JPS61246333A - Manufacture of high density ti sintered alloy - Google Patents

Manufacture of high density ti sintered alloy

Info

Publication number
JPS61246333A
JPS61246333A JP60085501A JP8550185A JPS61246333A JP S61246333 A JPS61246333 A JP S61246333A JP 60085501 A JP60085501 A JP 60085501A JP 8550185 A JP8550185 A JP 8550185A JP S61246333 A JPS61246333 A JP S61246333A
Authority
JP
Japan
Prior art keywords
powder
sintered
density
sintered alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60085501A
Other languages
Japanese (ja)
Other versions
JPH0440414B2 (en
Inventor
Hideaki Ushio
牛尾 英明
Kazuo Shibata
一雄 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP60085501A priority Critical patent/JPS61246333A/en
Publication of JPS61246333A publication Critical patent/JPS61246333A/en
Publication of JPH0440414B2 publication Critical patent/JPH0440414B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain high density sintered body by simple method suitable for mass production mode, by compacting the mixture of a Ti powder and an adding powder for alloying then sintering the green compact at obtaining Ti sintered alloy. CONSTITUTION:The Ti or Ti alloy powder 1 and the adding powder 2 for alloying are mixed, further subjected to pulverizing treatment. Then, both kind powders are further refined, strain is caused in inner part of powder, and a joined particle 3 in which they are tangled densely with each other (1a, 2a indicate the state after deformation of the powders 1, 2 respectively), increase of contacting area and shortening of diffusion distance during sintering are achieved. The particle 3 or 1a, 2a are activated higherly than powder by conventional method, and about >=99% sintered density is obtd. even if treated powder is compacted under normal pressure then sintered in vacuum.

Description

【発明の詳細な説明】 L11立皿ユニ1 本発明は、高密度Ti焼結合金の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION L11 Standing plate unit 1 The present invention relates to a method for producing a high-density Ti sintered alloy.

よ  の口 従来、Ti焼結合金は、下記の方法で製造されている。yo's mouth Conventionally, Ti sintered alloys have been manufactured by the following method.

(1)要素粉末法(第1図参照): ■;粉末と合金化用添加粉末とを混合しく第■工程)、
これを金型に装入して圧粉成形しく第■工程)、この圧
粉体を真空中、またはアルゴン・ガス雰囲気中で焼結す
る(第■工程)。そして、焼結体を鍛造(第■工程)後
、または鍛造を行うことなく、仕上げ加工(第V工程)
して成品を得る。
(1) Elemental powder method (see Figure 1): ■; Mixing the powder and the additive powder for alloying (Step ■),
This is charged into a mold and compacted into powder (step 1), and the compact is sintered in a vacuum or in an argon gas atmosphere (step 2). Then, after forging the sintered body (Step ■) or without forging, finishing processing (Step V) is performed.
and obtain a finished product.

なお、第■工程では、冷間静水圧プレス成形法(CIP
)により圧粉体を得る場合もある。
In addition, in the second step, cold isostatic pressing method (CIP) is used.
) may also be used to obtain a green compact.

この要素粉末法では、■素材粉末が、未だ目標合金組成
のものでなく、従って製造経費が低置である、■素材粉
末の混合比を変えて、組成の異なる各種の合金を得るこ
とができる、等の利点があるが、圧粉成形圧を8ton
/ciにした場合の成品の密度が最大98%であり、成
品の疲労強度が不足する不都合がある。
In this elemental powder method, 1) the raw material powder does not yet have the target alloy composition, so the manufacturing cost is low; 2) it is possible to obtain various alloys with different compositions by changing the mixing ratio of the raw material powders , etc., but the compacting pressure is 8 tons.
/ci, the density of the product is at most 98%, and there is a disadvantage that the fatigue strength of the product is insufficient.

(2)合金粉末法(第2図参照): 目標組成に調整された均一合金粉末を、押型内に装入し
て焼結温度で圧搾しくHIP :第I工程)、得られた
焼結体を仕上げ加工して(第■工程)成品を得る。
(2) Alloy powder method (see Figure 2): The uniform alloy powder adjusted to the target composition is charged into a mold and compressed at the sintering temperature.HIP: Step I), the obtained sintered body Finish processing (Step ■) to obtain a finished product.

