JPS61246334A - Manufacture of titanium nitride base sintered dense material - Google Patents

Manufacture of titanium nitride base sintered dense material

Info

Publication number
JPS61246334A
JPS61246334A JP60085669A JP8566985A JPS61246334A JP S61246334 A JPS61246334 A JP S61246334A JP 60085669 A JP60085669 A JP 60085669A JP 8566985 A JP8566985 A JP 8566985A JP S61246334 A JPS61246334 A JP S61246334A
Authority
JP
Japan
Prior art keywords
tin
powder
nitrogen
based sintered
titanium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60085669A
Other languages
Japanese (ja)
Other versions
JPS6365739B2 (en
Inventor
Kenichi Nishigaki
賢一 西垣
Hiroshi Nakahara
中原 啓
Magoichi Takahashi
高橋 孫一
Hironori Yoshimura
吉村 寛範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP60085669A priority Critical patent/JPS61246334A/en
Publication of JPS61246334A publication Critical patent/JPS61246334A/en
Publication of JPS6365739B2 publication Critical patent/JPS6365739B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain sintered material having high strength and hardness, by denitrification treating TiN powder previously, in manufacturing TiN base sintered material using respective powders of TiN, carbide, etc., of Co, Ni, etc., and groups 4a, 5a, 6a metals in the periodic table as material powder. CONSTITUTION:Nitrogen saturated TiN powder of relatively coarse grain, is heated to 1,500-1,700 deg.C in vacuum or reducing atmosphere and denitrification treated. The TiN fine powder unsaturated with nitrogen after the treatment is used as material powder, and sintered in reduced pressure nitrogen atmosphere according to conventional powder metallurgical condition. By the method, denitrification phenomenon is not caused in the TiN unsaturated with nitrogen, preferably, nitrification phenomenon from atmosphere is caused positively, TiN itself is activated remarkably accompanying with the nitrification, and sintering property is further improved. The material obtd. as the result has dense structure and remarkably improved strength and hardness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高強度と高硬度を有する緻密組織の窒化チ
タンC以下TiNで示す)基焼結材料の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a titanium nitride C (hereinafter referred to as TiN)-based sintered material having a dense structure and having high strength and high hardness.

〔従来の技術〕[Conventional technology]

一般に、切削工具や耐摩耐食部品、さらに時計ケースな
どの金色色調を生かした装飾品などの製造にTiN基焼
結材料が用いられている。
Generally, TiN-based sintered materials are used to manufacture cutting tools, wear-resistant and corrosion-resistant parts, and decorative items that make use of gold color, such as watch cases.

このTiN基焼結材料は、通常、原料粉末として。This TiN-based sintered material is usually produced as a raw material powder.

いずれも1〜3μm程度の平均粒径を有するTiN粉末
、結合相形成成分としてのCoやNiなとの金属粉末、
さらに周期律実の4 as  5 asおよび6a族金
属の炭化物粉末などを用い、これら原料粉末を、例えば
前記金属粉末の1種以上:10〜30%、前記金属炭化
物粉末の1種以上:5〜20%。
TiN powder with an average particle size of about 1 to 3 μm, metal powder with Co or Ni as a binder phase forming component,
Further, using carbide powders of metals of the 4 as 5 as and 6a groups of the periodic table, these raw material powders are mixed, for example, with one or more of the above metal powders: 10 to 30%, and one or more of the above metal carbide powders: 5 to 20%. %.

前記TiN粉末:残り、からなる配合組成c以上型i9
6.以下%は重、量%を示す)に配合し、以後、通常の
粉末冶金条件にしたがって、混合し、圧粉体に成形し、
これを真空あるいは環元性雰囲気中で焼結することによ
って製造されるものである。
The TiN powder: The remaining composition is c or more, type i9.
6. (% below indicates weight and volume %), then mixed and formed into a green compact according to normal powder metallurgy conditions,
It is manufactured by sintering this in a vacuum or a cyclic atmosphere.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の従来TiN基焼結材料は、高い熱伝導性
を有し、かつ耐熱衝撃性、耐酸化性、および耐食性にす
ぐれるものの、十分に高い強度および硬さをもつもので
ないため、より苛酷な条件下で使用された場合には、満
足する性能を長期に亘って発揮することができず、比較
的短時間で使用寿命に至るものであった。
However, although the above-mentioned conventional TiN-based sintered materials have high thermal conductivity and excellent thermal shock resistance, oxidation resistance, and corrosion resistance, they do not have sufficiently high strength and hardness. When used under harsh conditions, satisfactory performance cannot be achieved over a long period of time, and the service life is reached in a relatively short period of time.

