JPS61245011A - Ultrasonic thickness gauge - Google Patents

Ultrasonic thickness gauge

Info

Publication number
JPS61245011A
JPS61245011A JP8625085A JP8625085A JPS61245011A JP S61245011 A JPS61245011 A JP S61245011A JP 8625085 A JP8625085 A JP 8625085A JP 8625085 A JP8625085 A JP 8625085A JP S61245011 A JPS61245011 A JP S61245011A
Authority
JP
Japan
Prior art keywords
thickness
ultrasonic
probe
data
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8625085A
Other languages
Japanese (ja)
Inventor
Reiji Hirano
平野 令二
Hiroto Kitai
北井 博人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8625085A priority Critical patent/JPS61245011A/en
Publication of JPS61245011A publication Critical patent/JPS61245011A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To always present information required most for analyzing a result of measurement by extracting the maximum thickness and the minimum thickness from the stored thickness data, and displaying them visually. CONSTITUTION:An electric pulse for driving an ultrasonic probe 104 is outputted from an ultrasonic wave generating circuit 152, by which through a route (h) from a transmitting part (g) of the probe 104, an ultrasonic wave is made incident on the inside of a body to be inspected 105 through a medium 160. Also, the ultrasonic wave which has been reflected by the reverse side is inputted to a receiving part (i) of the probe 104, converted to an electrical signal and sent to a centralized controlling circuit 151. On the other hand, a part of the ultrasonic wave generated by the probe 104 is reflected by the surface of the body to be inspected 105 and inputted to the receiving part (i). Subsequently, by a controlling circuit 151, an input time difference of the respective echo signals from the surface and the reverse side of the body to be inspected 105 is measured, and a thickness of the body to be inspected 105 is calculated. Moreover, from a data which has been stored in a storage device 156, the maximum thickness and the minimum thickness are extracted and displayed visually, and information required most for analyzing a result of measurement is always presented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は一般に超音波検査装置に係るものであり、さら
に具体的には超音波を利用して被検体の厚さを測定する
超音波厚さ計に係るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention generally relates to an ultrasonic inspection device, and more specifically to an ultrasonic thickness inspection device that measures the thickness of an object using ultrasonic waves. This is related to the meter.

[従来の技術] 従来、ハンディタイプの超音波厚さ計は、超音波探触子
を鉄鋼板等の被検体の表面に媒介液(カプラント)を介
して押しつけて接触させ、その接触直下の被検体の裏面
までの厚さを数値表示させて被検体の厚さを測定したり
、特定の数ケ所の点の厚さを測定して裏面の腐蝕状態を
推定したりしていた。この方法によると被検体が狭い範
囲で厚さが異っていたり、局部的に腐蝕していたり、部
分的に内部で欠陥があったりしても、これらを検知でき
ないことが多々あった。また、データ表示も測定点の厚
さを数値として表示するため被検体裏面の状態を連続的
に把握することが困難であつた。
[Prior Art] Conventionally, a hand-held ultrasonic thickness gage uses an ultrasonic probe that is pressed against the surface of an object to be inspected, such as a steel plate, through a medium liquid (couplant) and brought into contact. The thickness of the specimen was measured by numerically displaying the thickness to the back surface of the specimen, or the thickness at several specific points was measured to estimate the corrosion state of the back surface. According to this method, even if the specimen has different thicknesses within a narrow range, is locally corroded, or has internal defects, it is often impossible to detect these. Furthermore, since the data display displays the thickness of the measurement point as a numerical value, it is difficult to continuously grasp the condition of the back surface of the object.

[発明が解決しようとする問題点] 本発明の目的は上述の如き不連続点の測定叩よる厚さの
変化、あるいは内部欠陥の存在などを見落すという問題
点を解消し、また従来の厚さの数値のみの表示による裏
面状態の把握困難という問題点を解消することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problem of overlooking changes in thickness due to measurement of discontinuous points or the presence of internal defects, and to solve the problem of overlooking the presence of internal defects. The object of the present invention is to solve the problem that it is difficult to grasp the condition of the back side by displaying only the numerical value of the size.

