JP2008076180A - Expanded pipe confirmation and inspection device - Google Patents

Expanded pipe confirmation and inspection device Download PDF

Info

Publication number
JP2008076180A
JP2008076180A JP2006254686A JP2006254686A JP2008076180A JP 2008076180 A JP2008076180 A JP 2008076180A JP 2006254686 A JP2006254686 A JP 2006254686A JP 2006254686 A JP2006254686 A JP 2006254686A JP 2008076180 A JP2008076180 A JP 2008076180A
Authority
JP
Japan
Prior art keywords
ultrasonic
tube
heat transfer
tube plate
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006254686A
Other languages
Japanese (ja)
Other versions
JP4969191B2 (en
Inventor
Makoto Sakai
信 酒井
Hiroyoshi Miyamoto
勲佳 宮本
Toshihiro Saito
利弘 斉藤
Hiroaki Chiba
弘明 千葉
Yasumasa Nakayama
安正 中山
Hisashi Matsuyama
久之 松山
Shinichi Tsuji
伸一 辻
Junji Inoue
淳二 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Shin Nippon Nondestructive Inspection Co Ltd
Original Assignee
Hitachi Ltd
Shin Nippon Nondestructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Shin Nippon Nondestructive Inspection Co Ltd filed Critical Hitachi Ltd
Priority to JP2006254686A priority Critical patent/JP4969191B2/en
Publication of JP2008076180A publication Critical patent/JP2008076180A/en
Application granted granted Critical
Publication of JP4969191B2 publication Critical patent/JP4969191B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expanded pipe confirmation and inspection device having an expanded pipe inspection means for individually detecting the joining state of the heat transfer pipe expanded to be joined to a tube plate and a heat transfer pipe position measuring means for measuring the position of the inspected heat transfer pipe. <P>SOLUTION: The expanded pipe confirmation and inspection device has the expanded pipe inspection means 14 for inspecting the joining of the tube plate 11 and a heat transfer pipe 12 by an eddy current sensor 13 and the heat transfer pipe position measuring means 15 for measuring the position of the heat transfer pipe 12. The heat transfer pipe position measuring means 15 has the first ultrasonic transmitter 26 attached to the insertion jig 16 of the eddy current sensor 13, the first, and second ultrasonic receivers 28 and 29 arranged on the tube plate 11, the second and third ultrasonic transmitters 38 and 39 arranged in the vicinity of the tube plate 11 and an insertion jig position operation part 40 for calculating the propagation time of an ultrasonic pulse to the first and second ultrasonic receivers 28 and 29 from the first ultrasonic transmitter 26 to calculate the position of the insertion jig 16 on the tube plate 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱交換器の管板に拡管接合された多数の伝熱管の接合状況を個々に検知する渦流センサーを備える拡管検査手段と、拡管検査手段によって検査された伝熱管の位置を測定する伝熱管測位手段とを有する拡管確認検査装置に関する。 The present invention measures the position of a heat transfer tube inspected by a tube expansion inspection means having an eddy current sensor that individually detects the joining state of a large number of heat transfer tubes that are expanded and bonded to a tube plate of a heat exchanger, and the tube expansion inspection means. The present invention relates to a tube expansion confirmation inspection apparatus having a heat transfer tube positioning means.

多管式熱交換器では伝熱管と管板との拡管接合を、伝熱管1本毎に行なっている。このため、伝熱管と管板との拡管接合を行なっているときに拡管接合が完了した伝熱管と未接合の伝熱管との区別が不明になったり、伝熱管に拡管接合漏れが生じたりする可能性がある。そこで、伝熱管と管板との拡管接合を行なう際に、拡管接合が完了する度に接合完了データを入力し、予め得られている伝熱管配列データと組み合わせて伝熱管配列図の中に接合が完了した伝熱管位置を表示して、接合完了の伝熱管と未接合の伝熱管との区別が容易に行なえるとともに、接合漏れの発生も防止することができる装置が提案されている(例えば、特許文献1参照)。 In the multi-tube heat exchanger, the heat transfer tube and the tube plate are expanded and joined for each heat transfer tube. For this reason, it is not clear whether the heat transfer tube and the unbonded heat transfer tube have been expanded when the heat transfer tube and the tube plate are expanded, or leakage of the heat transfer tube may occur. there is a possibility. Therefore, when pipe expansion is performed between the heat transfer tube and the tube sheet, the completion data is input every time the pipe expansion is completed, and it is combined with the heat transfer tube arrangement data obtained in advance and joined in the heat transfer tube arrangement diagram. Has been proposed that can display the position of the heat transfer tube that has been completed and can easily distinguish between a heat transfer tube that has been joined and an unjoined heat transfer tube, and can also prevent the occurrence of joint leakage (for example, , See Patent Document 1).

特開2003−340534号公報JP 2003-340534 A

しかしながら、多管式熱交換器の設置後、定期検査時、あるいは多管式熱交換器の補修時に拡管接合状況の検査を行なう場合は、現場で伝熱管の検査を個々に行なうことになり、検査を行なっている際に、検査完了の伝熱管と未検査の伝熱管の区別が不明になったり、伝熱管の検査漏れが生じたりする可能性が高く、検査作業の効率低下や検査の信頼性低下という問題が生じる。 However, after installation of a multi-tube heat exchanger, when conducting inspections of expanded joints during periodic inspections or when repairing multi-tube heat exchangers, the heat transfer tubes will be individually inspected on site, During the inspection, there is a high possibility that the distinction between the heat transfer tubes that have been inspected and unexamined heat transfer tubes will be unclear, or that there will be an inspection leak in the heat transfer tubes. This causes a problem of deterioration.

本発明はかかる事情に鑑みてなされたもので、熱交換器の管板に拡管接合された多数の伝熱管の接合状況を個々に検知する渦流センサーを備える拡管検査手段と、拡管検査手段によって検査された伝熱管の位置を測定する伝熱管測位手段とを有し、検査漏れを防止して検査の信頼性を向上させる拡管確認検査装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and is inspected by a pipe expansion inspection means including a vortex sensor for individually detecting the joining state of a large number of heat transfer tubes that are pipe expansion bonded to a tube plate of a heat exchanger, and a pipe expansion inspection means. It is an object of the present invention to provide a pipe expansion confirmation inspection device that has a heat transfer tube positioning means for measuring the position of the heat transfer tube, and prevents the inspection leakage and improves the reliability of the inspection.

前記目的に沿う本発明に係る拡管確認検査装置は、熱交換器の管板に拡管接合された多数の伝熱管の接合状況を個々に検査する渦流センサーを備える拡管検査手段と、前記拡管検査手段によって検査された前記伝熱管の位置を測定する伝熱管測位手段とを有する拡管確認検査装置であって、
前記伝熱管測位手段は、前記拡管検査手段の一部であって、前記伝熱管に挿入する前記渦流センサーを支持する挿入治具に取付けられて該挿入治具の周囲に超音波パルスを送信する第1の超音波送信子と、
前記管板上または該管板を延長した平面上の予め決められた位置に隙間を有して配置され、前記第1の超音波送信子から送信された超音波パルスを受信する第1、第2の超音波受信子と、
前記管板の近傍に設けられた第2の超音波送信子と、
前記管板の近傍に隙間を有して配置され、前記第2の超音波送信子から送信された超音波パルスを受信する第3、第4の超音波受信子と、
前記第1の超音波送信子から送信された超音波パルスが前記第1、第2の超音波受信子に到達するのに要する伝搬時間t1、t2をそれぞれ求め、予め求めて記憶していた前記管板近傍の超音波伝搬速度および前記伝搬時間t1、t2から前記挿入治具の前記管板上での平面的位置を演算し記憶する挿入治具位置演算部とを有し、
しかも、前記挿入治具位置演算部には、前記第2の超音波送信子から送信された超音波パルスが前記第3、第4の超音波受信子に到達するのに要する伝搬時間t3、t4の測定から前記管板近傍の超音波伝搬速度の変化有無を確認し、該管板近傍の超音波伝搬速度が変化した場合は該管板近傍の新たな超音波伝搬速度を求め、記憶していた該管板近傍の超音波伝搬速度を該管板近傍の新たな超音波伝搬速度に更新させる音速補正器が設けられている。
The pipe expansion confirmation inspection apparatus according to the present invention that meets the above-described object is provided with a pipe expansion inspection means including an eddy current sensor that individually inspects the joining state of a large number of heat transfer tubes that are piped and joined to a tube plate of a heat exchanger, and the pipe expansion inspection means. A heat transfer tube positioning means for measuring the position of the heat transfer tube inspected by the pipe expansion confirmation inspection device,
The heat transfer tube positioning means is a part of the tube expansion inspection means, and is attached to an insertion jig that supports the eddy current sensor inserted into the heat transfer pipe, and transmits an ultrasonic pulse around the insertion jig. A first ultrasonic transmitter;
First and second receiving ultrasonic pulses transmitted from the first ultrasonic transmitter are arranged with a gap at a predetermined position on the tube plate or on a plane extending from the tube plate. Two ultrasonic receivers;
A second ultrasonic transmitter provided in the vicinity of the tube sheet;
Third and fourth ultrasonic receivers arranged with a gap in the vicinity of the tube plate and receiving ultrasonic pulses transmitted from the second ultrasonic transmitter;
Propagation times t 1 and t 2 required for the ultrasonic pulse transmitted from the first ultrasonic transmitter to reach the first and second ultrasonic receivers are respectively determined and stored in advance. An insertion jig position calculation unit that calculates and stores a planar position of the insertion jig on the tube plate from the ultrasonic wave propagation velocity in the vicinity of the tube plate and the propagation times t 1 and t 2 ;
In addition, the insertion jig position calculation unit has a propagation time t 3 required for the ultrasonic pulse transmitted from the second ultrasonic transmitter to reach the third and fourth ultrasonic receivers, From the measurement of t 4, the presence or absence of a change in the ultrasonic propagation velocity near the tube plate is confirmed. If the ultrasonic propagation velocity near the tube plate changes, a new ultrasonic propagation velocity near the tube plate is obtained and stored. There is provided a sound speed corrector for updating the ultrasonic propagation velocity near the tube plate to a new ultrasonic propagation velocity near the tube plate.

本発明に係る拡管確認検査装置において、前記第1および第2の超音波受信子に無指向性マイクロホンを使用することが好ましい。 In the tube expansion confirmation inspection device according to the present invention, it is preferable that an omnidirectional microphone is used for the first and second ultrasonic receivers.

本発明に係る拡管確認検査装置において、前記無指向性マイクロホンの受音面を互いに、該受音面の中心を結ぶ中心連結線に直交する直線に対して、内側に40度以上50度以下傾けて配置することが好ましい。 In the pipe expansion confirmation inspection apparatus according to the present invention, the sound receiving surfaces of the omnidirectional microphones are tilted inward by 40 degrees or more and 50 degrees or less with respect to a straight line perpendicular to a central connection line connecting the centers of the sound receiving faces. Are preferably arranged.