〔問題点を解決するための手段〕[Means for solving problems]

そこで1本発明者等は、上述のような観点から、高強度
および高硬度を有するTiN基焼結材料を製造すべく研
究を行なった結果、従来TiN基焼結材料が十分満足す
る強度および硬さをもたないのは、原料粉末として使用
されているTiN粉末にあり、このTiN粉末が焼結時
に脱窒現象を起すと共に、他の配合成分とのぬれ性が悪
く、緻密な焼結体を得ることが困難であることに原因す
るものであるが、この原料粉末としての窒素飽和のTi
N粉末に。
Therefore, from the above-mentioned viewpoints, the present inventors conducted research to produce a TiN-based sintered material with high strength and high hardness. The reason for this lack is the TiN powder used as the raw material powder, which causes denitrification during sintering and has poor wettability with other ingredients, resulting in a dense sintered body. This is due to the difficulty in obtaining nitrogen-saturated Ti as the raw material powder.
into N powder.

予め、比較的粗粒、望ましくは50μm以上の平均粒径
をもった状態で、真空または還元性雰囲気中、1500
〜1700℃の範囲内の温度に加勢の脱窒処理を施し、
このように脱窒、望ましくは5〜20%の窒素が脱窒さ
れた状態の微細な窒素未飽和のTiN粉末を原料粉末と
して用い、通常の粉末冶金条件にしたがって、減圧窒素
雰囲気中で焼結すると、焼結時に、前記窒素未飽和のT
iNに、脱窒現象は起らず、むしろ雰囲気よりの加窒現
象が積極的に起り、この加窒に伴ってTiN自身が著し
く、活性化するようになることから、焼結性が一段と向
上するよ5になり、この結果得られたTiN基焼結材料
は、緻密な組織をもつようになって1強度および硬さが
著しく向上するようになるという知見を得たのである。
In advance, relatively coarse particles, preferably with an average particle size of 50 μm or more, are heated at 1,500 μm in vacuum or a reducing atmosphere.
Perform denitrification treatment at a temperature within the range of ~1700°C,
Fine nitrogen-unsaturated TiN powder with denitrification, preferably 5 to 20% nitrogen denitrified, is used as a raw material powder, and sintered in a reduced pressure nitrogen atmosphere according to normal powder metallurgy conditions. Then, during sintering, the nitrogen unsaturated T
The denitrification phenomenon does not occur in iN, but rather the nitrification phenomenon occurs actively from the atmosphere, and as a result of this nitrification, the TiN itself becomes significantly activated, which further improves the sinterability. 5, and it was found that the resulting TiN-based sintered material has a dense structure and has significantly improved strength and hardness.

したがって、この発明は、上記知見にもとづいてなされ
たものであって。
Therefore, this invention has been made based on the above findings.

比較的粗粒にして窒素飽和のTiN粉末を、予め真空ま
たは還元性雰囲気中で、1500〜1700℃の範囲内
の温度に加熱して脱窒処理し、この脱窒処理後の窒素未
飽和の微細なTiN粉末を原料粉末として用い、通常の
粉末冶金条件にしたがって、減圧窒素雰囲気中で焼結す
ることによって高強度および高硬度を有する緻密組織の
TiN基焼結材料を製造する方法に特徴を有するもので
ある。
Relatively coarse-grained, nitrogen-saturated TiN powder is denitrified by heating it in advance to a temperature within the range of 1500 to 1700°C in a vacuum or a reducing atmosphere, and the nitrogen-unsaturated TiN powder after this denitrification treatment is This method is characterized by the production of a TiN-based sintered material with a dense structure that has high strength and hardness by using fine TiN powder as a raw material powder and sintering it in a reduced-pressure nitrogen atmosphere under normal powder metallurgy conditions. It is something that you have.