この目的は本発明に従って連続的な測定により、連続的
な厚さの変化を検知し、その測定データの表示も視覚に
訴えるグラフィックディスプレーにより厚さの連続的な
つながり、即ち被検体の断面図を自動的に得られるよう
にして、被検体の裏面状態、内部欠陥の分布状態などを
容易に理解できるようにすることにより達成される。
The purpose of this invention is to detect continuous changes in thickness by continuous measurement according to the present invention, and to display the measured data on a visually appealing graphic display to show the continuous connection of thickness, that is, a cross-sectional view of the object. This is achieved by making it possible to automatically obtain the information such as the back surface condition of the object and the distribution condition of internal defects, etc.

特に本発明では記憶された厚さデータから最大厚さと最
小厚さとを抽出して視覚表示することにより測定結果の
分析上量も必要とされる情報を常時提示することにより
前記の目的のより十分な達成を図るものである。
In particular, in the present invention, the maximum thickness and minimum thickness are extracted from the stored thickness data and visually displayed, thereby constantly presenting the information required for analysis of the measurement results. The aim is to achieve the following goals.

[問題点を解決するための手段] すなわち、本発明の超音波厚さ計は、音速入力手段;図
形表示装置;超音波探触子:前記の超音波探触子へ接続
された超音波発生回路;前記の超音波探触子へ接続され
、超音波探触子直下の被検体からのエコー信号を受信す
る超音波受信回路;及び 前記の音速入力手段と、前記の超音波受信回路とへ接続
され、前記のエコー信号から被検体の厚さを算出する手
段と、被検体の位置データとそれに対応する厚さデータ
とを記憶する手段と、位置データと厚さデータを読出し
て被検体の断面図を前記の図形表示装置へ呈示する手段
と、記憶された厚さデータから最大厚さと最小厚さとを
読出して前記の図示表示装置へ呈示する手段とを含む集
中制御回路を備えたことを特徴とする。
[Means for Solving the Problems] That is, the ultrasonic thickness gauge of the present invention includes: a sound velocity input means; a graphic display device; an ultrasonic probe: an ultrasonic generator connected to the ultrasonic probe; circuit; an ultrasonic receiving circuit connected to the ultrasonic probe and receiving an echo signal from the subject directly under the ultrasonic probe; and to the sound velocity input means and the ultrasonic receiving circuit; means for calculating the thickness of the object from the echo signal, means for storing position data of the object and corresponding thickness data, and means for reading out the position data and thickness data of the object. A central control circuit including means for presenting a cross-sectional view on the graphic display device, and means for reading the maximum thickness and minimum thickness from the stored thickness data and presenting it on the graphic display device. Features.

[作 用] 超音波探触子を接触させて鋼材等の厚さを測定するが、
その測定は探触子の静止接触部分のみでなく、接触状態
を保ちつつ連続して移動させたとき各位置の厚さデータ
を数値として貯え、かつ連続した複数個の厚さデータを
得ることにより移動経路直下の断面図を表示する画像表
示も行なう。
[Operation] The thickness of steel materials, etc. is measured by bringing an ultrasonic probe into contact with it.
This measurement is performed not only at the stationary contact part of the probe, but also by storing the thickness data at each position as numerical values when the probe is continuously moved while maintaining the contact state, and by obtaining multiple consecutive thickness data. An image display that shows a cross-sectional view directly below the moving route is also performed.

特に本発明では記憶した厚さデータから最大厚さと最小
厚さとを抽出して視覚表示して、測定結果の分析上量も
必要とされる情報を常時提示するようにしている。
Particularly, in the present invention, the maximum thickness and minimum thickness are extracted from the stored thickness data and visually displayed, so that information required for analysis of measurement results is constantly presented.