請求項1〜3記載の拡管確認検査装置においては、拡管検査手段によって伝熱管を順次検査していく際に、伝熱管測位手段で挿入治具の管板上での平面的位置が演算され記憶されるので、拡管検査手段によって検査された伝熱管を順次記憶することが可能になり、拡管検査の進行状況に応じて、検査完了の伝熱管と未検査の伝熱管の区別を容易に行なうことも可能になる。その結果、伝熱管の検査漏れを防止することができ、検査作業の信頼性向上を図ることが可能になる。また、管板近傍の超音波伝搬速度の変化有無を確認し、管板近傍の超音波伝搬速度が変化した場合は新たな超音波伝搬速度を求めて、挿入治具の管板上での平面的位置を演算するので、検査中に温度および湿度が変化して超音波伝搬速度が変化しても、挿入治具の管板上での平面的位置を正確に求めることができる。 In the pipe expansion confirmation inspection apparatus according to claims 1 to 3, when the heat transfer tubes are sequentially inspected by the pipe expansion inspection means, the planar position of the insertion jig on the tube plate is calculated and stored by the heat transfer pipe positioning means. Therefore, it is possible to sequentially store the heat transfer tubes inspected by the tube expansion inspection means, and easily distinguish between heat transfer tubes that have been inspected and uninspected heat transfer tubes according to the progress of the tube expansion inspection. Is also possible. As a result, it is possible to prevent the heat transfer tube from being inspected and improve the reliability of the inspection work. Also, check whether there is a change in the ultrasonic propagation velocity near the tube plate, and if the ultrasonic propagation velocity near the tube plate changes, obtain a new ultrasonic propagation velocity and calculate the plane on the tube plate of the insertion jig. Since the target position is calculated, the planar position of the insertion jig on the tube plate can be accurately obtained even if the ultrasonic wave propagation speed changes due to changes in temperature and humidity during the inspection.

特に、請求項2記載の拡管確認検査装置においては、第1および第2の超音波受信子に無指向性マイクロホンを使用するので、第1の超音波送信子の移動に伴って第1、第2の超音波受信子にそれぞれ入射する超音波パルスの入射角度が大きく変動することになっても、第1の超音波送信子から送信された超音波パルスを確実に受信することが可能になる。その結果、第1の超音波送信子と第1、第2の超音波受信子を接近して配置することが可能になる。また、超音波パルスの受信信号の立ち上がりが鋭くなって、受信信号を検出する際の閾値レベルを高く設定することができ、空気の流れ等の外的要因によるノイズの影響を除去して確実に第一波を検出することができる。その結果、空気中を伝搬する超音波パルスを感度よく受信することができ、第1の超音波送信子と第1および第2の超音波受信子との間の距離を長くすることが可能になるとともに、管板上の広い範囲に渡って挿入治具を移動させながら、管板上での挿入治具の平面的位置を正確に求めることが可能になる。一方、第1の超音波送信子を移動させる領域が一定の場合、第1、第2の超音波受信子を第1の超音波送信子の移動領域に接近して配置して(コンパクトにして)、第1の超音波送信子からの超音波パルスを精度よく検出することができ、狭い管板から広い管板を対象に挿入治具の管板上での平面的位置を演算することができる。 In particular, in the tube expansion confirmation inspection device according to claim 2, since the omnidirectional microphone is used for the first and second ultrasonic receivers, the first and second ultrasonic transmitters are moved along with the movement of the first ultrasonic transmitter. Even if the incident angle of the ultrasonic pulse incident on each of the two ultrasonic receivers greatly fluctuates, the ultrasonic pulse transmitted from the first ultrasonic transmitter can be reliably received. . As a result, the first ultrasonic transmitter and the first and second ultrasonic receivers can be arranged close to each other. In addition, the rising edge of the received signal of the ultrasonic pulse becomes sharp, the threshold level when detecting the received signal can be set high, and the influence of noise due to external factors such as air flow is eliminated and reliably The first wave can be detected. As a result, ultrasonic pulses propagating in the air can be received with high sensitivity, and the distance between the first ultrasonic transmitter and the first and second ultrasonic receivers can be increased. In addition, the planar position of the insertion jig on the tube sheet can be accurately obtained while moving the insertion jig over a wide range on the tube sheet. On the other hand, when the region where the first ultrasonic transmitter is moved is constant, the first and second ultrasonic receivers are arranged close to the moving region of the first ultrasonic transmitter (compact) ), The ultrasonic pulse from the first ultrasonic transmitter can be accurately detected, and the planar position of the insertion jig on the tube plate can be calculated from a narrow tube plate to a wide tube plate. it can.

請求項3記載の拡管確認検査装置においては、無指向性マイクロホンの受音面を互いに、受音面の中心を結ぶ中心連結線に直交する直線に対して、内側に40度以上50度以下傾けて配置するので、第1、第2の超音波受信子を管板上に固定していても、挿入治具とともに管板上で移動する第1の超音波送信子からの超音波パルスを、確実に受信することができる。 In the pipe expansion confirmation inspection apparatus according to claim 3, the sound receiving surfaces of the omnidirectional microphones are inclined inward by 40 degrees or more and 50 degrees or less with respect to a straight line perpendicular to a central connection line connecting the centers of the sound receiving surfaces. Even if the first and second ultrasonic receivers are fixed on the tube plate, the ultrasonic pulse from the first ultrasonic transmitter that moves on the tube plate together with the insertion jig, It can be received reliably.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る拡管確認検査装置のブロック図、図2は同拡管確認検査装置で使用する第1、第2の超音波受信子を取付ける受信子ホルダーの説明図、図3は同拡管確認検査装置で使用する第2の超音波送信子および第3、第4の超音波受信子を取付ける超音波送受信子取付け台の説明図、図4は同拡管確認検査装置のデータ処理器のブロック図、図5(A)〜(C)は同拡管確認検査装置の使用方法の説明図、図6(A)は同拡管確認検査装置の挿入治具位置演算部における処理内容の説明図、(B)は第1の超音波送信子の管板上での位置および第1、第2の超音波受信子でそれぞれ受信された超音波パルスの状況を表示した表示器画面の説明図、図7は同拡管確認検査装置による拡管検査状況を表示した表示器画面の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a block diagram of a tube expansion confirmation inspection apparatus according to an embodiment of the present invention, and FIG. 2 is a receiver holder for attaching first and second ultrasonic receivers used in the tube expansion confirmation inspection apparatus. FIG. 3 is an explanatory diagram of an ultrasonic transmitter / receiver mounting base for mounting the second ultrasonic transmitter and the third and fourth ultrasonic receivers used in the pipe expansion confirmation inspection apparatus, and FIG. 4 is the pipe expansion confirmation. 5 is a block diagram of a data processor of the inspection apparatus, FIGS. 5A to 5C are explanatory diagrams of how to use the expansion confirmation inspection apparatus, and FIG. 6A is an insertion jig position calculation unit of the expansion confirmation inspection apparatus. FIG. 5B is a diagram illustrating the processing contents in FIG. 5B, and a display showing the position of the first ultrasonic transmitter on the tube plate and the status of the ultrasonic pulses received by the first and second ultrasonic receivers, respectively. Fig. 7 is a table showing the pipe expansion inspection status by the pipe expansion confirmation inspection device. Vessels is an explanatory view of a screen.

図1に示すように、本発明の一実施の形態に係る拡管確認検査装置10は、熱交換器の管板11に拡管接合された多数の伝熱管12(図5(A)参照)の接合状況を個々に検査する渦流センサー13を備える拡管検査手段14と、拡管検査手段14によって検査された伝熱管12の位置を測定する伝熱管測位手段15とを有している。以下、これらについて詳細に説明する。 As shown in FIG. 1, a tube expansion confirmation inspection apparatus 10 according to an embodiment of the present invention is a joint of a large number of heat transfer tubes 12 (see FIG. 5A) expanded and joined to a tube plate 11 of a heat exchanger. It has the pipe expansion inspection means 14 provided with the eddy current sensor 13 which inspects the situation individually, and the heat transfer pipe positioning means 15 which measures the position of the heat transfer pipe 12 inspected by the pipe expansion inspection means 14. Hereinafter, these will be described in detail.

図1、図4に示すように、拡管検査手段14は、伝熱管12に挿入する渦流センサー13を支持する挿入治具(挿入ガンともいう)16と、渦流センサー13の後端部に接続する渦流探傷ケーブル17と、渦流探傷ケーブル17を外周部に接触させながら進退させる図示しない回転輪、回転輪の回転駆動源、並びに回転輪の回転方向および回転数を検出するエンコーダを備えた挿入/巻取器18とを有している。更に、拡管検査手段14は、挿入/巻取器18の回転駆動源の動作を制御する挿入/巻取制御器19と、渦流センサー13に発生した渦電流を検出する渦流探傷器20と、渦流探傷器20からの出力信号を処理して伝熱管12の拡管接合部の体積変化を検出して拡管接合状態を判定する拡管接合判定部21と、拡管接合判定部21における検出データおよび拡管接合状況の判定データをそれぞれ所定の表示データに変換する表示手段22と、表示手段22からの出力される表示データを出力する表示器23とを有している。 As shown in FIGS. 1 and 4, the tube expansion inspection means 14 is connected to an insertion jig (also referred to as an insertion gun) 16 that supports the eddy current sensor 13 to be inserted into the heat transfer tube 12 and the rear end portion of the eddy current sensor 13. Insertion / winding provided with an eddy current flaw detection cable 17, a rotating wheel (not shown) that moves the eddy current flaw detection cable 17 back and forth while contacting the outer peripheral portion, a rotation drive source of the rotation wheel, and an encoder that detects the rotation direction and the rotation speed of the rotation wheel. And a collector 18. Further, the tube expansion inspection means 14 includes an insertion / winding controller 19 that controls the operation of the rotational drive source of the insertion / winding device 18, an eddy current flaw detector 20 that detects eddy current generated in the eddy current sensor 13, and an eddy current. A tube expansion determination unit 21 that processes an output signal from the flaw detector 20 to detect a volume change of the tube expansion joint of the heat transfer tube 12 to determine the tube expansion connection state, and detection data and tube expansion state of the tube expansion determination unit 21 Display means 22 for converting the determination data into predetermined display data, and a display 23 for outputting the display data output from the display means 22.

このような構成とすることにより、挿入治具16の渦流センサー出入口24を管板11に接合された伝熱管12の端部に当接させて、挿入/巻取制御器19の指令により挿入/巻取器18の回転輪を回転させることにより渦流探傷ケーブル17を挿入/巻取器18から一定の速度で伝熱管12内に挿入し巻取ることができ、これによって渦流センサー13を伝熱管12内に一定速度で挿入することができる。このとき、渦流センサー13で発生した渦電流を渦流探傷器20で検出し渦流探傷出力信号(ET出力)として拡管接合判定部21に入力しながら、挿入/巻取制御器19を介してエンコーダからの出力信号(E/C出力)も拡管接合判定部21に入力することで、渦流センサー13の伝熱管12内での位置(伝熱管12の端面からの挿入距離)を常に把握することができる。このため、伝熱管12の端面からの距離に対する伝熱管12の体積変化、すなわち、伝熱管12の拡管接合部の体積変化を検出することができ、体積変化から拡管接合状態を判定することができる。 With such a configuration, the eddy current sensor inlet / outlet 24 of the insertion jig 16 is brought into contact with the end of the heat transfer tube 12 joined to the tube plate 11, and the insertion / rewinding controller 19 issues an insertion / rewinding command. By rotating the rotating wheel of the winder 18, the eddy current flaw detection cable 17 can be inserted into the heat transfer tube 12 from the inserter / winder 18 at a constant speed and wound, whereby the eddy current sensor 13 can be wound. Can be inserted at a constant speed. At this time, the eddy current generated by the eddy current sensor 13 is detected by the eddy current flaw detector 20 and input to the pipe expansion determination unit 21 as an eddy current flaw detection output signal (ET output), and from the encoder via the insertion / winding controller 19. The output signal (E / C output) of the eddy current sensor 13 is also input to the tube expansion determination unit 21 so that the position of the eddy current sensor 13 in the heat transfer tube 12 (insertion distance from the end face of the heat transfer tube 12) can be always grasped. . For this reason, the volume change of the heat transfer tube 12 with respect to the distance from the end surface of the heat transfer tube 12, that is, the volume change of the pipe joint of the heat transfer pipe 12 can be detected, and the pipe joint state can be determined from the volume change. .