この合金粉末法では、■焼結体の密度を100χにする
ことができ、■それ故、事後の鍛造加工を行う必要がな
い、■冷間圧粉法では成形困難な粉末でも容易に成形し
得る、等の利点があるが、■素材である均一合金粉末の
製造費が高価である、■押型として耐熱鋼型、炭素型が
使用され、その都度使い捨てされるため、製造費が高価
になる、■押型と共に加熱、圧搾されるため、多量生産
方式の採用が困難である、等の不都合がある。
With this alloy powder method, ■ it is possible to make the density of the sintered body 100χ, ■ therefore there is no need for subsequent forging, ■ it is possible to easily mold powders that are difficult to mold using the cold compaction method. However, the manufacturing cost of the homogeneous alloy powder that is the raw material is high; ■ The manufacturing cost is high because heat-resistant steel molds and carbon molds are used as the stamping molds, and they are discarded each time. , ■Since it is heated and pressed together with the pressing mold, it is difficult to adopt a mass production method.

p       ′    だ  の       び
本発明の目的は、多量生産方式に適する簡易な方法で高
密度の焼結体を得る点にある。
An object of the present invention is to obtain a high-density sintered body by a simple method suitable for mass production.

この目的は、Ti、またはTi合金粉末と合金化用添加
粉末とを所定割合で混合してなる混合粉末を、機械的粉
砕手段にて処即し、該粉砕処理した混合粉末を圧粉成形
した後、これを焼結させることによって達成される。
The purpose of this was to process a mixed powder obtained by mixing Ti or Ti alloy powder and an additive powder for alloying in a predetermined ratio with a mechanical pulverizer, and then compact the pulverized mixed powder. This is then achieved by sintering it.

TiまたはTi合金粉末1と、合金化用添加粉末2を混
合して(第3図参照)、更に粉砕処理を行うと、両種の
粉末が更に微細化されて粉末内部に歪が発生するととも
に相互に密にからみ合った結合粒子3が生じ(第4図参
照。但し、1a、2aはそれぞれ粉末1.2の変形後の
状態を示す)、接触面積の増大と、焼結時における拡散
距離の短縮が達成され、結合粒子3ないし粒子1a、2
aは、従来法による粉末に比して、言わば活性化された
状態になって、処理粉末を通常圧で圧粉成形後、真空焼
結を行った場合でも99%以上の焼結密度を得ることが
できる。
When Ti or Ti alloy powder 1 and additive powder for alloying 2 are mixed (see Figure 3) and further pulverized, both types of powder are further refined and strain is generated inside the powder. Bonded particles 3 are formed that are tightly entangled with each other (see Figure 4. However, 1a and 2a each show the state after deformation of the powder 1.2), which increases the contact area and the diffusion distance during sintering. A shortening of the bonded particles 3 to particles 1a, 2 is achieved.
A is in an activated state compared to the powder produced by the conventional method, and even when the treated powder is compacted under normal pressure and then vacuum sintered, a sintered density of 99% or more is obtained. be able to.

また、融点の差が大きな合金元素を、単一成分粉末とし
て混合し、従来方法により圧粉成形後、焼結した場合に
は、低融点金属の液化によって該金属粒子部分が空孔に
なり易り1.その現象を避けるために母合金化した粉末
を使用する必要があったが、本発明方法によれば、単一
成分粉末を使用しても空孔が生じ難く、高い焼結密度を
得ることが可能である。
Furthermore, when alloying elements with large differences in melting point are mixed as a single component powder and sintered after compaction using a conventional method, the metal particles tend to become pores due to the liquefaction of the low melting point metal. ri1. In order to avoid this phenomenon, it was necessary to use mother-alloyed powder, but according to the method of the present invention, even if a single-component powder is used, voids are unlikely to occur and high sintered density can be obtained. It is possible.

加えて、本発明方法によれば、粉末混合後の粉砕処理の
程度(活性化の程度)を変化させることにより焼結体の
結晶粒度を調整することができる。
In addition, according to the method of the present invention, the grain size of the sintered body can be adjusted by changing the degree of pulverization treatment (degree of activation) after powder mixing.