[実施例] 第1図は本発明の実施例の超音波厚さ計の斜視図である
。1は図形表示装置付超音波厚さ計の本体、2は電源と
しての電池を格納する電池ボックス、3は負荷への電力
供給を制御する電源スィッチ、4は超音波探触子で、厚
さ針本体1とは柔軟性のあるケーブルで電気的に結合さ
れている。超音波探触子4は一般的に発信と受信と2つ
に分割されており、厚さ針本体からの発信電気量を超音
波に変換し被検体5の内部へ入射伝搬させる。被検体の
底面で反射した超音波は再度探触子4に受信され電気信
号に変換される。この電気信号は厚さ針本体に導びかれ
、この受信情報により厚さデータが得られる。図形表示
パネル6には探触子4からのデータを表示するのみなら
ずキーボード7より被検体5の種類別による音速を0〜
9の10個の数値キー(テン・キー)8により入力、表
示する。またキーボード7にはテン・キーの他にも古い
データを図形表示パネル6より消去するための消去また
はCLRキー9、厚さ方向の単位切換スイッチ10、所
望位置の厚さを確認するための位置マークを移動させる
左移動スイッチ11、右移動スイッチ12を設けている
[Example] FIG. 1 is a perspective view of an ultrasonic thickness gauge according to an example of the present invention. 1 is the main body of the ultrasonic thickness gauge with a graphic display device, 2 is a battery box that stores batteries as a power source, 3 is a power switch that controls the power supply to the load, and 4 is an ultrasonic probe that measures the thickness. It is electrically connected to the needle body 1 by a flexible cable. The ultrasonic probe 4 is generally divided into two parts, one for transmitting and one for receiving, and converts the amount of electricity transmitted from the thick needle body into ultrasonic waves, which are incident and propagated inside the subject 5. The ultrasonic waves reflected from the bottom surface of the subject are received again by the probe 4 and converted into electrical signals. This electrical signal is guided to the thickness needle body, and thickness data is obtained from this received information. The graphic display panel 6 not only displays the data from the probe 4, but also displays the sound speed from 0 to
Input and display using 10 numerical keys (numeric keypad) 8 of 9. In addition to the numeric keys, the keyboard 7 also has an erase or CLR key 9 for erasing old data from the graphic display panel 6, a unit changeover switch 10 for the thickness direction, and a position for confirming the thickness at a desired position. A left movement switch 11 and a right movement switch 12 are provided to move the mark.

さらに表示パネル6は探触子4が直線状スキャナ13に
沿って移動することができその探触子4の位置信号を柔
軟性のあるケーブルにより厚さ針本体1に入力するが、
この探触子位置情報と前述の厚さ情報とで探触子の移動
した部分の縦軸に厚さを横軸に位置をとって表わした断
面図が得られ、これを表示パネル6に表示する。またこ
の断面図中の被検体の表面に最も近い裏面までの距離、
すなわち最低厚さと被検体の表面から最も遠い裏面まで
の距離すなわち最高厚さを自動的に探し、これらを数値
データとしてa、b部に表示する。また移動マークが示
す位置における被検体の厚さも0部に表示する。14は
測定データの補正ボリュームで後述する第2図の符号1
14に対応する。なお探触子4及びスキャナ13のケー
ブルは各々コネクタd、eおよびfにより厚さ針本体に
結合されている。
Furthermore, the display panel 6 allows the probe 4 to move along the linear scanner 13 and inputs the position signal of the probe 4 to the thickness needle body 1 through a flexible cable.
Using this probe position information and the above-mentioned thickness information, a cross-sectional view is obtained in which the position of the portion where the probe has moved is plotted on the vertical axis and the thickness on the horizontal axis, and this is displayed on the display panel 6. do. Also, the distance to the back surface closest to the surface of the object in this cross-sectional view,
That is, the minimum thickness and the distance from the front surface of the object to the farthest back surface, that is, the maximum thickness are automatically searched for, and these are displayed as numerical data in sections a and b. Furthermore, the thickness of the object at the position indicated by the moving mark is also displayed in the 0 section. 14 is a correction volume for measurement data, which will be described later with reference numeral 1 in Fig. 2.
Corresponds to 14. Note that the cables of the probe 4 and the scanner 13 are connected to the thickness needle body by connectors d, e, and f, respectively.

第2図は本発明の実施例を電気ブロック図で表わしたも
のである。102は電圧■8の電源電池、103は電源
スィッチでありこの電源スィッチ103をオンすること
でDC−DCコンバータ150が作動し所要の電源電圧
をつくる。例えば電源Vcは集中制御回路151等の電
源で+5■、また電源Voは表示パネル106駆動用電
源で一8V、電源VEは超音波発生回路152のための
電源で+100V等である。
FIG. 2 is an electrical block diagram showing an embodiment of the present invention. Reference numeral 102 denotes a power supply battery with a voltage of 18, and 103 a power switch. When the power switch 103 is turned on, a DC-DC converter 150 operates to generate a required power supply voltage. For example, the power supply Vc is a power supply for the central control circuit 151 and the like, and is +5V, the power supply Vo is a power supply for driving the display panel 106 and is -8V, and the power supply VE is a power supply for the ultrasonic generation circuit 152 and is +100V.