図1、図2に示すように、伝熱管測位手段15は、挿入治具16の、例えば、渦流センサー出入口24と渦流探傷ケーブル出入口25の間に挟まれて挿入治具16の周囲に超音波パルスを送信する円筒状の第1の超音波送信子26と、受信子ホルダー27を介して管板11上の予め決められた位置に隙間を有して配置され、第1の超音波送信子26から送信された超音波パルスを受信する第1、第2の超音波受信子28、29とを有している。ここで、第1の超音波送信子26から送信される超音波パルスの周波数は30〜50kHz、例えば40kHzであり、超音波パルスの発信周期は50〜150Hz、例えば100Hzである。また、第1、第2の超音波受信子28、29は無指向性マイクロホン(例えば、コンデンサー形マイクロホン)からなっている。 As shown in FIG. 1 and FIG. 2, the heat transfer tube positioning means 15 is ultrasonically sandwiched between the insertion jig 16, for example, between the eddy current sensor inlet / outlet 24 and the eddy current flaw detection cable inlet / outlet 25. The first ultrasonic transmitter 26 is arranged with a gap at a predetermined position on the tube plate 11 via a receiver holder 27 and a cylindrical first ultrasonic transmitter 26 that transmits a pulse. And first and second ultrasonic receivers 28 and 29 for receiving the ultrasonic pulses transmitted from 26. Here, the frequency of the ultrasonic pulse transmitted from the first ultrasonic transmitter 26 is 30 to 50 kHz, for example, 40 kHz, and the transmission period of the ultrasonic pulse is 50 to 150 Hz, for example, 100 Hz. The first and second ultrasonic receivers 28 and 29 are each composed of an omnidirectional microphone (for example, a condenser microphone).

受信子ホルダー27は、第1、第2の超音波受信子28、29が、その受音面30を互いに、受音面30の中心を結ぶ中心連結線に直交する直線に対して、内側に40度以上50度以下、例えば、実質的に45度傾けて配置され固定部材31、32により固定される第1、第2の受信子固定台33、34と、第1、第2の受信子固定台33、34にそれぞれ形成されたねじ孔35に螺合する図示しない取付けねじを介して両端側がそれぞれ第1、第2の受信子固定台33、34に接続される連結部材36とを有している。また、連結部材36上面には受信子ホルダー27を持ち上げる把手36aが取付けられ、第1、第2の受信子固定台33、34の裏面の両側には、伝熱管12内に挿入可能な突起37がそれぞれ取付けられている。ここで、第1、第2の受信子固定台33、34において、一方の突起37は第1、第2の受信子固定台33、34の長手方向に形成された長孔37aを貫通している。これによって、対となる突起37間の距離を調整して、伝熱管12内への突起37の挿入が容易になる。
このような構成とすることにより、第1の受信子固定台33の裏面側に設けられた突起37を予め決められた位置の伝熱管12内に挿入し、第2の受信子固定台34の裏面側に設けられた突起37を予め決められた別の位置の伝熱管12内にそれぞれ挿入することで、第1、第2の超音波受信子28、29を管板11上の予め決められた位置に隙間を有して配置することができる。なお、管板を延長した平面上の予め決められた位置に隙間を有して第1、第2の超音波受信子を配置してもよい。
The receiver holder 27 is arranged so that the first and second ultrasonic receivers 28 and 29 have their sound receiving surfaces 30 on the inner side with respect to a straight line perpendicular to a central connection line connecting the centers of the sound receiving surfaces 30. 40 degrees or more and 50 degrees or less, for example, the 1st, 2nd receiver fixing bases 33 and 34 which are arrange | positioned inclining substantially 45 degree, and are fixed by the fixing members 31 and 32, and 1st, 2nd receiver Both ends have connecting members 36 connected to the first and second receiver fixing bases 33 and 34 through mounting screws (not shown) that are screwed into screw holes 35 formed in the fixing bases 33 and 34, respectively. is doing. Further, a handle 36 a for lifting the receiver holder 27 is attached to the upper surface of the connecting member 36, and protrusions 37 that can be inserted into the heat transfer tube 12 on both sides of the back surfaces of the first and second receiver fixing bases 33 and 34. Are installed respectively. Here, in the first and second receiver fixing bases 33 and 34, one projection 37 penetrates a long hole 37a formed in the longitudinal direction of the first and second receiver fixing bases 33 and 34. Yes. Thus, the distance between the pair of projections 37 is adjusted, and the projection 37 can be easily inserted into the heat transfer tube 12.
With such a configuration, the protrusion 37 provided on the back surface side of the first receiver fixing base 33 is inserted into the heat transfer tube 12 at a predetermined position, and the second receiver fixing base 34 is By inserting the projections 37 provided on the back side into the heat transfer tubes 12 at different predetermined positions, the first and second ultrasonic receivers 28 and 29 can be determined on the tube plate 11 in advance. It can arrange | position with a clearance gap in the position. In addition, you may arrange | position a 1st, 2nd ultrasonic receiver with a clearance gap in the predetermined position on the plane which extended the tube sheet.

ここで、第1、第2の超音波受信子28、29は無指向性マイクロホンからなるので、第1の超音波送信子26の移動に伴って第1、第2の超音波受信子28、29に入射する超音波パルスの入射角度が大きく変動することになっても、第1の超音波送信子26から送信された超音波パルスを確実に受信することができる。このため、第1の超音波送信子26と第1、第2の超音波受信子28、29を接近して配置することが可能になる。更に、第1、第2の超音波受信子28、29は無指向性マイクロホンからなるので、超音波パルスの受信信号の立ち上がりが鋭くなる。このため、受信信号を検出する際の閾値レベルを高く設定することができ、空気の流れ等の外的要因によるノイズの影響を除去して確実に第一波を検出することができる。その結果、第1の超音波送信子26を移動させる領域が一定の場合、第1、第2の超音波受信子28、29を第1の超音波送信子26の移動領域に接近して配置して(コンパクトにして)、第1の超音波送信子26からの超音波パルスを精度よく検出することができる。 Here, since the first and second ultrasonic receivers 28 and 29 are formed of omnidirectional microphones, the first and second ultrasonic receivers 28 and 28 are moved in accordance with the movement of the first ultrasonic transmitter 26. Even if the incident angle of the ultrasonic pulse incident on 29 greatly fluctuates, the ultrasonic pulse transmitted from the first ultrasonic transmitter 26 can be reliably received. Therefore, the first ultrasonic transmitter 26 and the first and second ultrasonic receivers 28 and 29 can be disposed close to each other. Furthermore, since the first and second ultrasonic receivers 28 and 29 are made of omnidirectional microphones, the rising of the reception signal of the ultrasonic pulse becomes sharp. For this reason, the threshold level at the time of detecting a received signal can be set high, and the influence of noise due to external factors such as air flow can be removed to reliably detect the first wave. As a result, when the region where the first ultrasonic transmitter 26 is moved is constant, the first and second ultrasonic receivers 28 and 29 are arranged close to the moving region of the first ultrasonic transmitter 26. Thus, the ultrasonic pulse from the first ultrasonic transmitter 26 can be accurately detected.

図1〜図5に示すように、超音波送受信子取付け台61は、管板11の近傍、例えば、管板11上に配置された受信ホルダー27に対して第1の超音波送信子26が配置されない側の管板11上に取付けられ、平面視して矩形状の超音波送受信子取付け台61の上面の長手方向一側に取付けられた第2の超音波送信子38と、超音波送受信子取付け台61の上面の長手方向他側に第2の超音波送信子38からの超音波パルスを受信できるように、第2の超音波送信子38の送信面に対向して受信面が配置された第3の超音波受信子39と、超音波送受信子取付け台61の上面で第3の超音波受信子39より第2の超音波送信子38側の位置に受信面を第2の超音波送信子38の送信面に向けて配置された第4の超音波受信子62とを有している。ここで、第2の超音波送信子38から送信される超音波パルスの周波数は30〜50kHz、例えば40kHzであり、超音波パルスの発信周期は50〜150Hz、例えば100Hzである。 As shown in FIGS. 1 to 5, the ultrasonic transmitter / receiver mounting base 61 has a first ultrasonic transmitter 26 in the vicinity of the tube plate 11, for example, with respect to the reception holder 27 disposed on the tube plate 11. A second ultrasonic transmitter 38 mounted on the tube plate 11 on the non-arranged side and mounted on one side in the longitudinal direction of the upper surface of the rectangular ultrasonic transmitter / receiver mounting base 61 in plan view, and ultrasonic transmission / reception A receiving surface is arranged opposite to the transmission surface of the second ultrasonic transmitter 38 so that an ultrasonic pulse from the second ultrasonic transmitter 38 can be received on the other longitudinal side of the upper surface of the child mount 61. The reception surface of the third ultrasonic receiver 39 and the ultrasonic transmitter / receiver mounting base 61 is placed at a position closer to the second ultrasonic transmitter 38 than the third ultrasonic receiver 39. A fourth ultrasonic receiver 62 disposed toward the transmission surface of the acoustic wave transmitter 38. . Here, the frequency of the ultrasonic pulse transmitted from the second ultrasonic transmitter 38 is 30 to 50 kHz, for example, 40 kHz, and the transmission cycle of the ultrasonic pulse is 50 to 150 Hz, for example, 100 Hz.

なお、符号63、65、64は第2の超音波送信子38、第3の超音波受信子39、および第4の超音波受信子62がそれぞれ取付けられる取付け部材、符号66は取付け部材63、65を超音波送受信子取付け台61の上面に取付ける取付けねじ、符号67は超音波送受信子取付け台61を持ち上げる把手、符号68は超音波送受信子取付け台61の両側に貫通して設けられ、伝熱管12内に挿入されて超音波送受信子取付け台61を管板11上に取付ける挿入部材である。そして、一方の挿入部材68は超音波送受信子取付け台61の長手方向に形成された長孔69を貫通している。これによって、挿入部材68間の距離を調整でき、超音波送受信子取付け台61の設置方向を自在に調整できる。 Reference numerals 63, 65, and 64 denote attachment members to which the second ultrasonic transmitter 38, the third ultrasonic receiver 39, and the fourth ultrasonic receiver 62 are attached, respectively, and reference numeral 66 denotes an attachment member 63. A mounting screw 65 is attached to the upper surface of the ultrasonic transceiver mounting base 61, a reference numeral 67 is a handle for lifting the ultrasonic transmitting / receiving base mounting base 61, and a reference numeral 68 is provided on both sides of the ultrasonic transmitting / receiving base mounting base 61. It is an insertion member that is inserted into the heat tube 12 and attaches the ultrasonic transceiver mounting base 61 onto the tube plate 11. One insertion member 68 passes through a long hole 69 formed in the longitudinal direction of the ultrasonic transceiver mounting base 61. Thereby, the distance between the insertion members 68 can be adjusted, and the installation direction of the ultrasonic transceiver mounting base 61 can be freely adjusted.

