JPH11304771A - Surveying device for small-diameter tube - Google Patents

Surveying device for small-diameter tube

Info

Publication number
JPH11304771A
JPH11304771A JP10112323A JP11232398A JPH11304771A JP H11304771 A JPH11304771 A JP H11304771A JP 10112323 A JP10112323 A JP 10112323A JP 11232398 A JP11232398 A JP 11232398A JP H11304771 A JPH11304771 A JP H11304771A
Authority
JP
Japan
Prior art keywords
small
thin film
probe
test object
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10112323A
Other languages
Japanese (ja)
Inventor
Masashi Murakawa
政司 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOONAN KK
Original Assignee
KOONAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOONAN KK filed Critical KOONAN KK
Priority to JP10112323A priority Critical patent/JPH11304771A/en
Publication of JPH11304771A publication Critical patent/JPH11304771A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Abstract

PROBLEM TO BE SOLVED: To provide a surveying device for small-diameter tube which can easily, precisely, and stably make ultrasonic measurement over wide ranges in the peripheral and axial directions of a small-diameter tube through water or grease, by using an ultrasonic probe and laying a flexible thin film on the outer periphery of the tube. SOLUTION: A surveying device for small-diameter tube is composed of a tank containing water or grease 19, a probe holder 11 which is positioned inside or outside the tank and provided with a moving means, an ultrasonic probe 12 attached to the holder 11, an ultrasonic measuring means which detects the presence/absence of scales and the state of the wall of a small-diameter tube from the time lag between the transmission of ultrasonic waves front the probe 12 and the reception of echoes by means of the probe 12 through the water and grease 19, a flexible thin film 16 which is provided to the guide section 15 for object to be inspected of the tank and made of rubber, etc., and a positive or negative pressure imparting means which deforms the thin film 16 in accordance with the outer periphery of an object 17 to be inspected front the guide section 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は工場施設内のボイラー等
の伝熱管その他の配管で、1インチから4インチ程度の
小径管に付着するスケールの有無や管壁状態を探査する
小径管用探査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-diameter pipe detecting apparatus for detecting the presence or absence of a scale attached to a small-diameter pipe of about 1 to 4 inches in a heat transfer pipe or other pipe of a boiler or the like in a factory facility, and the state of a pipe wall. About.

【0002】[0002]

【従来の技術】従来から超音波を用いた管の肉厚計とし
て超音波探触子が知られている。これは被測定物と超音
波探触子との間に水又はグリスを介在させ、超音波を入
射し、反射されてきたエコーとの時間差により画像処理
をして、管の肉厚及びスケールの有無や管壁状態を探査
するものである。
2. Description of the Related Art Conventionally, an ultrasonic probe has been known as a thickness gauge for a tube using ultrasonic waves. In this method, water or grease is interposed between the object to be measured and the ultrasonic probe, ultrasonic waves are incident, image processing is performed based on the time difference from the reflected echo, and the thickness and scale of the tube are reduced. The purpose is to detect the presence or absence and the state of the pipe wall.

【0003】例えば、チューブ内に付着する水蒸気酸化
スケールを計測する場合、周波数15メガヘルツ程度の
広帯域タイプの垂直探触子を用いたものがある。超音波
の発信とそのエコー信号の時間差をD/A変換器を用い
てアナログ変換し信号判別回路に入力して画像処理し、
母材とスケールとの境界部を識別できるようにしてい
る。
[0003] For example, when measuring the steam oxidation scale adhering to the inside of a tube, there is an apparatus using a broadband type vertical probe having a frequency of about 15 MHz. The time difference between the transmission of the ultrasonic wave and the echo signal is converted into an analog signal using a D / A converter and input to a signal discriminating circuit for image processing.
The boundary between the base material and the scale can be identified.

【0004】また大きな径のチューブについては、内部
にカメラを挿入して観察する方法も採られている。
A method of observing a large-diameter tube by inserting a camera inside the tube has also been adopted.

【0005】[0005]

【発明が解決しようとする課題】上記のような従来例の
内、超音波探触子を用いる方法では、超音波探触子と管
との間にグリスを用いて管周及び管軸方向に超音波探触
子を移動させて発信及びエコー信号のデータをとること
はできる。しかし、4インチ以下の小径管の場合には、
管の外周が平面ではないので水を介在させて検査するこ
とが難しく、直ちにこれを用いることができない。
Among the conventional examples described above, in the method using an ultrasonic probe, grease is used between the ultrasonic probe and the tube to extend in the pipe circumferential direction and in the axial direction of the pipe. It is possible to move the ultrasonic probe and acquire the data of the transmitted and echo signals. However, for small diameter tubes of 4 inches or less,
Since the outer periphery of the tube is not flat, it is difficult to inspect with water interposed therebetween, and this cannot be used immediately.