超音波探触子104を駆動する電気パルスが超音波発生
回路152より1kHzの繰返し周波数で出力され、こ
れによって圧電素子で作られている分割型超音波探触子
104の送波部Qよりルートhを辿って超音波が油膜等
の媒体160を介して被検体105の内部に入射し、そ
して裏面で反射した超音波は探触子104の受波部iに
入る。ここで変換された電気信号は受信回路153で増
巾、整形され集中制御回路151に送られる。
Electric pulses that drive the ultrasonic probe 104 are output from the ultrasonic generation circuit 152 at a repetition frequency of 1 kHz. The ultrasonic wave enters the inside of the subject 105 via a medium 160 such as an oil film, and the ultrasonic wave reflected from the back surface enters the wave receiving part i of the probe 104. The electrical signal converted here is amplified and shaped by the receiving circuit 153 and sent to the central control circuit 151.

超音波探触子104から発した超音波の一部はルートj
を辿って被検体105の表面から反射され、受渡部iに
入る。
A part of the ultrasonic waves emitted from the ultrasonic probe 104 is route j
is reflected from the surface of the subject 105 and enters the delivery section i.

集中制御回路151ではこれら被検体の裏面からのエコ
ー信号と表面からのエコー信号の入力した時間の差を測
定することにより被検体の厚さを算出する。厚さを求め
る計算式を以下に示す。
The centralized control circuit 151 calculates the thickness of the object by measuring the difference in time between input of the echo signals from the back side and the front side of the object. The formula for calculating the thickness is shown below.

to −Vo X (TB −Ts ) /2vO:被
検体の音速 TB:裏面からのエコーの探触子への入力時刻Ts:表
面からのエコーの探触子への入力時刻(厚さを求める回
路の詳細は「トランジスタ技術」1982年7月号、3
16頁、「超音波センサの基礎と探傷器、厚さ計への応
用」参照) 被検体の音速は前取ってキーボード107の数値キー8
により入力しておく。1例えば鋼は5900■/sec
でアルミは6320+a /secであり、従って鋼の
場合はEl、El、同9回とキー人力する。この数値は
電源スィッチ103をオフにしたとき消えてしまうとス
イッチ103をオンする毎に入力する必要があり、この
わずられしさを避けるため音速データは低消費電力のメ
モリ154に記憶させるようにすると便利である。メモ
リ154は電池102の電圧VBをスイッチ103を経
由しないで供給されており、そのため電池102が存在
し所定の電圧を保持する限り音速データを保持すること
ができ、同一材料の被検体を測定するときはそのための
再入力は必要なくなる。
to −Vo For details, see "Transistor Technology" July 1982 issue, 3
(See page 16, “Basics of Ultrasonic Sensors and Applications to Flaw Detectors and Thickness Gauges.”) Set the sound velocity of the object in advance and press numeric key 8 on the keyboard 107.
Please enter the following information. 1 For example, steel is 5900■/sec
For aluminum, it is 6320+a/sec, so for steel, the key force is El, El, 9 times. If this value disappears when the power switch 103 is turned off, it will be necessary to input it every time the switch 103 is turned on. To avoid this inconvenience, the sound speed data is stored in the low power consumption memory 154. That's convenient. The memory 154 is supplied with the voltage VB of the battery 102 without going through the switch 103, so as long as the battery 102 exists and maintains a predetermined voltage, it can hold the sound speed data, and can measure objects made of the same material. In some cases, there is no need to re-enter the information.

本発明による厚さ計は周波数1kHzで繰返して厚さデ
ータを取り込むが、同時に探触子104を連続して移動
させ、その位置信号をスキャナ113よりエンコーダ1
55を経て集中制御回路151に入力する。
The thickness gauge according to the present invention repeatedly acquires thickness data at a frequency of 1 kHz, but at the same time, the probe 104 is continuously moved and the position signal is transmitted from the scanner 113 to the encoder 1.
The signal is input to the central control circuit 151 via 55.

スキャナ113では例えば直線的に70m走査でき、そ
の間の位置信号を0.21M毎に得ることができるとす
れば350個の位置データとそれに伴う厚さデータが制
御回路内の記憶装置156に貯えられる。
For example, if the scanner 113 can linearly scan 70 m and obtain position signals every 0.21 m during that time, 350 pieces of position data and accompanying thickness data can be stored in the storage device 156 in the control circuit. .