なお、この発明の方法において、脱窒処理温度を150
0〜1700℃と定めたのは、その温度が1500℃未
満では脱窒反応が遅く実用的でなく。
In addition, in the method of this invention, the denitrification treatment temperature is set at 150°C.
The reason for setting the temperature to be 0 to 1,700°C is that if the temperature is lower than 1,500°C, the denitrification reaction will be slow and impractical.

一方、その温度が1700’Cを越えると、融着現象が
起るようになって、原料粉末として用いるに際しての微
粉化に長時間を要するようになるという理由によるもの
である。
On the other hand, if the temperature exceeds 1700'C, a fusion phenomenon will occur and it will take a long time to pulverize the powder when it is used as a raw material powder.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

実施例 1゜ 平均粒径:300μmを有する市販の窒素飽和TiN粉
末(N:22.5%含有)を用意し、これを黒鉛抵抗炉
内の黒鉛るつぼに入れ、10−4torrの真空中、温
度: 1600℃に1時間保持の条件で脱窒処理を行な
うことによって、窒素未飽和のTiN粉末(N : 2
0.896含有)を調製した。
Example 1 A commercially available nitrogen-saturated TiN powder (containing 22.5% N) having an average particle size of 300 μm was prepared, placed in a graphite crucible in a graphite resistance furnace, and heated at a temperature of 10 −4 torr in vacuum. : Nitrogen unsaturated TiN powder (N: 2
0.896) was prepared.

ついで、この窒素未飽和のTiN粉末を、湿式振動ミル
中で粉砕して、平均粒径:1.2μmを有する微粉末と
し、以後、通常の粉末冶金条件にしたがって、これに別
途原料粉末として用意した平均粒径:1.5μmのNi
粉末と同1.0μmのVC粉末とを。
Next, this nitrogen-unsaturated TiN powder is pulverized in a wet vibration mill to obtain a fine powder having an average particle size of 1.2 μm, which is then separately prepared as a raw material powder according to normal powder metallurgy conditions. Average particle size: 1.5 μm Ni
powder and the same 1.0 μm VC powder.

Ni:5%i、 VC: 10%、 TiN粉末:残り
からなる配合組成に配合し、湿式ボールミル中で72時
間の混合を行ない、乾、燥した後、 0.7ton/−
の圧力で長さ:30wX幅:10wX厚さ一6層の寸法
をもった圧粉体にプレス成形し、ついで、圧カニ100
torrの窒素雰囲気中、温度: 1400℃に1時間
保持の条件で焼結することによって本発明法によるTi
N基焼結材料c以下本発明TiN基焼結材料lという)
を製造した。
Ni: 5% i, VC: 10%, TiN powder: The rest was mixed in a wet ball mill for 72 hours, dried, and then 0.7 ton/-
Press molded into a compact with dimensions of length: 30w x width: 10w x thickness of 16 layers, and then press-molded with pressure crab 100.
Ti by the method of the present invention was sintered at a temperature of 1400° C. for 1 hour in a nitrogen atmosphere of
N-based sintered material c hereinafter referred to as the present invention TiN-based sintered material l)
was manufactured.

また、比較の目的で、原料粉末として、平均粒径;1.
2μmを有する市販の窒素飽和TiN粉末を使用する以
外は、上記本発明TiN基焼結材料の製造条件と同一の
条件にて従来法によるTiN基焼結材料(以下従来Ti
N基焼結材料1という)を製造した。
In addition, for the purpose of comparison, as a raw material powder, average particle size: 1.
The conventional TiN-based sintered material (hereinafter referred to as conventional TiN-based sintered material) was manufactured under the same conditions as the TiN-based sintered material of the present invention, except that a commercially available nitrogen-saturated TiN powder having a particle size of 2 μm was used.
N-based sintered material 1) was manufactured.

この結果得られた本発明TiN基焼結材料1および従来
TiN基焼結材料1について、理論密度比。
The theoretical density ratio of the TiN-based sintered material 1 of the present invention and the conventional TiN-based sintered material 1 obtained as a result.

強度を評価するための抗折力、およびロックウェル硬さ
くAスケール)を測定した。この測定結果を第1表に示
した。
Transverse rupture strength and Rockwell hardness (A scale) were measured to evaluate strength. The measurement results are shown in Table 1.