【0006】工場ではボイラーなどの伝熱管の寿命管理
に、高温酸化や腐食による減肉の管理が必要であり、定
期修理日のようなラインの休止日に、水平又は垂直に配
管設置されたパイプの外側より超音波探触子を用いて熟
練者が直接手作業で操作計測する必要があった。しかし
小径管では、アールが小さく広い範囲の管内状況の測定
には熟練者による手作業に頼る他仕方がなく、連続し安
定した計測が難しかった。
In a factory, it is necessary to control wall thinning due to high-temperature oxidation and corrosion in order to control the life of heat transfer tubes such as boilers. It was necessary for a skilled person to directly perform manual operation and measurement using an ultrasonic probe from the outside. However, in the case of a small-diameter pipe, there was no other way but to rely on a manual operation by a skilled person to measure the situation in the pipe in a small radius, and continuous and stable measurement was difficult.

【0007】またチューブ内にカメラを挿入して検査す
る方法も熟練者による手作業で行う以外になく、スケー
ルの厚みは局部的に変化があり、いずれの方法も連続し
て安定した計測が難しかった。本発明の目的は、上記の
ような難点を解消し、超音波プローブから水又はグリス
を介在させて発信し、そのエコーによる受信の時間差に
より管壁状態やスケールの有無を計測する装置として、
チューブの外周に沿わせる可撓性薄膜を設けて管周及び
管軸方向の広い範囲で簡単に且つ精密に安定した超音波
計測ができる小径管用探査装置を提供しようとするもの
である。
[0007] In addition, there is no method other than manual inspection by inserting a camera into a tube, except for manual operation by a skilled person, and the thickness of the scale is locally changed. Was. The object of the present invention is to solve the above-mentioned difficulties, transmit water or grease from an ultrasonic probe, and transmit the same, and as a device for measuring the presence or absence of a pipe wall state or scale by the time difference of reception by the echo,
It is an object of the present invention to provide a small-diameter tube exploration device which is capable of easily and precisely and stably measuring an ultrasonic wave over a wide range in the tube circumference and the tube axis direction by providing a flexible thin film along the outer periphery of the tube.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、第1発明では、水又はグリスを収容したタンクと、
このタンク内又は外に設けられ、移動手段を備えたプロ
ーブホルダーと、このプローブホルダーに取り付けられ
た超音波プローブと、この超音波プローブから前記水又
はグリスを介して、発信とそのエコーによる受信との時
間差により、スケールの有無や管壁状態を探査する超音
波計測手段と、前記タンクの被検物ガイド部に設けたラ
バーその他の可撓性薄膜と、この可撓性薄膜を前記被検
物ガイド部から被検物の外周に沿うように変形させる正
圧又は負圧付与手段と、から成る小径管用探査装置とし
た。
According to a first aspect of the present invention, a tank containing water or grease is provided.
Provided inside or outside this tank, a probe holder provided with a moving means, an ultrasonic probe attached to the probe holder, and from the ultrasonic probe through the water or grease, transmitting and receiving by echo. Ultrasonic measurement means for exploring the presence or absence of scale and the state of the tube wall by the time difference of the above, a rubber or other flexible thin film provided on the test object guide portion of the tank, and the flexible thin film A small-diameter pipe exploring apparatus comprising: a positive pressure or negative pressure applying means for deforming the guide along the outer periphery of the test object.

【0009】第2発明では、被検物ガイド部の端部に合
わせて、被検物の位置決め用アダプターを着脱自在に設
けた。第3発明では、超音波プローブはプローブホルダ
ーに位置調整可能に取付けられ、プローブホルダーはア
ーチ型ガイドで円周方向及び軸方向に沿って間欠又は連
続的に移動可能に設けた。
In the second invention, an adapter for positioning the test object is detachably provided in accordance with the end of the test object guide portion. In the third invention, the ultrasonic probe is mounted on the probe holder so as to be adjustable in position, and the probe holder is provided so as to be intermittently or continuously movable along the circumferential direction and the axial direction by the arched guide.

【0010】第4発明では、被検物ガイド部に設けら
れ、自由端縁で可撓性薄膜の変形を案内する案内板を設
けた。
In the fourth invention, a guide plate is provided on the test object guide portion and guides the deformation of the flexible thin film at the free edge.

【0011】[0011]

【作用】第1発明では、移動手段を備えたプローブホル
ダーに超音波プローブを取り付けているので、超音波プ
ローブを小径管から適当な距離をあけた取付け位置にく
るよう調節でき、さらに管周及び管軸方向への移動が自
由であり、被検物の小径管(チューブ)外周の広い範囲
で安定した計測ができる。
According to the first aspect of the present invention, since the ultrasonic probe is attached to the probe holder provided with the moving means, the ultrasonic probe can be adjusted to be at an attaching position at an appropriate distance from the small-diameter tube. It is free to move in the direction of the tube axis, and stable measurement can be performed over a wide range around the small diameter tube (tube) of the test object.