支JLJI (1)二種類の粉末、すなわち、その組成が、Ti99
、2wt%、O(M素)  0.2vt%、FB 0.
024wt%、C4) 0.13wt%であって、表1
に示す粒度分布のTi粉末と、その組成が、AN 60
wt%、V 40wt%で、粒度が250メツシユ以下
の合金化用添加粉末とを用意した(以下、第5図参照)
Branch JLJI (1) Two types of powder, that is, the composition is Ti99
, 2wt%, O (M element) 0.2vt%, FB 0.
024wt%, C4) 0.13wt%, Table 1
Ti powder with the particle size distribution shown in and its composition is AN 60
wt%, V 40wt%, and an alloying additive powder with a particle size of 250 mesh or less was prepared (see Figure 5 below).
.

(2)第工工程二次に、Ti粉末と合金化用添加粉末を
、重量比9:1の混合比で、V型ブレンダーをもって1
0分間混合した。
(2) Second process: Ti powder and additive powder for alloying are mixed at a weight ratio of 9:1, and mixed with a V-type blender.
Mixed for 0 minutes.

(3)第■工程:混合された粉末に、3cm3/粉末1
00Qrのプロピル・アルコールを凝集剤として添表 
 1 加して、振動ミル(1450rpo+ )を用い、室温
にて、0.5〜12時間の粉砕処理を行った。粉砕処理
は、これをボールミルで行うこともできるが、振動ミル
に比して長時間を要する不都合がある。なお、凝集剤と
してはへブタンを使用することもできるが、凝集剤の添
加口は、これを1〜50011’ /粉末100grに
するのが好ましい。その理由は、添加量が1CII3/
粉末1000r未満であると、粉末が凝集し、高密度な
焼結体が得られないばかりか、圧粉成形性に劣るからで
あり、添加量が50国3/粉末100grを越えると、
添加量に比して効果が少なく、く、次の圧粉成形工程に
先立って必要な凝集剤の減圧除去処理に長時間を要し、
量産性が損なわれるからである。
(3) Step ■: Add 3cm3/1 powder to the mixed powder.
Attach 00Qr of propyl alcohol as a flocculant.
In addition, pulverization treatment was performed for 0.5 to 12 hours at room temperature using a vibration mill (1450 rpo+). The pulverization process can also be carried out using a ball mill, but this has the disadvantage of requiring a longer time than a vibrating mill. Although hebutane can be used as the flocculant, it is preferable to add the flocculant at an amount of 1 to 50011'/100 gr of powder. The reason is that the amount added is 1CII3/
If the amount of powder is less than 1000g, the powder will aggregate and not only will it not be possible to obtain a high-density sintered body, but the compactability will be poor.If the amount added exceeds 50gr/100gr of powder,
The effect is small compared to the amount added, and it takes a long time to remove the flocculant under reduced pressure, which is necessary before the next compaction process.
This is because mass productivity is impaired.

(4)第■工程:粉砕処理された混合粉末を金型に装入
し、圧粉成形した。この工程では、冷静水圧プレス成形
法(CIP)を採用することもできる。
(4) Step (1): The pulverized mixed powder was charged into a mold and compacted. In this step, cold hydraulic press molding (CIP) can also be employed.

(5)第■工程:圧粉体を、真空度10″4〜10′6
履H(1゜温度1250℃、処理時間4時間なる条件で
焼結処理した。なお、処理雰囲気は、不活性ガス雰囲気
でも良く、温度、処理時間は、それぞれ1100〜14
00℃、1〜4時間の範囲で条件選択することができる
。その限定理由は、1100℃未満では、十分な拡散が
行われず、1400℃を越えると、均一組成の焼結体が
得られないからであり、また1時間未満では、十分な拡
散が行われず、4時間を越えたとしても高密度化は蒸捏
進行せず、量産性が損なわれるからである。
(5) Step ■: The green compact is vacuumed at a vacuum level of 10″4 to 10′6.
The sintering process was carried out under the conditions of 1° temperature of 1250°C and a processing time of 4 hours.The processing atmosphere may be an inert gas atmosphere, and the temperature and processing time were 1100 to 1400°C, respectively.
Conditions can be selected within the range of 00°C and 1 to 4 hours. The reason for this limitation is that if the temperature is less than 1,100°C, sufficient diffusion will not take place, if the temperature exceeds 1,400°C, a sintered body with a uniform composition will not be obtained, and if the temperature is less than 1 hour, sufficient diffusion will not take place. This is because even if the time exceeds 4 hours, densification will not proceed through steaming and mass productivity will be impaired.