また同時にこの厚さ数値データは、断面図の表示のため
に表示長さデータに変換される。これらの位置データ、
表示長さデータは他のデータと共に表示駆動回路151
に送られ第3図に示すように断面図にとして図形表示パ
ネル106に表示される。
At the same time, this numerical thickness data is converted into display length data for displaying a cross-sectional view. These location data,
The display length data is sent to the display drive circuit 151 along with other data.
The cross-sectional view is displayed on the graphic display panel 106 as shown in FIG.

次の測定を行う場合にはキーボード107上の消去キー
109を押して表示画面の不要部分を消去する。
When performing the next measurement, the erase key 109 on the keyboard 107 is pressed to erase unnecessary portions of the display screen.

第3図に於て図形表示パネル106は例えばドツトマト
リックス型の液晶表示パネルで構成されており、音速の
キー人力データは音速表示部Jに表示される。またmは
移動マークで左、右移動スイッチ111.112が押さ
れるとマークは直線nの上を左または右へ移動し、そし
てこのマーク位置の厚さはマーク位置厚さ表示部Cに表
示される。このとき断面図中底面の位置をより良く理解
するために表面に垂直な線を表示しても良い。最小、最
大厚さは記憶装置156に貯えられている厚さデー夕の
全てを比較して求められた最小、最大値を各々最小、最
大厚さ表示部a、bに表示させる。
In FIG. 3, the graphic display panel 106 is composed of, for example, a dot matrix type liquid crystal display panel, and key manual data of the speed of sound is displayed on the speed of sound display section J. Also, m is a moving mark, and when the left or right movement switch 111 or 112 is pressed, the mark moves to the left or right on the straight line n, and the thickness of this mark position is displayed on the mark position thickness display section C. Ru. At this time, a line perpendicular to the surface may be displayed in order to better understand the position of the bottom surface in the cross-sectional view. The minimum and maximum thickness values obtained by comparing all the thickness data stored in the storage device 156 are displayed on the minimum and maximum thickness display sections a and b, respectively.

最小、最大を表すマークq、rは第4図のq′r′のよ
うに文字で表してもよい。
The marks q and r representing the minimum and maximum may be represented by letters like q'r' in FIG.

さらに厚さ目盛0は厚さ単位切換スイッチ110により
、例えばX 1 m、 X 10m、 X 1100a
の倍率切換がなされる。同時に厚さ表示部a、、b、c
の各々も、例えば×1のときは小数点以下2位迄(例1
.65履)、X10のときは1位迄(16,5履)、X
100のときは整数(例165)などと厚さ数値の表示
法を切換えても良い。
Further, the thickness scale 0 can be set to, for example, X 1 m, X 10 m, X 1100 a by the thickness unit changeover switch 110.
The magnification is switched. At the same time, thickness display parts a, b, c
For example, in the case of ×1, each of
.. 65 shoes), up to 1st place for X10 (16,5 shoes),
When the value is 100, the display method of the thickness value may be switched to an integer (eg 165).

単位切換スイッチ110の設定を誤って小さい単位に設
定したとき大きい厚さデータが入力された場合断面表示
不能となりオーバーフローを意味するOF表表示が点灯
するようにすれば使用者にとって便利となる。例えば切
換スイッチ110を×10重位置に設定したとき厚さが
1100a以上のデータが探触子104から入力される
と警報が発する。
If the unit changeover switch 110 is erroneously set to a small unit and large thickness data is input, it will be convenient for the user if the section display becomes impossible and the OF table display indicating overflow lights up. For example, when the changeover switch 110 is set to the x10 position and data indicating a thickness of 1100a or more is input from the probe 104, an alarm is issued.

第2図の114は測定データの補正手段であり、温度変
化、あるいは探触子104の多数回の走査による導波プ
ラスチック部が擦り減ったときなど測定データに悪い影
響のあるときこれを補正するためのボリュームで、例え
ば正確に5履厚のものを測定し5.25 mと測定され
たときこのボリュームを使用して5.00 mと補正す
るものである。
Reference numeral 114 in FIG. 2 is a measurement data correction means, which corrects when the measurement data is adversely affected by temperature changes or when the waveguide plastic part is worn out due to multiple scans of the probe 104. For example, if a 5-shoe-thick object is measured to be 5.25 m, this volume is used to correct it to 5.00 m.

