudinal cross-sectional view of a sensor 4 used in the embodiment, and FIG. 3 is a graph showing the temperature dependence of saturation magnetic flux density (BS). It is. 1...Heated object 2...Itl heating coil 3...
...High frequency power supply 4...Sensor 4a...Magnetic material 4b...Non-magnetic material case 5...Sound wave detector G・・・・・・・・・Microgap Applicant Showa iWIm Denshin Co., Ltd. Representative Patent Attorney Satoshi Suyama - (1 other person) 1st (!1 1-2nd figure)

Claims (1)

【特許請求の範囲】[Claims] (1)キュリー温度既知の磁性体を2個微小ギャップを
設けて非磁性体で包囲してなるセンサを測定部に配置し
、その外周から交番磁場を加えて前記センサを発振させ
、この振動の変化から測定部の温度を検知することを特
徴とする非接触温度監視方法。
(1) A sensor consisting of two magnetic materials with a known Curie temperature surrounded by a non-magnetic material with a small gap is placed in the measurement section, and an alternating magnetic field is applied from the outer periphery to cause the sensor to oscillate. A non-contact temperature monitoring method characterized by detecting the temperature of a measuring part from changes.
JP8836585A 1985-04-24 1985-04-24 Noncontact temperature monitoring method Pending JPS61246638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8836585A JPS61246638A (en) 1985-04-24 1985-04-24 Noncontact temperature monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8836585A JPS61246638A (en) 1985-04-24 1985-04-24 Noncontact temperature monitoring method

Publications (1)

Publication Number Publication Date
JPS61246638A true JPS61246638A (en) 1986-11-01

Family

ID=13940772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8836585A Pending JPS61246638A (en) 1985-04-24 1985-04-24 Noncontact temperature monitoring method

Country Status (1)

Country Link
JP (1) JPS61246638A (en)

Similar Documents

Publication Publication Date Title
JP2009204342A (en) Eddy current type sample measurement method and eddy current sensor
JPS61246638A (en) Noncontact temperature monitoring method
WO2012109949A1 (en) Piezoelectric current sensor
JPWO2006059497A1 (en) Method and device for measuring critical current density of superconductor
SU627393A1 (en) Eddy-current transducer
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
JPS63297545A (en) Axis to be measured for torque sensor
JPS61246639A (en) Measurement of cable conductor temperature
JPH01148956A (en) Seam detecting apparatus for metal can
JPS61246637A (en) Temperature measurement
JPS6228674A (en) Method and instrument for noncontact measurement of conductivity of semiconductor wafer
RU2140655C1 (en) Method of current monitoring
JPH06222021A (en) Method and apparatus for measuring deterioration of material
JPH0129569Y2 (en)
JP2711883B2 (en) Sensor that detects the inside contour of metal members without contact
SU866465A1 (en) Device for measuring the depth of surface cracks in non-magnetic materials
JP2000055708A (en) Electromagnetic flowmeter
SU879334A1 (en) Method of checking temperature
JPH0432761A (en) Method for inspecting conductive thin film
JPS5835054A (en) Detection of molten steel level in continuous casting installation
JP2710165B2 (en) Torque sensor and magnetic anisotropy control method
Mostafavi et al. Simple electromagnetic detection of variations in properties of metal surfaces
JPS6319023B2 (en)
SU564585A1 (en) Vortical-current method for controlling cover quality
JP3231957B2 (en) Surface stress sensor