(6)第V工程:焼結体を鍛造後、または鍛造を行うこ
となく、仕上げ加工(第■工程)を行って成品を得る。
(6) Step V: After forging the sintered body, or without forging, finish processing (step (Ⅰ)) is performed to obtain a finished product.

斯かる製造工程によれば、密度99%以上の成品を得る
ことができ、第■工程のみを省略して他の条件を本実施
例と同一にして得た成品の密度96.5%に比して十分
高密度であり、大幅な強度向上を期待し得る(第6図参
照)。
According to this manufacturing process, it is possible to obtain a product with a density of 99% or more, which is compared to the density of 96.5% of the product obtained by omitting only step (2) and keeping the other conditions the same as in this example. It has a sufficiently high density, and a significant improvement in strength can be expected (see Fig. 6).

なお、第7図は前者(本実施例による成品)の組織を示
す写真(倍率100)であり、第8図は後者(従来法に
よる成品)の組織を示す写真(倍率100)である。後
者は、前者と比して空孔(黒い斑点)が多く、粒度も大
きいこと杯判る。
Note that FIG. 7 is a photograph (magnification: 100) showing the structure of the former (product according to this example), and FIG. 8 is a photograph (magnification: 100) showing the structure of the latter (product according to the conventional method). It is clear that the latter has more pores (black spots) and larger grain size than the former.

l■L皇1 以上の説明から明らかな様に、本発明では、Ti、また
はTi合金粉末と、合金化用添加粉末とを所定割合で混
合してなる混合粉末を、機械的粉砕手段にて処理し、粉
砕処理した混合粉砕を圧粉成形した後、これを焼結させ
ることとしたため、量産に適する簡単な方法で高密度の
焼結合金を得ることができる。
As is clear from the above description, in the present invention, a mixed powder obtained by mixing Ti or Ti alloy powder and an additive powder for alloying in a predetermined ratio is pulverized by mechanical crushing means. Since the treated and pulverized mixed pulverized powder is compacted and then sintered, a high-density sintered alloy can be obtained by a simple method suitable for mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ公知に係る焼結金属の製造工
程図、第3図は本発明方法を実施するために二種類の素
材粉末を混合した状態を示す図、第4図はその混合粉末
を粉砕処理した後の粉末を示す図、第5図は本発明方法
によるTi焼結合金の製造工程図、第6図は両振引張り
、圧縮疲労試験(N=107)によるTi焼結合金の密
度と応力の関係を示すグラフ、第7図は本発明方法で製
造した丁1焼結合金の組織図(100倍)、第8図は従
来方法で製造したTi焼結合金の組織図(100倍)で
ある。 第1図 II[III 第2図 I     n 第3図 第4図 n 第、5・図 nIN 第6図
Figures 1 and 2 are diagrams of a known manufacturing process for sintered metal, Figure 3 is a diagram showing a state in which two types of raw material powder are mixed to carry out the method of the present invention, and Figure 4 is a diagram showing the state in which two types of raw material powder are mixed to carry out the method of the present invention. A diagram showing the powder after the mixed powder has been pulverized. Figure 5 is a process diagram for producing a Ti sintered alloy according to the method of the present invention. Figure 6 is a Ti sintered composite obtained by bidirectional tension and compression fatigue tests (N=107). A graph showing the relationship between gold density and stress. Figure 7 is a microstructure diagram (100x magnification) of a Ti sintered alloy produced by the method of the present invention. Figure 8 is a diagram of a Ti sintered alloy produced by a conventional method. (100 times). Figure 1 II [III Figure 2 I n Figure 3 Figure 4 n Figure 5, Figure n IN Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)TiまたはTi合金粉末と合金化用添加粉末とを
所定割合で混合して成る混合粉末を、機械的粉砕手段に
て処理し、該粉砕処理した混合粉末を圧粉成形した後、
これを焼結させることを特徴とする高密度Ti焼結合金
の製造方法。
(1) After processing a mixed powder obtained by mixing Ti or Ti alloy powder and an additive powder for alloying in a predetermined ratio with a mechanical pulverizing means, and compacting the pulverized mixed powder,
A method for producing a high-density Ti sintered alloy, which comprises sintering this.
(2)前記機械的粉砕手段として振動ミルを用いたこと
を特徴とする特許請求の範囲第1項に記載された高密度
Ti焼結合金の製造方法。
(2) The method for producing a high-density Ti sintered alloy according to claim 1, characterized in that a vibration mill is used as the mechanical crushing means.
(3)前記機械的粉砕手段による処理を行うに当り、混
合粉末中に1〜50cm^3/粉末100grの液体状
の凝集防止剤を添加することを特徴とする特許請求の範
囲第1項または第2項に記載された高密度Ti焼結合金
の製造方法。
(3) When performing the treatment by the mechanical crushing means, a liquid agglomeration preventive agent is added to the mixed powder in an amount of 1 to 50 cm^3/100 gr of powder. A method for producing a high-density Ti sintered alloy as described in item 2.
(4)真空中、温度1100〜1400℃、処理時間1
〜4時間なる条件で、前記焼結を行うことを特徴とする
特許請求の範囲第1項、第2項、または第3項に記載さ
れた高密度Ti焼結合金の製造方法。
(4) In vacuum, temperature 1100-1400℃, processing time 1
The method for producing a high-density Ti sintered alloy according to claim 1, 2, or 3, wherein the sintering is performed under conditions of 4 hours to 4 hours.
JP60085501A 1985-04-23 1985-04-23 Manufacture of high density ti sintered alloy Granted JPS61246333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60085501A JPS61246333A (en) 1985-04-23 1985-04-23 Manufacture of high density ti sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60085501A JPS61246333A (en) 1985-04-23 1985-04-23 Manufacture of high density ti sintered alloy