この実施例においては超音波探触子としては分割型探触
子を使用したが、発信と受信とを一体とした探触子を用
いてもよい。
In this embodiment, a split type probe is used as the ultrasonic probe, but a probe that integrates transmitting and receiving functions may also be used.

また音速の入力をテン・キーを用いて行なうものと説明
したが、例えば4桁のサムホイールスイッチを用いても
よい。
Furthermore, although it has been described that the speed of sound is entered using a numeric keypad, a four-digit thumbwheel switch may also be used, for example.

実施例では直線状の探触子スキャナについて説明したが
曲りくねっているスキャナでも連続的に走査するという
点では変りなく、またスキャナは存在しなくてもよい。
In the embodiment, a linear probe scanner has been described, but a curved scanner is the same in that continuous scanning is performed, and the scanner does not need to be present.

その場合は一定の時間、例えば1秒間探触子を手で移動
させてその間走査した部分の断面図を自動的に描かせる
ようにする。
In this case, the probe is manually moved for a certain period of time, for example, one second, and a cross-sectional view of the scanned part is automatically drawn during that period.

このときは位置情報の代りに時間情報を断面図の横軸と
して使用する。
In this case, time information is used as the horizontal axis of the cross-sectional view instead of position information.

また、実施例では図形表示装置として液晶パネルを使用
しているが、螢光表示管、プラズマ表示パネルを使用し
てもよく、また記録として残すためにプリンターを併用
してもよい。
In addition, although a liquid crystal panel is used as a graphic display device in the embodiment, a fluorescent display tube or a plasma display panel may be used, and a printer may also be used in order to leave a record.

[発明の効果] 叙上から明らかなように、超音波厚さ計に断面図を表示
する図形表示パネルを取付けた簡単な構成で連続的な厚
さ測定を可能とし、不連続測定による被検体の欠陥部分
の見落しなどの問題を解消した。また、底面の例えば腐
蝕した状態が視覚により鮮明に理解し得ることも大きな
便宜である。
[Effects of the Invention] As is clear from the above description, continuous thickness measurement is possible with a simple configuration in which a graphic display panel that displays a cross-sectional view is attached to an ultrasonic thickness gauge, and the thickness of the object to be examined is measured discontinuously. Problems such as overlooking defective parts have been resolved. It is also a great convenience to be able to visually clearly understand, for example, the corroded state of the bottom surface.

さらに測定結果の分析上置も必要とされる最大厚さと最
小厚さとを抽出して視覚表示することができる。
Furthermore, upon analysis of the measurement results, the required maximum and minimum thicknesses can be extracted and visually displayed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による超音波厚さ計の斜視図、第2図は
本発明による超音波厚さ計の電気ブロック図、 第3図は本発明による超音波厚さ計の図形表示フォーマ
ット例、 そして第4図は別の図形表示フォーマット例をそれぞれ
示す。 図中; 1:超音波厚さ針本体、2:電池ボックス、3:電源ス
ィッチ、4:超音波探触子、5:被検体、6:図形表示
パネル、 7:キーボード、8:数値キー、 9:クリアキー、10:厚さ単位切換スイッチ、11:
位置マーク左移動スイッチ、 12:位置マーク右移動スイッチ、 13:直線スキャナ、 14:データ補正ボリューム。
FIG. 1 is a perspective view of an ultrasonic thickness gauge according to the present invention, FIG. 2 is an electrical block diagram of an ultrasonic thickness gauge according to the present invention, and FIG. 3 is an example of a graphical display format of an ultrasonic thickness gauge according to the present invention. , and FIG. 4 show examples of other graphical display formats, respectively. In the figure: 1: Ultrasonic thickness needle body, 2: Battery box, 3: Power switch, 4: Ultrasonic probe, 5: Subject, 6: Graphic display panel, 7: Keyboard, 8: Numeric keys, 9: Clear key, 10: Thickness unit selector switch, 11:
Position mark left movement switch, 12: Position mark right movement switch, 13: Linear scanner, 14: Data correction volume.