また、伝熱管測位手段15は、第2の超音波送信子38から送信された超音波パルスが第3、第4の超音波受信子39、62に到達するのに要する時間から管板11近傍の超音波伝搬速度を測定し、第1の超音波送信子26から送信された超音波パルスが第1、第2の超音波受信子28、29に到達するのに要する伝搬時間t1、t2をそれぞれ求めて、超音波伝搬速度および伝搬時間t1、t2から挿入治具16の管板11上での平面的位置を演算し記憶する挿入治具位置演算部40を有している。なお、拡管接合判定部21、表示手段22、表示器23、および挿入治具位置演算部40でデータ処理器41が構成されている。ここで、データ処理器41は、例えば、拡管接合判定部21、表示手段22および挿入治具位置演算部40の各機能を発現するプログラムをパーソナルコンピュータに搭載して形成することができる。 Further, the heat transfer tube positioning means 15 determines the vicinity of the tube plate 11 from the time required for the ultrasonic pulse transmitted from the second ultrasonic transmitter 38 to reach the third and fourth ultrasonic receivers 39 and 62. The propagation time t 1 , t required for the ultrasonic pulse transmitted from the first ultrasonic transmitter 26 to reach the first and second ultrasonic receivers 28 and 29 is measured. 2 is provided, and an insertion jig position calculation unit 40 is provided for calculating and storing a planar position of the insertion jig 16 on the tube plate 11 from the ultrasonic wave propagation speed and the propagation times t 1 and t 2 . . In addition, the data processor 41 is comprised by the pipe expansion joining determination part 21, the display means 22, the indicator 23, and the insertion jig position calculating part 40. FIG. Here, the data processor 41 can be formed by, for example, mounting a program that expresses the functions of the tube expansion determination unit 21, the display unit 22, and the insertion jig position calculation unit 40 on a personal computer.

更に、伝熱管測位手段15は、第1、第2の超音波送信子26、38をそれぞれ駆動させるパルサー42、43と、パルサー42、43に駆動開始用のトリガー信号を出力する基準クロック44と、第1〜第4の超音波受信子28、29、39、62からの各出力信号を増幅するプリアンプ45〜47、70と、パルサー42、43の動作と同期させてプリアンプ45、46およびプリアンプ47、70からの出力信号をそれぞれ取り出すマルチプレクサー48と、マルチプレクサー48を介して取り出された出力信号のノイズを除去するフィルター49と、フィルター49からの出力信号が超音波パルスの伝搬距離の違いにより低下するのを電子的に補償するDAC回路50とを備えたインタフェースユニット51を有している。そして、インタフェースユニット51には、DAC回路50の出力信号、基準クロック44からのトリガー信号、挿入/巻取器18のエンコーダからの出力信号、および渦流探傷器20からの出力信号をそれぞれデジタル信号に変換して出力する高速ADボード52が設けられている。 Further, the heat transfer tube positioning means 15 includes pulsars 42 and 43 for driving the first and second ultrasonic transmitters 26 and 38, and a reference clock 44 for outputting a trigger signal for starting driving to the pulsars 42 and 43, respectively. , Preamplifiers 45 to 47 and 70 for amplifying output signals from the first to fourth ultrasonic receivers 28, 29, 39 and 62, and preamplifiers 45 and 46 and preamplifiers in synchronization with the operations of the pulsars 42 and 43. A multiplexer 48 that extracts the output signals from 47 and 70, a filter 49 that removes noise from the output signal extracted through the multiplexer 48, and the difference in propagation distance of the ultrasonic pulse between the output signals from the filter 49 The interface unit 51 is provided with a DAC circuit 50 that electronically compensates for the deterioration due to. In the interface unit 51, the output signal of the DAC circuit 50, the trigger signal from the reference clock 44, the output signal from the encoder of the insertion / winding device 18 and the output signal from the eddy current flaw detector 20 are converted into digital signals. A high-speed AD board 52 for converting and outputting is provided.

ここで、挿入治具位置演算部40は、管板11上の伝熱管12の管配列位置データ(例えば、管板11上の特定点を原点に設定した場合の各伝熱管12の座標データ)、受信子ホルダー27の裏面側に設けられた対となる突起37を挿入する伝熱管12の管配列位置データ、第1の超音波送信子26から送信した超音波パルスを第1、第2の超音波受信子28、29で受信させて管板11近傍の超音波伝搬速度を測定する際の第1の超音波送信子26、第1、第2の超音波受信子28、29の位置データ、第2の超音波送信子38、第3、第4の超音波受信子39、62の位置データを入力するデータ入力器53と、データ入力器53から入力されたデータを記憶するデータ記憶器54とを有している。 Here, the insertion jig position calculation unit 40 has tube arrangement position data of the heat transfer tubes 12 on the tube plate 11 (for example, coordinate data of each heat transfer tube 12 when a specific point on the tube plate 11 is set as the origin). The first and second ultrasonic pulses transmitted from the first ultrasonic transmitter 26 are the tube arrangement position data of the heat transfer tubes 12 into which the pair of protrusions 37 provided on the back surface side of the receiver holder 27 are inserted. Position data of the first ultrasonic transmitter 26, the first ultrasonic receiver 28, and the second ultrasonic receiver 28 when the ultrasonic receivers 28 and 29 are used to measure the ultrasonic propagation velocity near the tube plate 11. A data input unit 53 for inputting position data of the second ultrasonic transmitter 38, the third and fourth ultrasonic receivers 39 and 62, and a data storage unit for storing data input from the data input unit 53 54.

また、挿入治具位置演算部40は、第1の超音波送信子26から送信された超音波パルスが第1、第2の超音波受信子28、29に到達するのに要する時間を求めてデータ記憶器54に格納された第1の超音波送信子26、第1、第2の超音波受信子28、29の位置データに基づいて管板11近傍の超音波伝搬速度を求めてデータ記憶器54に出力する音速演算設定器55と、第2の超音波送信子38から送信された超音波パルスが第3、第4の超音波受信子39、62に到達するのに要する伝搬時間t3、t4を測定して管板11近傍の超音波伝搬速度の変化有無を確認し、管板11近傍の超音波伝搬速度が変化した場合は管板11近傍の新たな超音波伝搬速度を求め、新たな超音波伝搬速度をデータ記憶器54に入力して記憶している管板11近傍の超音波伝搬速度を管板11近傍の新たな超音波伝搬速度に更新させる音速補正器55aとを有している。 Further, the insertion jig position calculation unit 40 obtains the time required for the ultrasonic pulse transmitted from the first ultrasonic transmitter 26 to reach the first and second ultrasonic receivers 28 and 29. Based on the position data of the first ultrasonic transmitter 26 and the first and second ultrasonic receivers 28 and 29 stored in the data storage 54, the ultrasonic propagation velocity in the vicinity of the tube plate 11 is obtained and stored. And the propagation time t required for the ultrasonic pulse transmitted from the second ultrasonic transmitter 38 to reach the third and fourth ultrasonic receivers 39 and 62. 3 , t 4 is measured to check whether there is a change in the ultrasonic propagation velocity in the vicinity of the tube plate 11. If the ultrasonic propagation velocity in the vicinity of the tube plate 11 changes, the new ultrasonic propagation velocity in the vicinity of the tube plate 11 The new ultrasonic wave propagation velocity is obtained and stored in the data memory 54. And a sound velocity corrector 55a for updating the ultrasonic wave propagation velocity of the plate 11 near the tube sheet 11 to a new ultrasonic wave propagation velocity in the vicinity.

更に、挿入治具位置演算部40は、第1の超音波送信子26から送信された超音波パルスが第1、第2の超音波受信子28、29に到達するのに要する伝搬時間t1、t2をそれぞれ求めて、データ記憶器54に格納されている超音波伝搬速度、伝熱管12の管配列位置データ、および第1、第2の超音波受信子28、29の位置データから挿入治具16の管板11上での平面的位置を演算し記憶する治具位置演算器56とを有している。 Further, the insertion jig position calculation unit 40 has a propagation time t 1 required for the ultrasonic pulse transmitted from the first ultrasonic transmitter 26 to reach the first and second ultrasonic receivers 28 and 29. , T 2 , respectively, and inserted from the ultrasonic propagation velocity stored in the data storage 54, the tube arrangement position data of the heat transfer tube 12, and the position data of the first and second ultrasonic receivers 28 and 29. And a jig position calculator 56 for calculating and storing a planar position of the jig 16 on the tube plate 11.

続いて、音速演算設定器55の作用について詳細に説明する。
空気中を伝搬する超音波の伝搬速度は温度と湿度の影響を受けるが、挿入治具16の管板11上での平面的位置の演算に必要な精度(例えば、一辺が1200mmの正方形領域内での平面的位置の誤差が10mm以下)から考えると、湿度の影響は小さいので、実質的には温度の影響を考慮すればよいことになる。従って、温度の影響を受ける超音波の伝搬速度をV、伝搬距離をSとすると、伝搬速度Vと距離Sとの関係は、tを伝搬に要する時間、Cを定数(オフセット)とすると、一般に(1)式で表せる。
S=Vt+C・・・・・(1)
Next, the operation of the sound speed calculation setter 55 will be described in detail.
The propagation speed of the ultrasonic wave propagating in the air is affected by temperature and humidity, but the accuracy required for calculating the planar position of the insertion jig 16 on the tube plate 11 (for example, within a square region having a side of 1200 mm) In view of the error of the planar position at 10 mm or less), the influence of the humidity is small, so that the influence of the temperature can be substantially taken into consideration. Therefore, if the propagation speed of the ultrasonic wave affected by temperature is V and the propagation distance is S, the relationship between the propagation speed V and the distance S is generally as follows: t is the time required for propagation and C is a constant (offset). It can be expressed by equation (1).
S = Vt + C (1)

そこで、音速演算設定器55では、例えば、第1、第2の超音波受信子28、29の位置を固定し、第1の超音波送信子26を第1、第2の超音波受信子28、29から距離S1となる第1の位置、第1、第2の超音波受信子28、29から距離S2となる第2の位置に配置して超音波パルスを送信し、第1、第2の超音波受信子28、29に到達するまでの時間を測定する。ここで、第1の位置に第1の超音波送信子26を配置した際に、第1の超音波受信子28に到達するまでの時間がt11、第2位置に第1の超音波送信子26を配置した際に、第1の超音波受信子28に到達するまでの時間がt12とすると、(1)式の関係はS1=V111+C1、S2=V112+C1となり、これから超音波の伝搬速度V1および定数C1が求まる。また、第1の位置に第1の超音波送信子26を配置した際に、第2の超音波受信子29に到達するまでの時間がt21、第2の位置に第1の超音波送信子26を配置した際に、第2の超音波受信子29に到達するまでの時間がt22とすると、(1)式の関係はS1=V221+C2、S2=V222+C2となり、これから超音波の伝搬速度V2および定数C2が求まる。そして、得られたV1、C1、V2、およびC2は、データ記憶器54に入力される。 Therefore, in the sound speed calculation setting unit 55, for example, the positions of the first and second ultrasonic receivers 28 and 29 are fixed, and the first ultrasonic transmitter 26 is connected to the first and second ultrasonic receivers 28. 29, a first position that is a distance S 1 from the first, and a second position that is a distance S 2 from the first and second ultrasonic receivers 28 and 29, and transmits an ultrasonic pulse, The time required to reach the second ultrasonic receivers 28 and 29 is measured. Here, when the first ultrasonic transmitter 26 is arranged at the first position, the time until reaching the first ultrasonic receiver 28 is t 11 , and the first ultrasonic transmission is transmitted to the second position. When the time to reach the first ultrasonic receiver 28 when the child 26 is arranged is t 12 , the relationship of the equation (1) is S 1 = V 1 t 11 + C 1 , S 2 = V 1 From t 12 + C 1 , the ultrasonic wave propagation velocity V 1 and constant C 1 are obtained. In addition, when the first ultrasonic transmitter 26 is arranged at the first position, the time until reaching the second ultrasonic receiver 29 is t 21 , and the first ultrasonic transmission is transmitted to the second position. Assuming that the time to reach the second ultrasonic wave receiver 29 when the child 26 is arranged is t 22 , the relationship of equation (1) is S 1 = V 2 t 21 + C 2 , S 2 = V 2 From t 22 + C 2 , the ultrasonic wave propagation velocity V 2 and constant C 2 are obtained. The obtained V 1 , C 1 , V 2 , and C 2 are input to the data memory 54.