【0012】また小径管の内、大きい径に合わせて超音
波プローブを取り付けておけば、計測の許容範囲内で
は、径の違う小径管についてはそのままで計測できるの
で、設定が容易であり、範囲外のものには取付け位置を
変えて調節ができる。超音波プローブからの超音波の発
信とそのエコーによる受信とは、水又はグリスを介して
行われるので超音波の入射が乱れることなく、測定が精
密にできる。また発信と受信との両者の時間差により得
たデータを基に画像処理すれば、スケールの有無や管壁
状態を精密に計測できる。
Also, if an ultrasonic probe is attached to a large diameter of the small diameter pipes, the measurement can be performed as it is for small diameter pipes having different diameters within the allowable range of measurement. The outside can be adjusted by changing the mounting position. Since the transmission of the ultrasonic wave from the ultrasonic probe and the reception by the echo are performed through water or grease, the measurement can be performed accurately without disturbing the incidence of the ultrasonic wave. If image processing is performed based on the data obtained by the time difference between the transmission and the reception, the presence or absence of the scale and the state of the tube wall can be accurately measured.

【0013】プローブホルダーはタンク内に設けること
ができるが、必ずしもタンク内でなくてもよい。タンク
に近接した位置の外部から連結機構その他の装置により
駆動してもよい。タンクに被検物ガイド部を設け、可撓
性薄膜が正圧又は負圧付与手段により変形して被検物の
小径管外周に密着させることができるので、径の異なる
管についても、可撓性薄膜が浮いたり皺が生じることが
なく、外周及び軸方向の広い範囲で敏速に計測できるよ
うになった。
[0013] The probe holder can be provided in the tank, but need not necessarily be in the tank. It may be driven by a coupling mechanism or other device from outside the position close to the tank. A test object guide section is provided in the tank, and the flexible thin film is deformed by the positive pressure or negative pressure applying means and can be brought into close contact with the outer periphery of the small-diameter pipe of the test object. The flexible thin film does not float or wrinkle, and can be measured quickly over a wide range in the outer periphery and in the axial direction.

【0014】このように可撓性薄膜に圧力を加えた時だ
け被検物に密着し、圧力がない場合は可撓性薄膜が収縮
して管の外周に触れない。従って装置全体は自由に移動
でき、管周方向に沿って又は一定距離毎の管軸方向への
移動も可能である。さらにタンク内にプローブホルダ
ー、超音波プローブ等の全体の構成をコンパクトに装填
しておけば、ハンディな探査装置として移動、搬送がで
き計測が容易である。
As described above, the flexible thin film comes into close contact with the test object only when pressure is applied, and when there is no pressure, the flexible thin film contracts and does not touch the outer periphery of the tube. Therefore, the entire apparatus can move freely, and can move in the pipe axis direction along the pipe circumferential direction or at regular intervals. Furthermore, if the entire configuration of the probe holder, the ultrasonic probe, and the like is compactly loaded in the tank, the device can be moved and transported as a handy search device, and measurement can be easily performed.

【0015】第2発明では、タンクの被検物ガイド部の
端部に合わせて位置決め用のアダプターを設けたので、
被検物の管外周に装置を沿わせ易く、アダプターは着脱
自在としたので、小径管の径に合わせて交換が可能であ
り、管と同心に設定し易くなっている。第3発明では、
超音波プローブは、プローブホルダーに位置調整可能に
取り付けられ、小径管の径に合わせて移動でき、アーチ
型ガイドに沿って円周方向での計測位置が自由に選べ、
また管軸方向へも移動ができる。円周方向及び管軸方向
のいずれにも間欠又は連続して移動可能であり、周縁各
部のデータを隈なく敏速に得ることができ、小径管の広
い範囲のデータを安定して得られる。
In the second invention, the positioning adapter is provided in accordance with the end of the test object guide portion of the tank.
Since the apparatus is easy to follow along the outer circumference of the pipe of the test object and the adapter is detachable, it can be replaced according to the diameter of the small-diameter pipe, and can be easily set concentrically with the pipe. In the third invention,
The ultrasonic probe is attached to the probe holder so that its position can be adjusted, it can be moved according to the diameter of the small-diameter tube, and the measurement position in the circumferential direction can be freely selected along the arched guide.
It can also move in the tube axis direction. It can be moved intermittently or continuously in both the circumferential direction and the pipe axis direction, and data on each peripheral portion can be obtained promptly and uniformly, and data over a wide range of small diameter pipes can be obtained stably.