Claims (1)

【特許請求の範囲】 音速入力手段; 図形表示装置; 超音波探触子; 前記の超音波探触子へ接続された超音波発生回路; 前記の超音波探触子へ接続され、超音波探触子直下の被
検体からのエコー信号を受信する超音波受信回路;及び 前記の音速入力手段と、前記の超音波受信回路とへ接続
され、前記のエコー信号から被検体の厚さを算出する手
段と、被検体の位置データと、それに対応する厚さデー
タとを記憶する手段と、位置データと厚さデータを読出
して被検体の断面図を前記の図形表示装置へ呈示する手
段と、記憶された厚さデータから最大厚さと最小厚さと
を読出して前記の図示表示装置へ呈示する手段とを含む
集中制御回路 を備えたことを特徴とする超音波厚さ計。
[Claims] Sound velocity input means; Graphic display device; Ultrasonic probe; Ultrasonic generating circuit connected to the ultrasonic probe; an ultrasonic receiving circuit that receives an echo signal from the subject directly under the tentacle; and is connected to the sound velocity input means and the ultrasonic receiving circuit, and calculates the thickness of the subject from the echo signal. means for storing positional data of the subject and thickness data corresponding thereto; means for reading the positional data and thickness data and presenting a cross-sectional view of the subject on the graphic display device; 1. An ultrasonic thickness gage characterized by comprising a central control circuit including means for reading the maximum thickness and minimum thickness from the thickness data and presenting them on the above-mentioned graphical display device.
JP8625085A 1985-04-24 1985-04-24 Ultrasonic thickness gauge Pending JPS61245011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8625085A JPS61245011A (en) 1985-04-24 1985-04-24 Ultrasonic thickness gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8625085A JPS61245011A (en) 1985-04-24 1985-04-24 Ultrasonic thickness gauge

Publications (1)

Publication Number Publication Date
JPS61245011A true JPS61245011A (en) 1986-10-31

Family

ID=13881569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8625085A Pending JPS61245011A (en) 1985-04-24 1985-04-24 Ultrasonic thickness gauge

Country Status (1)

Country Link
JP (1) JPS61245011A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220569A (en) * 2005-02-10 2006-08-24 Tokimec Inc Corrosion detector of bottom part of rail, and method for detecting corrosion of the bottom part of rail
JP2019105590A (en) * 2017-12-14 2019-06-27 日本製鉄株式会社 Measuring apparatus, measuring method, measuring system and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006220569A (en) * 2005-02-10 2006-08-24 Tokimec Inc Corrosion detector of bottom part of rail, and method for detecting corrosion of the bottom part of rail
JP4718857B2 (en) * 2005-02-10 2011-07-06 東京計器株式会社 Rail bottom corrosion detection device and rail bottom corrosion detection method
JP2019105590A (en) * 2017-12-14 2019-06-27 日本製鉄株式会社 Measuring apparatus, measuring method, measuring system and program

Similar Documents

Publication Publication Date Title
WO2004051187A1 (en) Device for measuring thickness of vessel steel plate
JP4417853B2 (en) DCVG-CIPS measuring device for detecting results about pipelines
US6397681B1 (en) Portable ultrasonic detector
JPS61245011A (en) Ultrasonic thickness gauge
JPS61245008A (en) Ultrasonic thickness gauge
JPS61245009A (en) Ultrasonic thickness gauge
JPS61245010A (en) Ultrasonic thickness gauge
JPS62245107A (en) Ultrasonic thickness meter
JP6994282B1 (en) Wall thickness measurement method
JP2596264Y2 (en) Pointer load torque measuring instrument
KR0171605B1 (en) Ultrasonic inspection and imaging instrument
JPS63150664A (en) Defect measuring instrument for ultrasonic flaw detection device
JP2816662B2 (en) Portable rail flaw detector
JPS62134556A (en) Ultrasonic flaw detection apparatus
JPH0561590B2 (en)
JPH0373846A (en) Instrument for measuring ultarsonic wave
JP7104595B2 (en) Station projection system and measuring jig
Wells-Krautkramer Hand-held thickness meter
JPH11304771A (en) Surveying device for small-diameter tube
JP2001269337A (en) Ultrasonograph
JP2640878B2 (en) Ultrasound imaging equipment
Street et al. internal probe for boiler tubes
JP2639582B2 (en) 3D coordinate input device
JPH0561589B2 (en)
JPS63150666A (en) Measurement range selecting device for ultrasonic flaw detector