続いて、音速補正器55aの作用について詳細に説明する。
音速補正器55aでは、超音波パルスが第2の超音波送信子38から第3、第4の超音波受信子39、62まで到達するのに要する各時間t、pを測定することで超音波の伝搬速度Vおよび定数Cを求める。そして、求まった超音波の伝搬速度Vと、超音波パルスが第2の超音波送信子38から第3の超音波受信子39まで到達するのに要する時間tを用いて、(1)式の関係に基づいて第2の超音波送信子38から第3の超音波受信子39までの距離を確認することで、温度変化に伴う伝搬速度Vの影響を検知する。
Next, the operation of the sound speed corrector 55a will be described in detail.
The sonic speed corrector 55a measures the times t and p required for the ultrasonic pulse to reach the third and fourth ultrasonic receivers 39 and 62 from the second ultrasonic transmitter 38, thereby measuring the ultrasonic wave. The propagation velocity V and the constant C are obtained. Then, using the obtained ultrasonic propagation velocity V and the time t required for the ultrasonic pulse to reach the third ultrasonic receiver 39 from the second ultrasonic transmitter 38, the equation (1) is used. By confirming the distance from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39 based on the relationship, the influence of the propagation velocity V accompanying the temperature change is detected.

先ず、音速補正器55aのスイッチが入ると、第2の超音波送信子38から第3、第4の超音波受信子39、62に向けて超音波パルスが送信される。ここで、超音波パルスの伝搬時間は、対となって高速ADボード52から出力される第2の超音波送信子TRG出力信号と第3、第4の超音波受信子出力信号の各立ち上がり時刻の時間差として求まる。そして、第2の超音波送信子38から第3の超音波受信子39までの距離は所定値S0、第2の超音波送信子38から第4の超音波受信子62までの距離は所定値U0と設定されているので、第2の超音波送信子38から第3の超音波受信子39に超音波パルスが伝搬するのに要する平均時間t0、第2の超音波送信子38から第4の超音波受信子62に超音波パルスが伝搬するのに要する平均時間p0を求めると、S0=V00+C0、U0=V00+C0の関係が得られ、これらの関係から超音波パルスの伝搬速度V0および定数C0が定まり、第2の超音波送信子38から第3の超音波受信子39までの距離S0は、
0=V00+C0・・・・・(2)
と求まる。
First, when the sound speed corrector 55a is switched on, ultrasonic pulses are transmitted from the second ultrasonic transmitter 38 toward the third and fourth ultrasonic receivers 39 and 62. Here, the propagation times of the ultrasonic pulses are the rising times of the second ultrasonic transmitter TRG output signal and the third and fourth ultrasonic receiver output signals output from the high-speed AD board 52 as a pair. It is obtained as the time difference between The distance from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39 is a predetermined value S 0 , and the distance from the second ultrasonic transmitter 38 to the fourth ultrasonic receiver 62 is predetermined. Since the value U 0 is set, the average time t 0 required for the ultrasonic pulse to propagate from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39 is the second ultrasonic transmitter 38. When the average time p 0 required for the ultrasonic pulse to propagate to the fourth ultrasonic receiver 62 is obtained, the relationship of S 0 = V 0 t 0 + C 0 and U 0 = V 0 p 0 + C 0 is obtained. From these relationships, the propagation speed V 0 of the ultrasonic pulse and the constant C 0 are determined, and the distance S 0 from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39 is:
S 0 = V 0 t 0 + C 0 (2)
It is obtained.

そして、音速補正器55aでは、得られた伝搬速度V0を超音波伝搬速度Vとしてデータ記憶器54に入力するとともに、第2の超音波送信子38から第3の超音波受信子39に向けて送信されている超音波パルスの伝搬時間を測定し、伝搬速度V0から(2)式に基づいて、第2の超音波送信子38から第3の超音波受信子39までの距離S0を常時確認する。 The sound velocity corrector 55 a inputs the obtained propagation velocity V 0 as the ultrasonic propagation velocity V to the data storage device 54 and directs it from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39. Then, the propagation time of the ultrasonic pulse transmitted is measured, and the distance S 0 from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39 is determined from the propagation velocity V 0 based on the equation (2). Always check.

次に、空気の温度が変化して超音波伝搬速度V0がΔV変化し、これに伴って第2の超音波送信子38から第3の超音波受信子39に超音波パルスが伝搬するのに要する時間が−Δt変化したとする。ここで、音速補正器55aでは、(2)式を用いて第2の超音波送信子38から第3の超音波受信子39までの距離S0を確認しているので、第2の超音波送信子38から第3の超音波受信子39に超音波が伝搬するのに要する時間が−Δt変化すると、(3)式で示すように、第2の超音波送信子38から第3の超音波受信子39までの距離がS’に変化したと判断する。
S’=V0×(t0−Δt)+C0・・・・・(3)
しかし、実際には超音波伝搬速度がV0+ΔVとなって、距離S0を伝搬時間t0−Δtで伝搬しているので、(4)式に示す関係が成立する。
0=(V0+ΔV)×(t0−Δt)+C0・・・・・(4)
Next, the temperature of the air changes and the ultrasonic propagation velocity V 0 changes by ΔV, and accordingly, the ultrasonic pulse propagates from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39. Is changed by -Δt. Here, since the sound speed corrector 55a confirms the distance S 0 from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39 using the equation (2), the second ultrasonic wave is confirmed. When the time required for the ultrasonic wave to propagate from the transmitter 38 to the third ultrasonic receiver 39 changes by −Δt, as shown by the equation (3), the second ultrasonic transmitter 38 to the third ultrasonic wave It is determined that the distance to the sound wave receiver 39 has changed to S ′.
S ′ = V 0 × (t 0 −Δt) + C 0 (3)
However, since the ultrasonic wave propagation speed is actually V 0 + ΔV and the distance S 0 is propagated at the propagation time t 0 -Δt, the relationship shown in the equation (4) is established.
S 0 = (V 0 + ΔV) × (t 0 −Δt) + C 0 (4)

そこで、音速補正器55aでは、予め設定されているS0とS’の差の絶対値を演算して、この値が挿入治具16の管板11上での平面的位置の演算に必要な精度を超えた場合、(3)式および(4)式から
ΔV=V0×(S0−S’)/(S’−C0)・・・・・(5)
を求めてデータ記憶器54に入力するとともに、V0をV0+ΔVに更新する。そして、データ記憶器54では、記憶していた管板11近傍の超音波伝搬速度V1、V2をそれぞれV1+ΔV、V2+ΔVに更新して記憶する。
なお、超音波送受信子取付け台61は、管板11上に配置された受信ホルダー27に対して第1の超音波送信子26が配置されない側の管板11上に取付けたが、管板11の近傍であれば管板11上に限定されない。ここで、管板の近傍とは、挿入治具16の管板11上での平面的位置の演算精度に影響を及ぼさないような超音波伝搬速度が保証される範囲で、例えば、一辺が1200mmの正方形領域内での平面的位置の誤差が10mm以下の場合、管板上の温度との温度差が、±3℃以内となる範囲となる。
Therefore, the sound speed corrector 55a calculates the absolute value of the difference between S 0 and S ′ set in advance, and this value is necessary for calculating the planar position of the insertion jig 16 on the tube plate 11. If the accuracy is exceeded, ΔV = V 0 × (S 0 −S ′) / (S′−C 0 ) (5) from the equations (3) and (4).
As well as input to the data storage device 54 seeking to update the V 0 to V 0 + ΔV. In the data storage 54, the stored ultrasonic wave propagation speeds V 1 and V 2 in the vicinity of the tube plate 11 are updated and stored as V 1 + ΔV and V 2 + ΔV, respectively.
The ultrasonic transceiver mounting base 61 is mounted on the tube plate 11 on the side where the first ultrasonic transmitter 26 is not disposed with respect to the reception holder 27 disposed on the tube plate 11. Is not limited to the tube plate 11. Here, the vicinity of the tube sheet is a range in which an ultrasonic wave propagation velocity is ensured so as not to affect the calculation accuracy of the planar position of the insertion jig 16 on the tube plate 11, for example, one side is 1200 mm. When the error of the planar position in the square region is 10 mm or less, the temperature difference with the temperature on the tube sheet is within ± 3 ° C.

続いて、治具位置演算器56の作用について詳細に説明する。
治具位置演算器56では、第1の超音波送信子26から送信された超音波パルスが第1、第2の超音波受信子28、29に到達するのに要する伝搬時間t1、t2をそれぞれ求める。ここで、伝搬時間t1、t2は、対となって高速ADボード52から出力される第1の超音波送信子TRG出力信号と第1、第2の超音波受信子出力信号から、各信号の立ち上がり時刻の時間差として求まる。
Next, the operation of the jig position calculator 56 will be described in detail.
In the jig position calculator 56, the propagation times t 1 and t 2 required for the ultrasonic pulse transmitted from the first ultrasonic transmitter 26 to reach the first and second ultrasonic receivers 28 and 29 are obtained. For each. Here, the propagation times t 1 and t 2 are calculated from the first ultrasonic transmitter TRG output signal and the first and second ultrasonic receiver output signals output from the high-speed AD board 52 as a pair. It is obtained as the time difference of the rise time of the signal.

なお、各信号の立ち上がり時刻の時間差を求める場合、第1の超音波送信子26から送信されている超音波パルスから連続して、例えば30〜80個の超音波パルスを送信し第1、第2の超音波受信子28、29で受信して、各超音波パルス毎に第1の超音波送信子TRG出力信号と第1、第2の超音波受信子出力信号との立ち上がり時刻の差を求め、これらの平均値をそれぞれ第1の超音波送信子TRG出力信号と第1、第2の超音波受信子出力信号の立ち上がり時刻の時間差としている。これによって、周囲の雑音の影響を低くして伝搬時間t1、t2が正確に求まる。そして、伝搬時間t1、t2が求まると、データ記憶器54に格納されているV1、C1、V2、およびC2を用いて、第1の超音波送信子26と第1の超音波受信子28までの距離W1をV11+C1から、第1の超音波送信子26と第2の超音波受信子29までの距離W2をV22+C2から算出する。 In addition, when calculating | requiring the time difference of the rise time of each signal, for example, 30-80 ultrasonic pulses are transmitted continuously from the ultrasonic pulse transmitted from the 1st ultrasonic transmitter 26, and the 1st, 1st The difference between the rising times of the first ultrasonic transmitter TRG output signal and the first and second ultrasonic receiver output signals is received by the two ultrasonic receivers 28 and 29 for each ultrasonic pulse. These average values are used as the time difference between the rising times of the first ultrasonic transmitter TRG output signal and the first and second ultrasonic receiver output signals, respectively. As a result, the influence of ambient noise is reduced and the propagation times t 1 and t 2 can be accurately obtained. Then, when the propagation times t 1 and t 2 are obtained, the first ultrasonic transmitter 26 and the first ultrasonic transmitter 26 are connected to the first ultrasonic transmitter 26 using the V 1 , C 1 , V 2 and C 2 stored in the data memory 54. The distance W 1 to the ultrasonic receiver 28 is calculated from V 1 t 1 + C 1 , and the distance W 2 to the first ultrasonic transmitter 26 and the second ultrasonic receiver 29 is calculated from V 2 t 2 + C 2. To do.

一方、第1、第2の超音波受信子28、29の距離Lは固定されているので、例えば、第1の超音波受信子28の受音面30の中心位置を測定上の原点O’とすると、第1の超音波送信子26の中心位置の座標(x,y)は、
x=(W1 2−y21/2・・・・・(6)
y=(W1 2−W2 2+L2)/2L・・・・・(7)
と求まる。
On the other hand, since the distance L between the first and second ultrasonic receivers 28 and 29 is fixed, for example, the central position of the sound receiving surface 30 of the first ultrasonic receiver 28 is set to the origin O ′ for measurement. Then, the coordinates (x, y) of the center position of the first ultrasonic transmitter 26 are
x = (W 1 2 −y 2 ) 1/2 (6)
y = (W 1 2 −W 2 2 + L 2 ) / 2L (7)
It is obtained.