【0016】さらに計測できる管の内、大きい寸法に合
わせて超音波プローブをプローブホルダーに取付けてお
けば、プローブの測定許容範囲内の管については、調整
の必要がなく計測でき、測定許容範囲外の管に対しては
プローブの取付け位置をずらせば簡単に調整ができる。
第4発明では、可撓性薄膜を被検物の外周に沿って密着
し易くする案内板を設けることにより、圧力に応じて可
撓性薄膜が管の外周にぴったり沿い、浮き上がったり、
皺を生じることなく、変形密着できるようになった。
Further, if the ultrasonic probe is attached to the probe holder in accordance with the large dimensions of the tubes that can be measured, the tubes within the allowable measurement range of the probe can be measured without adjustment, and can be measured outside the allowable measurement range. Adjustment of the probe mounting position can be easily adjusted for this tube.
In the fourth invention, by providing a guide plate that facilitates the close contact of the flexible thin film along the outer periphery of the test object, the flexible thin film just floats along the outer periphery of the tube in response to pressure,
Deformation and adhesion can be achieved without wrinkles.

【0017】[0017]

【発明の実施の形態】本発明の探査装置は全体像を立方
体又は直方体としたハンディなタンクで構成することが
でき、位置決め用アダプターを設けて被検物に容易に沿
わせることができる。位置決め用アダプターは、被検物
の小径管の径により適当なものに取り替えができ、小径
管の中心と同心のアーチ型ガイドを介して、円弧状に超
音波プローブを移動できるように設定される。
BEST MODE FOR CARRYING OUT THE INVENTION The exploration apparatus of the present invention can be constituted by a handy tank in which the whole image is a cube or a rectangular parallelepiped, and can easily follow the test object by providing a positioning adapter. The positioning adapter can be replaced with an appropriate one according to the diameter of the small-diameter tube of the test object, and is set so that the ultrasonic probe can be moved in an arc shape through an arched guide concentric with the center of the small-diameter tube. .

【0018】又タンクの被検物ガイド部に可撓性薄膜を
設け、圧力の付与時に被検物の小径管外周に密着させ、
広範囲に亘り水又はグリースを介在して超音波の発信と
エコーの受信が可能である。被検物ガイド部に設けた可
撓性薄膜に正圧を加えるか、逆に可撓性薄膜の外部を負
圧にすることにより、可撓性薄膜が小径管に密着するの
で、超音波プローブによる計測が安定してできる。圧力
を除けば可撓性薄膜が元の形に戻るので、装置は自由に
移動できる。
Further, a flexible thin film is provided on the test object guide portion of the tank, and is brought into close contact with the outer periphery of the small-diameter pipe of the test object when pressure is applied.
Ultrasonic waves can be transmitted and echoes can be received over a wide area through water or grease. By applying a positive pressure to the flexible thin film provided on the test object guide portion or by applying a negative pressure to the outside of the flexible thin film, the flexible thin film adheres to the small-diameter tube. Measurement can be performed stably. The device is free to move because the flexible membrane returns to its original shape when the pressure is removed.

【0019】超音波プローブは、タンク内又は外におい
て移動手段を備えたプローブホルダーに取付けられてい
るので、管周方向や管軸方向へ移動可能であり、計測許
容範囲が広く、超音波プローブの取付け位置をずらせ
ば、径の違う小径管にも適用できる。超音波プローブの
移動は、管周及び管軸方向に間欠的又は連続的に可能で
あり、チューブの全周及び一定長さ毎の繰返により簡単
に広い範囲で安定した計測ができる。
Since the ultrasonic probe is attached to a probe holder provided with a moving means inside or outside the tank, it can be moved in the circumferential direction of the tube or in the direction of the tube axis. If the mounting position is shifted, it can be applied to small diameter pipes with different diameters. The ultrasonic probe can be moved intermittently or continuously in the direction of the tube circumference and in the direction of the tube axis, and can be easily and stably measured over a wide range by repeating the entire circumference of the tube and repetition at a fixed length.

【0020】管周方向では、例えば120度の範囲毎に
装置を移動すれば、全周を3回で計測できる。またタン
クの大きさを200ミリ角程度とすればコンパクトな可
搬性の探査装置が提供できる。
In the circumferential direction of the tube, the entire circumference can be measured three times by moving the apparatus every 120 degrees, for example. If the size of the tank is about 200 mm square, a compact and portable exploration device can be provided.

【0021】[0021]

【実施例】以下、実施例として示した図面に従い、詳細
を説明する。図1において、1は小径管用探査装置の一
例を示すもので、2はラバーその他の可撓性薄膜の押え
部、3は水又はグリースを収容し、超音波プローブを設
けたタンク、4は位置決め用アダプターで、小径管用探
査装置1を被検物の小径管に合わせるようにガイドす
る。5はハンドルであり、ハンディになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details will be described below with reference to the drawings shown as embodiments. In FIG. 1, reference numeral 1 denotes an example of a small-diameter tube exploration apparatus, 2 denotes a holding portion made of rubber or other flexible thin film, 3 denotes a tank containing water or grease and is provided with an ultrasonic probe, and 4 denotes a positioning. The small-diameter pipe search device 1 is guided by the adapter for use so as to match the small-diameter pipe of the test object. 5 is a handle, which is handy.