実施例 2゜ 平均粒径:100μmを有する市販の窒素飽和TiN粉
末(N:22.5%含有)を用意し、これを黒鉛抵抗炉
内の黒鉛るつぼに入れ、水素雰囲気中、温度: 150
0℃に2時間保持の条件で脱窒処理を行なうことによっ
て、窒素未飽和のTiN粉末(N:21.096含有)
を調製した。
Example 2 A commercially available nitrogen-saturated TiN powder (containing 22.5% N) having an average particle size of 100 μm was prepared, placed in a graphite crucible in a graphite resistance furnace, and heated in a hydrogen atmosphere at a temperature of 150 μm.
Nitrogen-unsaturated TiN powder (containing N: 21.096) was obtained by denitrification treatment under the condition of holding at 0°C for 2 hours.
was prepared.

ついで、この窒素未飽和のTiN粉末を、湿式振動ミル
中で粉砕して、平均粒径:1.5μmの微粉末とし、以
後1通常の粉末冶金条件にしたがって。
Next, this nitrogen-unsaturated TiN powder was ground in a wet vibrating mill to obtain a fine powder with an average particle size of 1.5 μm, and the following steps were followed under normal powder metallurgy conditions.

このTiN粉末のほかに、原料粉末として、別途用意し
た、いずれも1〜2μmの範囲内の平均粒径な有するM
O2C粉末、WC粉末、VC粉末、NbC粉末、 Ti
c粉末、およびZrC粉末、さらに結合相形成成分とし
てのNi粉末およびCo粉末を用い、これら原料粉末を
、それぞれ第2表に示される配合組成に配合し、湿式ボ
ールミル中で72時間の粉砕混合を行ない、乾燥した後
、0.7ton/−の圧力でプレス成形して長さ:30
wX幅:10wX厚さ:6諺の寸法をもった圧粉体とし
、これら圧粉体を、50〜200 torrの範囲内の
所定の圧力の減圧窒素雰囲気中で、1400〜1500
℃の範囲内の所定温度に1時間保持の条件で焼結するこ
とによって、本発明法によるTiN基焼結材料C以下本
発明TiN基焼結材料2〜14という)をそれぞれ製造
した。
In addition to this TiN powder, as a raw material powder, separately prepared M
O2C powder, WC powder, VC powder, NbC powder, Ti
Using C powder, ZrC powder, and Ni powder and Co powder as binder phase forming components, these raw material powders were blended into the composition shown in Table 2, and pulverized and mixed in a wet ball mill for 72 hours. After drying, press molding with a pressure of 0.7 ton/- to length: 30
w x Width: 10 w x Thickness: 6 The green compacts are heated to 1400 to 1500 torr in a reduced pressure nitrogen atmosphere at a predetermined pressure within the range of 50 to 200 torr.
TiN-based sintered materials C (hereinafter referred to as inventive TiN-based sintered materials 2 to 14) according to the method of the present invention were manufactured by sintering under the condition of holding at a predetermined temperature within the range of 1 hour for 1 hour.

また、比較の目的で、原料粉末として、平均粒径:1.
5μmを有する市販の窒素飽和TiN粉末を使用する以
外は、上記本発明TiN基焼結材料2 ;(3。
In addition, for the purpose of comparison, as a raw material powder, average particle size: 1.
The TiN-based sintered material 2 of the present invention described above except that a commercially available nitrogen-saturated TiN powder having a diameter of 5 μm was used; (3.

および9の製造条件と同じ条件にて従来法によるTiN
基焼結材料c以下従来TiN基焼結材料2,3゜および
9という)を製造した。
and TiN by the conventional method under the same manufacturing conditions as 9.
Based sintered materials c (hereinafter referred to as conventional TiN-based sintered materials 2, 3° and 9) were manufactured.

この結果得られた本発明TiN基焼結材料2〜14およ
び従来TiN基焼結材料2,3.9について、理論密度
比、抗折力、およびロックウェル硬さをそれぞれ測定し
た。これらの測定結果を第2表に示した。
The theoretical density ratio, transverse rupture strength, and Rockwell hardness of the TiN-based sintered materials 2 to 14 of the present invention and the conventional TiN-based sintered materials 2 and 3.9 obtained as a result were measured. The results of these measurements are shown in Table 2.