ここで、受信子ホルダー27の突起37を予め決められた位置の各伝熱管12内に挿入することで第1、第2の超音波受信子28、29を管板11上の予め決められた位置に配置することができるので、例えば、第1の超音波受信子28の受音面30の中心位置、すなわち、測定上の原点O’と第2の超音波受信子29が固定された第2の受信子固定台34の突起37が挿入されている伝熱管12の中心位置との位置関係が求まる。一方、第2の受信子固定台34の突起37が挿入されている伝熱管12の中心位置は、管板11上の伝熱管12の管配列位置データから求まるので、管配列位置データの作成時に決めた原点Oに対する第1の超音波送信子26の中心位置座標(X,Y)が決定される。従って、管配列位置データと第1の超音波送信子26の中心位置座標(X,Y)を対比することにより、拡管検査を行なう伝熱管12の管板11上での位置が、第1の超音波送信子26が設けられている挿入治具16の管板11上での平面的位置を求めることにより、決定できる。 Here, by inserting the projection 37 of the receiver holder 27 into each heat transfer tube 12 at a predetermined position, the first and second ultrasonic receivers 28 and 29 are determined on the tube plate 11 in advance. For example, the center position of the sound receiving surface 30 of the first ultrasonic receiver 28, that is, the measurement origin O ′ and the second ultrasonic receiver 29 are fixed. The positional relationship with the center position of the heat transfer tube 12 in which the protrusion 37 of the second receiver fixing base 34 is inserted is obtained. On the other hand, since the center position of the heat transfer tube 12 into which the projection 37 of the second receiver fixing base 34 is inserted is obtained from the tube arrangement position data of the heat transfer tube 12 on the tube plate 11, the tube arrangement position data is created. The center position coordinates (X, Y) of the first ultrasonic transmitter 26 with respect to the determined origin O are determined. Therefore, by comparing the tube arrangement position data with the center position coordinates (X, Y) of the first ultrasonic transmitter 26, the position of the heat transfer tube 12 on which the tube expansion inspection is performed on the tube plate 11 is the first. This can be determined by obtaining a planar position on the tube plate 11 of the insertion jig 16 provided with the ultrasonic transmitter 26.

そして、拡管検査を行なう毎に拡管検査を行なう伝熱管12の管板11上で位置を決定して位置決定データを求め、拡管検査が終了する毎に検査が終了した伝熱管12の管板11上での位置を伝熱管位置データとして治具位置演算器56内に順次記憶するようにすると、拡管検査を行なう伝熱管12の位置決定データおよび治具位置演算器56内に格納された拡管検査済みの伝熱管位置データを表示手段22を介して表示器23に出力させると、例えば、管板11上に配列された伝熱管12の状態を示す伝熱管配置図に、拡管検査済みの伝熱管位置と拡管検査中の伝熱管位置をそれぞれ重ね合わせて表示することができる。 Then, each time the pipe expansion inspection is performed, the position is determined on the tube plate 11 of the heat transfer tube 12 to be subjected to the pipe expansion inspection to obtain position determination data, and the pipe plate 11 of the heat transfer pipe 12 that has been inspected every time the pipe expansion inspection is completed. When the above positions are sequentially stored in the jig position calculator 56 as heat transfer pipe position data, the position determination data of the heat transfer pipe 12 to be subjected to the pipe expansion inspection and the pipe expansion inspection stored in the jig position calculator 56. When the heat exchanger tube position data that has already been output is output to the display 23 via the display means 22, for example, the heat transfer tube that has undergone pipe expansion inspection is shown in the heat transfer tube layout diagram showing the state of the heat transfer tubes 12 arranged on the tube plate 11. The position and the position of the heat transfer tube during the pipe expansion inspection can be superimposed and displayed.

続いて、本発明の一実施の形態に係る拡管確認検査装置10の使用方法について説明する。
図5(A)〜(C)に示すように、管板11上で検査を行なおうとする領域の外側の予め決められた位置の伝熱管12内に、受信子ホルダー27の第1、第2の受信子固定台33、34の裏面側に設けられた突起37をそれぞれ挿入して、受信子ホルダー27を管板11上に配置する。また、受信ホルダー27に近接する外側に存在する伝熱管12に挿入部材68を挿入して管板11上に超音波送受信子取付け台61を配置する。
Then, the usage method of the pipe expansion confirmation test | inspection apparatus 10 which concerns on one embodiment of this invention is demonstrated.
As shown in FIGS. 5A to 5C, the first and second receiver holders 27 are placed in the heat transfer tube 12 at a predetermined position outside the region to be inspected on the tube plate 11. The receiver holders 27 are arranged on the tube plate 11 by inserting the protrusions 37 provided on the back side of the receiver receiver fixing bases 33 and 34. In addition, the insertion member 68 is inserted into the heat transfer tube 12 existing outside near the receiving holder 27, and the ultrasonic transceiver mounting base 61 is disposed on the tube plate 11.

次いで、インタフェースユニット51のDAC回路50の出力信号および基準クロック44からのトリガー信号が、図示しない切替スイッチを操作して音速演算設定器55に入力されるようにする。そして、挿入治具16を管板11上で移動させて第1の超音波送信子26を第1の超音波受信子28から距離S1となる第1の位置、距離S2となる第2の位置に配置してそれぞれ超音波パルスを送信し、音速演算設定器55で第1の超音波受信子28に到達するまでの時間を測定することで、第1の超音波送信子26と第1の超音波受信子28の間に成立する(1)式における超音波の伝搬速度V1および定数C1を求める。また、第1の超音波送信子26を第2の超音波受信子29から距離S1となる第1の位置、距離S2となる第2の位置に配置してそれぞれ超音波パルスを送信し、音速演算設定器55で第2の超音波受信子29に到達するまでの時間を測定することで、第1の超音波送信子26と第2の超音波受信子29の間に成立する(1)式におけるV2、C2を求める。そして、得られたV1、C1、V2、およびC2をデータ記憶器54に入力する。更に、音速補正器55aで、第2の超音波送信子38から第3、第4の超音波受信子39、62に向けて超音波パルスが送信して超音波パルスの伝搬に要する時間を測定し、第2の超音波送信子38から第3の超音波受信子39までの距離S0、第2の超音波送信子38から第4の超音波受信子62までの距離U0から、(2)式における超音波の伝搬速度V0、定数C0を求める。 Next, the output signal of the DAC circuit 50 of the interface unit 51 and the trigger signal from the reference clock 44 are input to the sound speed calculation setting unit 55 by operating a changeover switch (not shown). The insertion jig 16 tube sheet 11 the first ultrasonic transmitter transducer 26 is moved on the first first position where the distance S 1 from the ultrasonic receiver 28, the distance S 2 become the second The ultrasonic wave is transmitted to the first ultrasonic wave transmitter 26 and the first ultrasonic wave transmitter 26 and the first ultrasonic wave transmitter 26 by measuring the time required to reach the first ultrasonic wave receiver 28 by the sound speed calculation setting unit 55. The ultrasonic wave propagation velocity V 1 and constant C 1 in the equation (1) established between one ultrasonic receiver 28 are obtained. In addition, the first ultrasonic transmitter 26 is arranged at a first position at a distance S 1 and a second position at a distance S 2 from the second ultrasonic receiver 29 to transmit ultrasonic pulses, respectively. By measuring the time until the second ultrasonic receiver 29 is reached by the sound speed calculation setting unit 55, the first ultrasonic transmitter 26 and the second ultrasonic receiver 29 are established ( 1) Find V 2 and C 2 in the equation. The obtained V 1 , C 1 , V 2 , and C 2 are input to the data memory 54. Further, the sound speed corrector 55a measures the time required for propagation of the ultrasonic pulse by transmitting the ultrasonic pulse from the second ultrasonic transmitter 38 to the third and fourth ultrasonic receivers 39 and 62. From the distance S 0 from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39 and the distance U 0 from the second ultrasonic transmitter 38 to the fourth ultrasonic receiver 62, ( The ultrasonic wave propagation velocity V 0 and constant C 0 in the equation (2) are obtained.

続いて、インタフェースユニット51のDAC回路50の出力信号および基準クロック44からのトリガー信号が、図示しない切替スイッチを操作して治具位置演算器56に入力されるようにする。そして、挿入治具16の渦流センサー出入口24を検査を開始する伝熱管12の端部に当接させて、渦流センサー13を伝熱管12内に挿入する。なお、符号57は、第1の超音波送信子26にパルサー42からの超音波パルス発生信号を伝える超音波送信ケーブルである。そして、挿入治具16に設けられた検査開始スイッチ58を入れると、挿入/巻取制御器19に設定された条件で挿入/巻取器18が駆動し、渦流探傷ケーブル17を測定長さだけ押し出した後、一定速度で引き戻す。これによって、渦流センサー13の伝熱管12内での移動が開始され拡管検査が始まる。 Subsequently, the output signal of the DAC circuit 50 of the interface unit 51 and the trigger signal from the reference clock 44 are input to the jig position calculator 56 by operating a changeover switch (not shown). Then, the eddy current sensor inlet / outlet 24 of the insertion jig 16 is brought into contact with the end of the heat transfer tube 12 to start the inspection, and the eddy current sensor 13 is inserted into the heat transfer tube 12. Reference numeral 57 denotes an ultrasonic transmission cable that transmits an ultrasonic pulse generation signal from the pulser 42 to the first ultrasonic transmitter 26. Then, when the inspection start switch 58 provided in the insertion jig 16 is turned on, the insertion / winding device 18 is driven under the conditions set in the insertion / winding controller 19, and the eddy current flaw detection cable 17 is moved by the measurement length. Pull out at a constant speed after extrusion. Thereby, the movement of the eddy current sensor 13 in the heat transfer tube 12 is started, and the pipe expansion inspection is started.

そして、音速補正器55aでは、引き続いて、第2の超音波送信子38から第3の超音波受信子39に向けて送信されている超音波パルスの伝搬時間を求めて、伝搬速度V0から第2の超音波送信子38と第3の超音波受信子39の間の距離S0が確認される。そして、伝搬時間が−Δt変化すると、第2の超音波送信子38と第3の超音波受信子39の間の距離S0がS’に変化するので、S0とS’の差の絶対値が予め設定された値の範囲(5〜10mmの範囲で、例えば8mm)を超えた場合、ΔV(=V0×(S0−S’)/(S’−C0))を求めて、データ記憶器54に入力するとともに、V0をV0+ΔVに更新する。なお、データ記憶器54では、記憶していた管板11近傍の超音波伝搬速度V1、V2をそれぞれV1+ΔV、V2+ΔVに更新して記憶する。 Then, the sound speed corrector 55a obtains the propagation time of the ultrasonic pulse transmitted from the second ultrasonic transmitter 38 to the third ultrasonic receiver 39, and determines the propagation speed V 0. A distance S 0 between the second ultrasonic transmitter 38 and the third ultrasonic receiver 39 is confirmed. When the propagation time changes by -Δt, the distance S 0 between the second ultrasonic transmitter 38 and the third ultrasonic receiver 39 changes to S ′, so the absolute difference between S 0 and S ′ is absolute. If the value exceeds a preset value range (5 mm to 10 mm, for example, 8 mm), ΔV (= V 0 × (S 0 −S ′) / (S′−C 0 )) is obtained. And V 0 is updated to V 0 + ΔV. In the data memory 54, the stored ultrasonic propagation velocities V 1 and V 2 near the tube plate 11 are updated and stored as V 1 + ΔV and V 2 + ΔV, respectively.