Publications (2)

Publication Number Publication Date
JPS61246333A true JPS61246333A (en) 1986-11-01
JPH0440414B2 JPH0440414B2 (en) 1992-07-02

Family

ID=13860678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60085501A Granted JPS61246333A (en) 1985-04-23 1985-04-23 Manufacture of high density ti sintered alloy

Country Status (1)

Country Link
JP (1) JPS61246333A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160608A (en) * 1974-09-26 1976-05-26 Jei Haaueru Chaaruzu
JPS56123301A (en) * 1979-11-26 1981-09-28 Gould Inc High density sintered powder alloy and its manufacture
JPS61159539A (en) * 1984-12-29 1986-07-19 Toshiba Corp Manufacture of shape memory alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160608A (en) * 1974-09-26 1976-05-26 Jei Haaueru Chaaruzu
JPS56123301A (en) * 1979-11-26 1981-09-28 Gould Inc High density sintered powder alloy and its manufacture
JPS61159539A (en) * 1984-12-29 1986-07-19 Toshiba Corp Manufacture of shape memory alloy

Also Published As

Publication number Publication date
JPH0440414B2 (en) 1992-07-02

Similar Documents

Publication Publication Date Title
US4799955A (en) Soft composite metal powder and method to produce same
US3811878A (en) Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder
JP2002526650A (en) Warm forming of steel powder
US4452756A (en) Method for producing a machinable, high strength hot formed powdered ferrous base metal alloy
JPH03100103A (en) Powder-metallurgical manufacture of workpiece
JPS61246333A (en) Manufacture of high density ti sintered alloy
JPH02259029A (en) Manufacture of aluminide
JPS63130732A (en) Manufacture of high-density ti sintered alloy
JPS6043423B2 (en) Method for manufacturing tool alloy with composite structure
CN110016622B (en) Powder metallurgy material and application thereof
JPS6046170B2 (en) Copper alloy used for liquid phase sintering of iron powder
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JPH03193801A (en) Sintering additive powder for intermetallic compound and sintering method thereof
US2979399A (en) Preparation of compacts made from uranium and beryllium by sintering
EP0157750B1 (en) Material for the powder metallurgical manufacture of soft magnetic components
JPH0688153A (en) Production of sintered titanium alloy
JPS5819738B2 (en) Koumitsudoshiyouketsukouno Seizouhouhou
KR850000618B1 (en) Sintered powdered titanium alloy of method
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPS63183142A (en) Manufacture of member made of high-density ti sintered alloy
JPS62164847A (en) Manufacture of porous sintered compact
JPH07278693A (en) Production of tungsten-based sintered heavy alloy
JPH01219102A (en) Fe-ni-b alloy powder as additive for sintering and sintering method thereof
JPS61130436A (en) Manufacture of rare earth metal magnet
JP3007198B2 (en) Method for producing composite powder comprising titanium powder and mother alloy powder

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term