【0022】図2は他実施例で、6はラバーその他の可
撓性薄膜の押え部、7は水又はグリースを収容し、超音
波プローブを設けたタンク、8は駆動部で、前記超音波
プローブを移動可能にしている。9は位置決め用アダプ
ターで、小径管用探査装置1を被検物の小径管外周に簡
単に合わせることができる。位置決め用アダプター4、
9は、被検物の大きさに合わせて取り替えが可能であ
り、また材質として、強磁性体を用い又は電磁石とし
て、小径管に吸着するようにしてもよい。非磁性体を用
いて機械的に小径管に密着させるようにしてもよい。1
0はハンドルである。
FIG. 2 shows another embodiment, in which 6 is a pressing portion made of rubber or other flexible thin film, 7 is a tank containing water or grease and provided with an ultrasonic probe, and 8 is a driving unit, The probe is movable. Numeral 9 denotes a positioning adapter, which can easily adjust the small-diameter pipe search device 1 to the outer circumference of the small-diameter pipe of the test object. Positioning adapter 4,
9 can be replaced according to the size of the test object, and may be made of a ferromagnetic material or an electromagnet to be attached to a small-diameter tube as a material. A nonmagnetic material may be used to mechanically contact the small-diameter pipe. 1
0 is a handle.

【0023】図3、図4は水又はグリスを収容したタン
ク3内に設けられた移動機構の一例を示す斜視図で、1
1はプローブホルダー、12は超音波プローブである。
超音波プローブ12はプローブホルダー11に位置調整
可能(軸心方向へ移動)に取り付けられている。プロー
ブホルダー11は、アーチ型ガイド13に取り付けら
れ、モータ等により円周上で移動可能になっている。
FIGS. 3 and 4 are perspective views showing an example of a moving mechanism provided in the tank 3 containing water or grease.
1 is a probe holder, and 12 is an ultrasonic probe.
The ultrasonic probe 12 is attached to the probe holder 11 so that the position can be adjusted (moved in the axial direction). The probe holder 11 is attached to an arched guide 13 and is movable on a circumference by a motor or the like.

【0024】図示した例では、プローブホルダー11は
一つだけ取り付けられているが、2つ設けて同時に駆動
するようにすれば、一つでアーチ型ガイド13の全体に
移動して計測する時間と比較して、半分の短時間計測が
可能となる。管軸方向への移動について、図示した例で
は倒置コ字形の枠を用いているが、これに限定されな
い。回転運動を直線運動に変換する機構であれば、どの
ような構成でもよい。
In the illustrated example, only one probe holder 11 is mounted. However, if two probe holders 11 are provided and driven at the same time, the time required for one probe to move to the entire arch-shaped guide 13 and to measure it is reduced. Compared with this, it is possible to perform a short half-time measurement. For the movement in the tube axis direction, an inverted U-shaped frame is used in the illustrated example, but the invention is not limited to this. Any configuration may be used as long as it is a mechanism that converts a rotary motion into a linear motion.

【0025】アーチ型ガイド13は、図3に例示するよ
うにモータ、スクリューシャフト、ピニオンギヤーその
他回転運動を直線運動に変換する機構等から成る移動機
構14により管軸方向へ連続又は間欠的に移動可能に設
定されている。なお、これらの移動機構14は、タンク
内に設けることもできるが、図2に示した駆動部8に備
えてもよい。図3のモータやピニオンギアーは、タンク
から突出して示されているが、実際上はケースに内蔵さ
れ、操作や取り扱いがし易くしている。
The arch type guide 13 is continuously or intermittently moved in the pipe axis direction by a moving mechanism 14 including a motor, a screw shaft, a pinion gear, and a mechanism for converting a rotary motion into a linear motion as illustrated in FIG. It is set to be possible. Although these moving mechanisms 14 can be provided in the tank, they may be provided in the drive unit 8 shown in FIG. Although the motor and the pinion gear shown in FIG. 3 are shown projecting from the tank, they are actually built in a case to facilitate operation and handling.