基準クロック44を介してパルサー42を駆動させて第1の超音波送信子26から第1、第2の超音波受信子28、29に向けて超音波パルスを送信するようにすると、第1の超音波送信子26および第1、第2の超音波受信子28、29の位置関係は、図6(A)に示すようになり、表示手段22を介して表示器23に表示される第1、第2の超音波受信子28、29が受信した超音波パルスの受信信号は図6(B)に示される波形画像59となる。そして、治具位置演算器56で第1の超音波送信子26から送信された超音波パルスが第1、第2の超音波受信子28、29に到達するのに要する伝搬時間t1、t2が求まるので、データ記憶器54に格納されているV1、C1、V2、およびC2を用いて、第1の超音波送信子26と第1の超音波受信子28までの距離W1がV11+C1として、第1の超音波送信子26と第2の超音波受信子29までの距離W2がV22+C2として求まり、第1の超音波受信子28の受音面30の中心位置を測定上の原点O’としたときの第1の超音波送信子26の中心位置の座標(x,y)が求まる。 When the pulser 42 is driven via the reference clock 44 to transmit ultrasonic pulses from the first ultrasonic transmitter 26 to the first and second ultrasonic receivers 28 and 29, the first The positional relationship between the ultrasonic transmitter 26 and the first and second ultrasonic receivers 28 and 29 is as shown in FIG. 6 (A), and is displayed on the display 23 via the display means 22. The reception signals of the ultrasonic pulses received by the second ultrasonic receivers 28 and 29 become a waveform image 59 shown in FIG. Then, the propagation times t 1 and t required for the ultrasonic pulse transmitted from the first ultrasonic transmitter 26 by the jig position calculator 56 to reach the first and second ultrasonic receivers 28 and 29 are as follows. 2 is obtained, the distance between the first ultrasonic transmitter 26 and the first ultrasonic receiver 28 using V 1 , C 1 , V 2 , and C 2 stored in the data memory 54. W 1 is V 1 t 1 + C 1 , the distance W 2 between the first ultrasonic transmitter 26 and the second ultrasonic receiver 29 is determined as V 2 t 2 + C 2 , and the first ultrasonic receiver The coordinates (x, y) of the center position of the first ultrasonic transmitter 26 when the center position of the 28 sound receiving surfaces 30 is the origin O ′ for measurement are obtained.

ここで、受信子ホルダー27の突起37を予め決められた位置の各伝熱管12内に挿入すると、測定上の原点O’と第2の超音波受信子29が固定された第2の受信子固定台34の突起37が挿入されている伝熱管12の中心位置との位置関係が決まり、第2の受信子固定台34の突起37が挿入されている伝熱管12の中心位置は、管板11上の伝熱管12の管配列位置データから求まるので、管配列位置データの作成時に決めた原点Oに対する第1の超音波送信子26の中心位置座標(X,Y)が決定される。従って、表示手段22を用いて、第1の超音波送信子26の中心位置座標(X,Y)のデータと管板11上の伝熱管12の伝熱管配置図とを重ね合わせて表示すると、表示器23には、図6(B)に示される伝熱管配置画像60が得られる。 Here, when the protrusion 37 of the receiver holder 27 is inserted into each heat transfer tube 12 at a predetermined position, the measurement origin O ′ and the second ultrasonic receiver 29 are fixed to the second receiver. The positional relationship with the center position of the heat transfer tube 12 in which the protrusion 37 of the fixing base 34 is inserted is determined, and the center position of the heat transfer tube 12 in which the protrusion 37 of the second receiver fixing base 34 is inserted is the tube plate. 11, the center position coordinates (X, Y) of the first ultrasonic transmitter 26 with respect to the origin O determined at the time of creating the tube array position data are determined. Therefore, when the data of the center position coordinates (X, Y) of the first ultrasonic transmitter 26 and the heat transfer tube layout diagram of the heat transfer tube 12 on the tube plate 11 are superimposed and displayed using the display means 22, A heat transfer tube arrangement image 60 shown in FIG. 6B is obtained on the display 23.

そして、基準クロック44を停止させて第1、第2の超音波送信子26、38からの超音波パルスの送信を停止させるとともに、第1の超音波送信子26の中心位置座標(X,Y)と管配列位置データとを対比して、第1の超音波送信子26の中心位置座標(X,Y)と精度範囲内で一致する、中心位置座標を有する伝熱管を特定し、この伝熱管12の伝熱管位置データを拡管検査済伝熱管として治具位置演算器56内に記憶する。 Then, the reference clock 44 is stopped to stop the transmission of ultrasonic pulses from the first and second ultrasonic transmitters 26 and 38, and the center position coordinates (X, Y) of the first ultrasonic transmitter 26 are stopped. ) And the tube arrangement position data, the heat transfer tube having the center position coordinate that matches the center position coordinate (X, Y) of the first ultrasonic transmitter 26 within the accuracy range is specified. The heat transfer tube position data of the heat tube 12 is stored in the jig position calculator 56 as a tube transfer inspected heat transfer tube.

渦流センサー13が、伝熱管12の端部側の拡管検査を開始した際の初期位置に戻り、図示しない検査完了ランプが点灯したことが確認されると、挿入治具16の渦流センサー出入口24を拡管検査が終了した伝熱管12から離脱させ、渦流センサー出入口24を次に検査しようとする伝熱管12の端部に当接させ、渦流センサー13を伝熱管12内に挿入する。そして、検査開始スイッチ58を入れて拡管検査を開始する。以上の操作を繰り返すことにより、拡管検査を行なう毎に、拡管検査を行なう伝熱管12の管板11上で位置が求まり、拡管検査が終了した伝熱管12の伝熱管位置データが治具位置演算器56内に順次記憶される。従って、拡管検査が進行した場合、治具位置演算器56内の拡管検査を行なっている伝熱管12の位置決定データおよび拡管検査済みの伝熱管位置データを表示手段22を介して表示器23に出力させると、図7に示すように、管板11上に配列された伝熱管12の状態を示す伝熱管配置図に、拡管検査済みの伝熱管位置と拡管検査中の伝熱管位置をそれぞれ重ね合わせて表示することができ、拡管検査の進行状況を容易に確認することができる。 When the eddy current sensor 13 returns to the initial position when the tube expansion inspection on the end side of the heat transfer tube 12 is started and it is confirmed that an inspection completion lamp (not shown) is lit, the eddy current sensor inlet / outlet 24 of the insertion jig 16 is opened. The heat transfer tube 12 is separated from the heat transfer tube 12 that has been subjected to the pipe expansion inspection, the vortex sensor inlet / outlet 24 is brought into contact with the end of the heat transfer tube 12 to be inspected next, and the vortex sensor 13 is inserted into the heat transfer tube 12. Then, the inspection start switch 58 is turned on to start the pipe expansion inspection. By repeating the above operation, every time the pipe expansion inspection is performed, the position is obtained on the tube plate 11 of the heat transfer pipe 12 to be subjected to the pipe expansion inspection, and the heat transfer pipe position data of the heat transfer pipe 12 after the pipe expansion inspection is calculated as the jig position calculation. The data are sequentially stored in the device 56. Therefore, when the pipe expansion inspection proceeds, the position determination data of the heat transfer pipe 12 performing the pipe expansion inspection in the jig position calculator 56 and the heat transfer pipe position data subjected to the pipe expansion inspection are displayed on the display unit 23 via the display means 22. When output, as shown in FIG. 7, the heat transfer tube layout showing the state of the heat transfer tubes 12 arranged on the tube plate 11 is overlapped with the heat transfer tube position after the pipe expansion inspection and the heat transfer pipe position during the pipe expansion inspection. They can be displayed together, and the progress of the tube expansion inspection can be easily confirmed.

以上、本発明の実施の形態を説明したが、本発明は、この実施の形態に限定されるものではなく、発明の要旨を変更しない範囲での変更は可能であり、前記したそれぞれの実施の形態や変形例の一部または全部を組み合わせて本発明の拡管確認検査装置を構成する場合も本発明の権利範囲に含まれる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this embodiment, The change in the range which does not change the summary of invention is possible, Each above-mentioned embodiment is possible. A case where the tube expansion confirmation inspection apparatus of the present invention is configured by combining some or all of the forms and the modifications is also included in the scope of the right of the present invention.

本発明の一実施の形態に係る拡管確認検査装置のブロック図である。It is a block diagram of the pipe expansion confirmation inspection apparatus concerning one embodiment of the present invention. 同拡管確認検査装置で使用する第1、第2の超音波受信子を取付ける受信子ホルダーの説明図である。It is explanatory drawing of the receiver holder which attaches the 1st, 2nd ultrasonic receiver used with the said pipe expansion confirmation inspection apparatus. 同拡管確認検査装置で使用する第2の超音波送信子および第3、第4の超音波受信子を取付ける超音波送受信子取付け台の説明図である。It is explanatory drawing of the ultrasonic transmitter-receiver mounting base which attaches the 2nd ultrasonic transmitter used in the said pipe expansion confirmation test | inspection apparatus and the 3rd, 4th ultrasonic receiver. 同拡管確認検査装置のデータ処理器のブロック図である。It is a block diagram of the data processor of the pipe expansion confirmation inspection apparatus. (A)〜(C)は同拡管確認検査装置の使用方法の説明図である。(A)-(C) are explanatory drawings of the usage method of the said pipe expansion confirmation test | inspection apparatus. (A)は同拡管確認検査装置の挿入治具位置演算部における処理内容の説明図、(B)は第1の超音波送信子の管板上での位置および第1、第2の超音波受信子でそれぞれ受信された超音波パルスの状況を表示した表示器画面の説明図である。(A) is explanatory drawing of the processing content in the insertion jig position calculating part of the said pipe expansion confirmation inspection apparatus, (B) is the position on the tube board of a 1st ultrasonic transmitter, and 1st, 2nd ultrasonic waves. It is explanatory drawing of the indicator screen which displayed the condition of the ultrasonic pulse each received with the receiver. 同拡管確認検査装置による拡管検査状況を表示した表示器画面の説明図である。It is explanatory drawing of the display screen which displayed the pipe expansion test | inspection status by the said pipe expansion confirmation inspection apparatus.