〔発明の効果〕〔Effect of the invention〕

@1表および第2表に示される結果から1本発明TiN
基焼結材料1〜14は、いずれも従来TiN基焼結材料
に比して、著しく高い強度と硬さを有し、かつ埋@密度
比においても10096あるいはこれに近い高い値を示
しており、きわめて緻密な組織をもつことが明らかであ
る。
@From the results shown in Table 1 and Table 2, the present invention TiN
All of the base sintered materials 1 to 14 have significantly higher strength and hardness than conventional TiN-based sintered materials, and also exhibit high buried density ratios of 10096 or close to this. , it is clear that it has an extremely dense organization.

上述のように、この発明の方法によれば、従来TiN基
焼結材料に比して、一段と高い強度と硬さを有し、かつ
緻密な組織のTiN基焼結材料を製造することができる
のである。
As described above, according to the method of the present invention, it is possible to produce a TiN-based sintered material that has higher strength and hardness and has a denser structure than conventional TiN-based sintered materials. It is.

Claims (1)

【特許請求の範囲】 比較的粗粒にして窒素飽和の窒化チタン粉末を、真空ま
たは還元性雰囲気中で、1500〜1700℃の範囲内
の温度に加熱して脱窒処理し、 この脱窒処理後の窒素未飽和の微細な窒化チタン粉末を
原料粉末として用い、通常の粉末冶金条件にしたがつて
、減圧窒素雰囲気中で焼結して窒化チタン基焼結材料を
製造することを特徴とする高強度および高硬度を有する
緻密な窒化チタン基焼結材料の製造法。
[Claims] Relatively coarse-grained nitrogen-saturated titanium nitride powder is heated to a temperature within the range of 1500 to 1700°C in a vacuum or a reducing atmosphere to undergo denitrification treatment, and this denitrification treatment is performed. A titanium nitride-based sintered material is produced by sintering in a reduced pressure nitrogen atmosphere according to normal powder metallurgy conditions using the subsequent nitrogen-unsaturated fine titanium nitride powder as a raw material powder. A method for producing a dense titanium nitride-based sintered material with high strength and hardness.
JP60085669A 1985-04-22 1985-04-22 Manufacture of titanium nitride base sintered dense material Granted JPS61246334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60085669A JPS61246334A (en) 1985-04-22 1985-04-22 Manufacture of titanium nitride base sintered dense material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085669A JPS61246334A (en) 1985-04-22 1985-04-22 Manufacture of titanium nitride base sintered dense material

Publications (2)

Publication Number Publication Date
JPS61246334A true JPS61246334A (en) 1986-11-01
JPS6365739B2 JPS6365739B2 (en) 1988-12-16

Family

ID=13865229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085669A Granted JPS61246334A (en) 1985-04-22 1985-04-22 Manufacture of titanium nitride base sintered dense material

Country Status (1)

Country Link
JP (1) JPS61246334A (en)

Also Published As

Publication number Publication date
JPS6365739B2 (en) 1988-12-16

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
JPH0219441A (en) Complex boride sintered body
JP2539712B2 (en) Nitride powder
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
JP2539018B2 (en) Al Lower 2 O Lower 3 Base ceramics
JP3063340B2 (en) Production method of fine tungsten carbide powder
JPS61246334A (en) Manufacture of titanium nitride base sintered dense material
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JPH11181540A (en) Hyperfine-grained cemented carbide
JP3735397B2 (en) Titanium nitride sintered body and method for producing the same
JPH0478584B2 (en)
JPH06279124A (en) Production of silicon nitride sintered compact
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JPH03290356A (en) Aluminum oxide based ceramics having high toughness and strength and production thereof
JPH0453829B2 (en)
JPS647141B2 (en)
JPH1046208A (en) Production of ti-ni base alloy sintered body
JP3366696B2 (en) Manufacturing method of high strength cermet
JPS62127449A (en) Electrode material for electric discharge machining and its production
JPS6119593B2 (en)
JPS59217673A (en) Manufacture of high density silicon nitride reaction sintered body
JPS5794535A (en) Production of hard alloy
JPS6389464A (en) Antishock tool and manufacture