【0026】図4において、15は被検物ガイド部で、
被検物としての小径管が位置決め用アダプター4により
可撓性薄膜16の下方へ案内される空間部となってい
る。ラバーその他の可撓性薄膜16は、伸縮性のある薄
膜又は薄板として、通常鎖線で示すように平面状をして
いるが、タンク内から正圧を加えられるか又は外部を負
圧にすると被検物である小径管(チューブ)17の外周
に密着するように変形し(図4及び図5参照)、圧力を
抜けば元に戻る。18は案内板で、ケースに取り付けら
れ、可撓性薄膜16が圧力により変形する場合、同時に
変形して、小径管の外周の広い範囲に可撓性薄膜が密着
するよう案内する。なお、案内板18は、図示した例で
は被検物ガイド部の両端縁に設けたが、一方だけにする
場合もある。
In FIG. 4, reference numeral 15 denotes an object guide section.
A small-diameter tube as a test object is a space that is guided below the flexible thin film 16 by the positioning adapter 4. The rubber or other flexible thin film 16 is usually a flat film as shown by a dashed line as an elastic thin film or a thin plate, but it is covered when a positive pressure is applied from inside the tank or a negative pressure is applied to the outside. The specimen 17 is deformed so as to be in close contact with the outer periphery of the small-diameter tube (tube) 17 (see FIGS. 4 and 5), and returns to its original state when pressure is released. A guide plate 18 is attached to the case, and when the flexible thin film 16 is deformed by pressure, it is simultaneously deformed and guided so that the flexible thin film closely adheres to a wide area on the outer periphery of the small diameter pipe. In the illustrated example, the guide plates 18 are provided at both end edges of the test object guide portion. However, only one guide plate may be provided.

【0027】図6、図7において、正圧付与手段とし
て、タンク内の水又はグリス19の上方で空気袋20に
圧縮空気21を充満させる場合(図6)、タンク内の水
19に水圧をかける場合(図7)を示している。その他
小径管の周囲を負圧にしてもよく、これらにより正圧又
は負圧付与手段22を構成している。図4では圧力をか
けた場合であり、図6、図7では可撓性薄膜16に圧力
がかけられていない場合を示している。
In FIGS. 6 and 7, when the compressed air 21 is filled in the air bag 20 above the water or grease 19 in the tank (FIG. 6) as the positive pressure applying means, the water pressure in the water 19 in the tank is increased. FIG. 7 shows a case in which the call is applied. In addition, a negative pressure may be applied around the small diameter pipe, and these constitute the positive or negative pressure applying means 22. FIG. 4 shows the case where pressure is applied, and FIGS. 6 and 7 show the case where pressure is not applied to the flexible thin film 16.

【0028】超音波プローブ12による管壁状態やスケ
ールの有無の探査には、図8に示すように超音波プロー
ブ12からの発信とそのエコーによる受信との時間差に
より、コンピュータで画像処理をして表示できる超音波
計測手段23を用いている。スコープに出現したデータ
を小径管17のA、B、C点で比較すると管壁状態やス
ケールの有無が明白になる。
In order to detect the state of the tube wall and the presence or absence of scale by the ultrasonic probe 12, image processing is performed by a computer based on the time difference between the transmission from the ultrasonic probe 12 and the reception by the echo as shown in FIG. Ultrasonic measuring means 23 capable of displaying is used. When the data appearing on the scope is compared at points A, B, and C of the small-diameter tube 17, the state of the tube wall and the presence or absence of the scale become clear.

【0029】[0029]

【発明の効果】本発明ではラバーその他の可撓性薄膜を
被検物の小径管の外周に密着させるので、水又はグリス
を介在して超音波プローブにより計測することができ、
入射に乱れがなく、精密な計測が可能となった。また超
音波プローブによる発信と受信との時間差により画像処
理をして被検物の管壁状態やスケールの有無を明確に計
測することができる。
According to the present invention, since a rubber or other flexible thin film is brought into close contact with the outer periphery of the small-diameter tube of the test object, it can be measured with an ultrasonic probe via water or grease.
There was no disturbance in the incidence, and precise measurement became possible. In addition, image processing is performed based on the time difference between transmission and reception by the ultrasonic probe, and the state of the tube wall of the test object and the presence or absence of scale can be clearly measured.

【0030】プローブホルダーに設けた移動手段によ
り、超音波プローブの取付け位置を調節することがで
き、小径管の径に合わせることが容易であり、また管周
方向や管軸方向への移動もできるので、チューブの全体
に亘つて隈なく計測ができる。なお可撓性薄膜は、正圧
又は負圧付与手段により、被検物に密着させられるの
で、計測操作が容易であり、タンクに設けた位置決め用
のアダプターを利用して小径管の管径の異なるものに
も、容易に設定することができる。
By the moving means provided on the probe holder, the mounting position of the ultrasonic probe can be adjusted, it is easy to adjust to the diameter of the small-diameter pipe, and it can be moved in the pipe circumferential direction or the pipe axis direction. Therefore, it is possible to measure all over the entire tube. Since the flexible thin film is brought into close contact with the test object by the positive or negative pressure applying means, the measurement operation is easy, and the diameter of the small diameter pipe is reduced by using a positioning adapter provided in the tank. Different ones can be easily set.

【0031】可撓性薄膜を被検物の外周に沿って密着し
易くする案内板を設けることにより小径管へ隙間なく密
着でき、超音波に乱れを生じさせない。全体をタンク内
又はタンクと機構部に分けて構成すると、コンパクトで
可搬性の計測機として利用することもでき、その応用範
囲は広い。
By providing a guide plate that facilitates the close contact of the flexible thin film along the outer periphery of the test object, the flexible thin film can be adhered to the small-diameter tube without any gap, and the ultrasonic waves are not disturbed. If the whole is divided into a tank or a tank and a mechanism, it can be used as a compact and portable measuring instrument, and its application range is wide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体像を示す斜視図FIG. 1 is a perspective view showing an overall image of the present invention.

【図2】本発明の全体像の他実施例を示す斜視図FIG. 2 is a perspective view showing another embodiment of the overall image of the present invention.

【図3】移動機構の実施例を示す斜視図で、一部を破断
して示した。
FIG. 3 is a perspective view showing an embodiment of the moving mechanism, which is partially cut away.

【図4】プローブホルダーの実施例を示す正面図FIG. 4 is a front view showing an embodiment of a probe holder.

【図5】可撓性薄膜に対する加圧状態を示す断面図FIG. 5 is a sectional view showing a state where a flexible thin film is pressed.

【図6】可撓性薄膜に対する正圧付与手段の実施例説明
FIG. 6 is an explanatory view of an embodiment of a positive pressure applying means for a flexible thin film.

【図7】可撓性薄膜に対する正圧付与手段の他実施例説
明図
FIG. 7 is an explanatory view of another embodiment of a positive pressure applying means for a flexible thin film.

【図8】超音波プローブによる計測の画像処理例を示す
説明図
FIG. 8 is an explanatory diagram showing an example of image processing of measurement by an ultrasonic probe.

【符号の説明】[Explanation of symbols]

1 小径管用探査装置 2 ラバーその他の可撓性薄膜 3、7 タンク 4、9 位置決め用アダプター 11 プローブホルダー 12 超音波プローブ 13 アーチ型ガイド 14 移動機構 15 被検物ガイド部 16 可撓性薄膜 17 小径管(チューブ) 18 案内板 19 水又はグリス 22 正圧又は負圧付与手段 23 超音波計測手段 DESCRIPTION OF SYMBOLS 1 Exploration apparatus for small diameter pipes 2 Rubber or other flexible thin films 3, 7 Tank 4, 9 Positioning adapter 11 Probe holder 12 Ultrasonic probe 13 Arch type guide 14 Moving mechanism 15 Test object guide section 16 Flexible thin film 17 Small diameter Tube (tube) 18 Guide plate 19 Water or grease 22 Positive or negative pressure applying means 23 Ultrasonic measuring means

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年4月24日[Submission date] April 24, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】符号の説明[Correction target item name] Explanation of sign

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【符号の説明】 1 小径管用探査装置 3、7 タンク 4、9 位置決め用アダプター 11 プローブホルダー 12 超音波プローブ 14 移動機構 15 被検物ガイド部 16 可撓性薄膜 17 小径管(チューブ) 18 案内板 19 水又はグリス 22 正圧又は負圧付与手段 23 超音波計測手段[Description of Signs] 1 Exploration device for small diameter pipe 3, 7 Tank 4, 9 Positioning adapter 11 Probe holder 12 Ultrasonic probe 14 Moving mechanism 15 Test object guide section 16 Flexible thin film 17 Small diameter pipe (tube) 18 Guide plate 19 Water or grease 22 Positive or negative pressure applying means 23 Ultrasonic measuring means

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水又はグリスを収容したタンクと、この
タンク内又は外に設けられ、移動手段を備えたプローブ
ホルダーと、このプローブホルダーに取り付けられた超
音波プローブと、この超音波プローブから前記水又はグ
リスを介して、発信とそのエコーによる受信との時間差
により、スケールの有無や管壁状態を探査する超音波計
測手段と、前記タンクの被検物ガイド部に設けたラバー
その他の可撓性薄膜と、この可撓性薄膜を前記被検物ガ
イド部から被検物の外周に沿うように変形させる正圧又
は負圧付与手段と、から成ることを特徴とする小径管用
探査装置。
1. A tank containing water or grease, a probe holder provided inside or outside the tank and provided with moving means, an ultrasonic probe attached to the probe holder, Ultrasonic measurement means for exploring the presence or absence of a scale and the state of the tube wall by the time difference between the transmission and the reception by the echo through water or grease, and rubber and other flexible members provided in the test object guide portion of the tank A small-diameter pipe exploring apparatus, comprising: a flexible thin film; and positive or negative pressure applying means for deforming the flexible thin film from the test object guide portion along the outer periphery of the test object.
【請求項2】 被検物ガイド部の端部に合わせて、被検
物の位置決め用アダプターを着脱自在に設けた請求項1
記載の小径管用探査装置。
2. The apparatus according to claim 1, wherein an adapter for positioning the test object is detachably provided in accordance with an end of the test object guide portion.
An exploration device for a small diameter pipe as described in the above.
【請求項3】 超音波プローブはプローブホルダーに位
置調整可能に取付けられ、プローブホルダーはアーチ型
ガイドで円周方向及び軸方向に沿って間欠又は連続的に
移動可能に設けた請求項1記載の小径管用探査装置。
3. The ultrasonic probe according to claim 1, wherein the ultrasonic probe is mounted on the probe holder so as to be adjustable in position, and the probe holder is intermittently or continuously movable along the circumferential direction and the axial direction by an arched guide. Exploration equipment for small diameter pipes.
【請求項4】 被検物ガイド部に設けられ、自由端縁で
可撓性薄膜の変形を案内する案内板を設けた請求項1、
2又は3記載の小径管用探査装置。
4. A guide plate provided at a guide portion of a test object and guiding a deformation of a flexible thin film at a free edge.
4. The exploration device for small diameter pipes according to 2 or 3.
JP10112323A 1998-04-22 1998-04-22 Surveying device for small-diameter tube Pending JPH11304771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10112323A JPH11304771A (en) 1998-04-22 1998-04-22 Surveying device for small-diameter tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10112323A JPH11304771A (en) 1998-04-22 1998-04-22 Surveying device for small-diameter tube

Publications (1)

Publication Number Publication Date
JPH11304771A true JPH11304771A (en) 1999-11-05

Family

ID=14583806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10112323A Pending JPH11304771A (en) 1998-04-22 1998-04-22 Surveying device for small-diameter tube

Country Status (1)

Country Link
JP (1) JPH11304771A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075615A1 (en) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. Ultrasonic inspection method and ultrasonic inspection device
DE102014119684A1 (en) * 2014-12-29 2016-06-30 Areva Gmbh Apparatus and method for non-destructive testing of a component with ultrasound
CN111102945A (en) * 2020-01-19 2020-05-05 重庆科技学院 Device and method for detecting wall thickness of continuous oil pipe on site
CN113194819A (en) * 2019-02-04 2021-07-30 株式会社村田制作所 Measuring instrument

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075615A1 (en) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. Ultrasonic inspection method and ultrasonic inspection device
JPWO2006075615A1 (en) * 2005-01-14 2008-06-12 松下電器産業株式会社 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP4869079B2 (en) * 2005-01-14 2012-02-01 パナソニック株式会社 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
DE102014119684A1 (en) * 2014-12-29 2016-06-30 Areva Gmbh Apparatus and method for non-destructive testing of a component with ultrasound
CN113194819A (en) * 2019-02-04 2021-07-30 株式会社村田制作所 Measuring instrument
CN113194819B (en) * 2019-02-04 2024-03-29 株式会社村田制作所 Measuring device
CN111102945A (en) * 2020-01-19 2020-05-05 重庆科技学院 Device and method for detecting wall thickness of continuous oil pipe on site

Similar Documents

Publication Publication Date Title
EP0210717B1 (en) A sensor for and process of detecting and quantifying force-torque components
EP2437053A1 (en) Scanning device for nondestructive inspection and nondestructive inspection equipment
ES423980A1 (en) Inside diameter, outside diameter and wall tube gage
GB2016694A (en) Position Detecting Device
CN214473004U (en) Ultrasonic phased array pipeline detection device for small-diameter pipe weld joint
NO148972B (en) PROCEDURE AND APPARATUS FOR DETECTION OF CRISTS BY ULTRASONIC SOUND.
JPH11304771A (en) Surveying device for small-diameter tube
GB696920A (en) Improvements in or relating to methods of testing materials for flaws and apparatus therefor utilizing ultrasonic waves
EP0106527A2 (en) Ultrasonic inspection devices
JP2012173068A (en) Ultrasonic flaw detection apparatus
JP5495820B2 (en) In-pipe scale measuring device and measuring method
US4241609A (en) Tube internal measuring instrument
CN210572127U (en) Corrosion imaging detection device
JP2000009699A (en) Inspection apparatus for small diameter tube
JP2511181B2 (en) Wall thickness measuring device
KR100358086B1 (en) Wedge Device of Focused Ultrasonic Transducer for Boiler Tube and Pipe
JP2004212308A (en) Method and apparatus for inspecting weld
JP2001004601A (en) Ultrasonic sensor, and flaw detection inspecting apparatus and method
JPH09520A (en) Ultrasonic scanner
JPH10160440A (en) Film sticking position detector for radiation inspection
JP7281178B2 (en) Ultrasonic flaw detector and ultrasonic flaw detection program
CN106370270A (en) Portable intelligent ultrasonic water depth detection system
GB778166A (en) Improvements in ultrasonic testing apparatus
JPH10253340A (en) Method for measuring scale thickness on inside surface of tube
JP2008076180A (en) Expanded pipe confirmation and inspection device