符号の説明Explanation of symbols

10:拡管確認検査装置、11:管板、12:伝熱管、13:渦流センサー、14:拡管検査手段、15:伝熱管測位手段、16:挿入治具、17:渦流探傷ケーブル、18:挿入/巻取器、19:挿入/巻取制御器、20:渦流探傷器、21:拡管接合判定部、22:表示手段、23:表示器、24:渦流センサー出入口、25:渦流探傷ケーブル出入口、26:第1の超音波送信子、27:受信子ホルダー、28:第1の超音波受信子、29:第2の超音波受信子、30:受音面、31、32:固定部材、33:第1の受信子固定台、34:第2の受信子固定台、35:ねじ孔、36:連結部材、36a:把手、37:突起、37a:長孔、38:第2の超音波送信子、39:第3の超音波受信子、40:挿入治具位置演算部、41:データ処理器、42、43:パルサー、44:基準クロック、45〜47:プリアンプ、48:マルチプレクサー、49:フィルター、50:DAC回路、51:インタフェースユニット、52:高速ADボード、53:データ入力器、54:データ記憶器、55:音速演算設定器、55a:音速補正器、56:治具位置演算器、57:超音波送信ケーブル、58:検査開始スイッチ、59:波形画像、60:伝熱管配置画像、61:超音波送受信子取付け台、62:第4の超音波受信子、63、64、65:取付け部材、66:取付けねじ、67:把手、68:挿入部材、69:長孔、70:プリアンプ 10: tube expansion confirmation inspection device, 11: tube sheet, 12: heat transfer tube, 13: eddy current sensor, 14: tube expansion inspection means, 15: heat transfer tube positioning means, 16: insertion jig, 17: eddy current flaw detection cable, 18: insertion / Winding device, 19: insertion / winding controller, 20: eddy current flaw detector, 21: expansion joint determination unit, 22: display means, 23: indicator, 24: eddy current sensor inlet / outlet, 25: eddy current flaw detection cable inlet / outlet, 26: first ultrasonic transmitter, 27: receiver holder, 28: first ultrasonic receiver, 29: second ultrasonic receiver, 30: sound receiving surface, 31, 32: fixing member, 33 : First receiver fixing base, 34: second receiver fixing base, 35: screw hole, 36: connecting member, 36a: handle, 37: protrusion, 37a: long hole, 38: second ultrasonic transmission Child, 39: third ultrasonic wave receiver, 40: insertion jig position calculation unit, 41: data Data processor, 42, 43: pulser, 44: reference clock, 45-47: preamplifier, 48: multiplexer, 49: filter, 50: DAC circuit, 51: interface unit, 52: high-speed AD board, 53: data input , 54: data storage device, 55: sound speed calculation setting device, 55a: sound speed correction device, 56: jig position calculation device, 57: ultrasonic transmission cable, 58: inspection start switch, 59: waveform image, 60: transmission Heat tube arrangement image, 61: ultrasonic transceiver mounting base, 62: fourth ultrasonic receiver, 63, 64, 65: mounting member, 66: mounting screw, 67: handle, 68: insertion member, 69: long hole , 70: Preamplifier

Claims (3)

熱交換器の管板に拡管接合された多数の伝熱管の接合状況を個々に検査する渦流センサーを備える拡管検査手段と、前記拡管検査手段によって検査された前記伝熱管の位置を測定する伝熱管測位手段とを有する拡管確認検査装置であって、
前記伝熱管測位手段は、前記拡管検査手段の一部であって、前記伝熱管に挿入する前記渦流センサーを支持する挿入治具に取付けられて該挿入治具の周囲に超音波パルスを送信する第1の超音波送信子と、
前記管板上または該管板を延長した平面上の予め決められた位置に隙間を有して配置され、前記第1の超音波送信子から送信された超音波パルスを受信する第1、第2の超音波受信子と、
前記管板の近傍に設けられた第2の超音波送信子と、
前記管板の近傍に隙間を有して配置され、前記第2の超音波送信子から送信された超音波パルスを受信する第3、第4の超音波受信子と、
前記第1の超音波送信子から送信された超音波パルスが前記第1、第2の超音波受信子に到達するのに要する伝搬時間t1、t2をそれぞれ求め、予め求めて記憶していた前記管板近傍の超音波伝搬速度および前記伝搬時間t1、t2から前記挿入治具の前記管板上での平面的位置を演算し記憶する挿入治具位置演算部とを有し、
しかも、前記挿入治具位置演算部には、前記第2の超音波送信子から送信された超音波パルスが前記第3、第4の超音波受信子に到達するのに要する伝搬時間t3、t4の測定から前記管板近傍の超音波伝搬速度の変化有無を確認し、該管板近傍の超音波伝搬速度が変化した場合は該管板近傍の新たな超音波伝搬速度を求め、記憶していた該管板近傍の超音波伝搬速度を該管板近傍の新たな超音波伝搬速度に更新させる音速補正器が設けられていることを特徴とする拡管確認検査装置。
Tube expansion inspection means having an eddy current sensor that individually inspects the joining state of a large number of heat transfer tubes that are expanded and joined to the tube plate of the heat exchanger, and a heat transfer tube that measures the position of the heat transfer tube inspected by the tube expansion inspection means A pipe expansion confirmation inspection device having positioning means,
The heat transfer tube positioning means is a part of the tube expansion inspection means, and is attached to an insertion jig that supports the eddy current sensor inserted into the heat transfer pipe, and transmits an ultrasonic pulse around the insertion jig. A first ultrasonic transmitter;
First and second receiving ultrasonic pulses transmitted from the first ultrasonic transmitter are arranged with a gap at a predetermined position on the tube plate or on a plane extending from the tube plate. Two ultrasonic receivers;
A second ultrasonic transmitter provided in the vicinity of the tube sheet;
Third and fourth ultrasonic receivers arranged with a gap in the vicinity of the tube plate and receiving ultrasonic pulses transmitted from the second ultrasonic transmitter;
Propagation times t 1 and t 2 required for the ultrasonic pulse transmitted from the first ultrasonic transmitter to reach the first and second ultrasonic receivers are respectively determined and stored in advance. An insertion jig position calculation unit that calculates and stores a planar position of the insertion jig on the tube plate from the ultrasonic wave propagation velocity in the vicinity of the tube plate and the propagation times t 1 and t 2 ;
In addition, the insertion jig position calculation unit has a propagation time t 3 required for the ultrasonic pulse transmitted from the second ultrasonic transmitter to reach the third and fourth ultrasonic receivers, From the measurement of t 4, the presence or absence of a change in the ultrasonic propagation velocity near the tube plate is confirmed. If the ultrasonic propagation velocity near the tube plate changes, a new ultrasonic propagation velocity near the tube plate is obtained and stored. A tube expansion confirmation inspection apparatus, comprising: a sound speed corrector for updating the ultrasonic propagation velocity in the vicinity of the tube plate to a new ultrasonic propagation velocity in the vicinity of the tube plate.
請求項1記載の拡管確認検査装置において、前記第1および第2の超音波受信子に無指向性マイクロホンを使用することを特徴とする拡管確認検査装置。 2. The tube expansion confirmation inspection device according to claim 1, wherein an omnidirectional microphone is used for the first and second ultrasonic receivers. 請求項2記載の拡管確認検査装置において、前記無指向性マイクロホンの受音面を互いに、該受音面の中心を結ぶ中心連結線に直交する直線に対して、内側に40度以上50度以下傾けて配置することを特徴とする拡管確認検査装置。 3. The tube expansion confirmation inspection apparatus according to claim 2, wherein the sound receiving surfaces of the omnidirectional microphones are 40 degrees or more and 50 degrees or less inward with respect to a straight line perpendicular to a central connection line that connects the centers of the sound receiving surfaces. Tube expansion confirmation inspection device characterized by being placed at an angle.
JP2006254686A 2006-09-20 2006-09-20 Tube expansion confirmation inspection device Expired - Fee Related JP4969191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006254686A JP4969191B2 (en) 2006-09-20 2006-09-20 Tube expansion confirmation inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006254686A JP4969191B2 (en) 2006-09-20 2006-09-20 Tube expansion confirmation inspection device

Publications (2)

Publication Number Publication Date
JP2008076180A true JP2008076180A (en) 2008-04-03
JP4969191B2 JP4969191B2 (en) 2012-07-04

Family

ID=39348417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006254686A Expired - Fee Related JP4969191B2 (en) 2006-09-20 2006-09-20 Tube expansion confirmation inspection device

Country Status (1)

Country Link
JP (1) JP4969191B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153804A (en) * 2010-01-28 2011-08-11 Shin Nippon Hihakai Kensa Kk Method and device for inspecting capillary of heat exchanger
WO2016010917A1 (en) * 2014-07-12 2016-01-21 Halliburton Energy Services, Inc. Using an array of sensors between two transmitters in an eddy current logging environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264509A (en) * 1992-03-17 1993-10-12 Osaka Gas Co Ltd Positioning method for operation and operating apparatus of multitube-type heat exchanger and method and apparatus for position detection
JPH11174032A (en) * 1997-12-10 1999-07-02 Toshiba Corp Device and method for inspection of intermediate heat exchanger
JP2000346977A (en) * 1999-06-01 2000-12-15 Mitsubishi Heavy Ind Ltd Heat exchanger heat transfer tube inspection device
JP2002529746A (en) * 1998-11-10 2002-09-10 エレクトロニクス フォア イメージング インコーポレイテッド Transmission pen positioning system
JP2003340534A (en) * 2002-05-27 2003-12-02 Toshiba Corp Tube expanding method for multitube heat exchanger, tube expanding managing method, tube expanding inspecting and displaying device and tube expanding defect alarming device
JP2007067436A (en) * 2006-11-06 2007-03-15 Renesas Technology Corp Method for manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264509A (en) * 1992-03-17 1993-10-12 Osaka Gas Co Ltd Positioning method for operation and operating apparatus of multitube-type heat exchanger and method and apparatus for position detection
JPH11174032A (en) * 1997-12-10 1999-07-02 Toshiba Corp Device and method for inspection of intermediate heat exchanger
JP2002529746A (en) * 1998-11-10 2002-09-10 エレクトロニクス フォア イメージング インコーポレイテッド Transmission pen positioning system
JP2000346977A (en) * 1999-06-01 2000-12-15 Mitsubishi Heavy Ind Ltd Heat exchanger heat transfer tube inspection device
JP2003340534A (en) * 2002-05-27 2003-12-02 Toshiba Corp Tube expanding method for multitube heat exchanger, tube expanding managing method, tube expanding inspecting and displaying device and tube expanding defect alarming device
JP2007067436A (en) * 2006-11-06 2007-03-15 Renesas Technology Corp Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153804A (en) * 2010-01-28 2011-08-11 Shin Nippon Hihakai Kensa Kk Method and device for inspecting capillary of heat exchanger
WO2016010917A1 (en) * 2014-07-12 2016-01-21 Halliburton Energy Services, Inc. Using an array of sensors between two transmitters in an eddy current logging environment
US10338265B2 (en) 2014-07-12 2019-07-02 Halliburton Energy Services, Inc. Using an array of sensors between two transmitters in an eddy current logging environment

Also Published As

Publication number Publication date
JP4969191B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP2007187593A (en) Inspection device for piping and inspection method for piping
JP4630992B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus used therefor
JP2008064540A (en) Piping inspection method using guide wave and piping inspection device
JP2013088240A5 (en)
JP4969191B2 (en) Tube expansion confirmation inspection device
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
NO20150256A1 (en) An apparatus and method for inspecting a pipeline
JP2009097942A (en) Noncontact-type array probe, and ultrasonic flaw detection apparatus and method using same
JP3713007B2 (en) Ultrasonic inspection equipment
JP2020106344A (en) Calculation method and calculation device of gas sound speed
JP2012185078A (en) Ultrasonic probe and method for measuring circumferential length of tubular object
JP2010261872A (en) Ultrasonic flowmeter
JP2014062758A (en) Method and device for nondestructive inspection using guide wave
JP5886780B2 (en) Sheet wave inspection method and apparatus
JPWO2017086150A1 (en) Apparatus and method for measuring deposit thickness using ultrasonic waves
JP6458167B2 (en) Pipe thickness measuring apparatus and method using ultrasonic waves
WO2018135242A1 (en) Inspection method
JP2005345138A (en) Method of ultrasound flaw detection and method of measuring thickness of material quality changed part
JP2010175519A (en) Ultrasonic inspection device
JPH0727551A (en) Tube inner shape inspecting device
JP5661025B2 (en) In-tube ultrasonic flaw detector
JP2007327841A (en) Apparatus for measuring thickness
JP4389218B2 (en) Method and apparatus for measuring angle of refraction in oblique ultrasonic inspection of tube, and method and apparatus for oblique ultrasonic inspection of tube using the same
JP5243229B2 (en) Ultrasonic flaw detection method and probe unit for ultrasonic flaw detector
JP2001004601A (en) Ultrasonic sensor, and flaw detection inspecting apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees