JPS6124462B2 - - Google Patents

Info

Publication number
JPS6124462B2
JPS6124462B2 JP54110555A JP11055579A JPS6124462B2 JP S6124462 B2 JPS6124462 B2 JP S6124462B2 JP 54110555 A JP54110555 A JP 54110555A JP 11055579 A JP11055579 A JP 11055579A JP S6124462 B2 JPS6124462 B2 JP S6124462B2
Authority
JP
Japan
Prior art keywords
vapor
discharge
vapor deposition
magnetic field
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54110555A
Other languages
Japanese (ja)
Other versions
JPS5635768A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP11055579A priority Critical patent/JPS5635768A/en
Publication of JPS5635768A publication Critical patent/JPS5635768A/en
Publication of JPS6124462B2 publication Critical patent/JPS6124462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Description

【発明の詳細な説明】 本発明は金属あるいは非金属物質を蒸発、気化
させ被処理体または型に凝着させる蒸着装置の改
良に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a vapor deposition apparatus that evaporates or vaporizes a metal or non-metallic substance and deposits it on an object to be processed or a mold.

従来の蒸着装置は真空排気した容器中において
蒸着物質を加熱し蒸発させ、その蒸気圧により被
処理体の表面に蒸着させるものであるが、蒸気圧
を高めることが容易でなく、発生した蒸気を効率
良く被処理体に凝着できないので、単位時間当り
の蒸着量を大きく向上さることができなかつた。
Conventional vapor deposition equipment heats and evaporates the vapor deposition material in an evacuated container, and uses the vapor pressure to deposit it on the surface of the object to be processed. However, it is not easy to increase the vapor pressure, and the generated vapor is Since it could not be efficiently adhered to the object to be treated, it was not possible to greatly improve the amount of vapor deposition per unit time.

本発明は効率の良い蒸着により蒸着速度を高め
るために提案されたもので、蒸着物質の、電極間
の放電,粉粒体の衝撃放電,可溶断線の放電爆発
等の手段により蒸着物質の蒸気を発生し、これに
被処理体の方向に磁界を作用させて衝突溶着させ
ることを特徴とする。
The present invention was proposed in order to increase the deposition rate through efficient vapor deposition. It is characterized by generating a magnetic field and applying a magnetic field to the object in the direction of the object to perform collision welding.

以下図面の一実施例により本発明を説明する。
第1図において、1は処理容器で、排気ポンプ2
が設けられ、内部を約10-3〜10-5Torr程度に排気
することができ、またポンプ3からの気体(不活
性ガス,空気等)の供給により大気圧、または大
気圧以上に加圧雰囲気とすることができる。4は
容器中に挿入された穿孔電極,5が対向電極で、
両電極が容器壁に絶縁して固定され、所要の間隔
をもつて対向する。6は蒸着材の可溶断ワイヤ
で、穿孔電極4を通して送給され、先端が対向電
極5に近接もしくは接触するまで供給され、衝撃
電流により放電爆発せしめられる。7は蒸着しよ
うとする被処理体または型で、電極間のワイヤ6
に対向するよう容器1内壁面に固定される。8は
衝撃コンデンサで、高電圧電源10により所要の
エネルギが蓄えられ、スイツチ9による放電起動
により電極4,5間のワイヤ6に放電する。11
はワイヤ6を挾んで被処理体7と反対側に配置し
た磁界発生コイルで、電極4,5と並列に接続さ
れ、コンデンサ8による衝撃電流によつて励磁さ
れ、ワイヤ6の溶断放電に同期して励磁され磁界
を発生するよう設けられる。たヾ12は位相制御
用のコンデンサで、この位相差制御によりコイル
11の励磁をワイヤ6の放電より遅らせ、丁度ワ
イヤ放電によつて金属蒸気が発生したときに磁界
が発生作用するよう位相差制御が行なわれる。
The present invention will be explained below with reference to an embodiment of the drawings.
In Fig. 1, 1 is a processing container, and an exhaust pump 2
The inside can be evacuated to approximately 10 -3 to 10 -5 Torr, and the pressure can be increased to atmospheric pressure or above atmospheric pressure by supplying gas (inert gas, air, etc.) from pump 3. It can be an atmosphere. 4 is a perforated electrode inserted into the container, 5 is a counter electrode,
Both electrodes are insulated and fixed to the container wall and face each other with a required spacing. Reference numeral 6 denotes a fusible wire made of vapor deposition material, which is fed through the perforated electrode 4 until its tip comes close to or comes into contact with the counter electrode 5, and is caused to explode due to an impact current. 7 is the object or mold to be vapor-deposited, and the wire 6 between the electrodes is
It is fixed to the inner wall surface of the container 1 so as to face it. Reference numeral 8 denotes an impact capacitor in which required energy is stored by a high-voltage power supply 10, and discharged to the wire 6 between the electrodes 4 and 5 when discharge is started by a switch 9. 11
is a magnetic field generating coil placed on the opposite side of the object to be processed 7 with the wire 6 in between, connected in parallel with the electrodes 4 and 5, excited by the impact current from the capacitor 8, and synchronized with the fusing discharge of the wire 6. It is provided so that it is excited by the magnetic field and generates a magnetic field. Ta 12 is a capacitor for phase control, and by this phase difference control, the excitation of the coil 11 is delayed from the discharge of the wire 6, and the phase difference control is performed so that a magnetic field is generated just when metal vapor is generated by the wire discharge. will be carried out.

以上の装置において、蒸着を行なうに際して先
づ真空ポンプ5によつて容器1内を排気し、所定
の真空状態に保つか真空排気後にポンプ3からア
ルゴン,窒素,炭酸ガス,空気等のガスを供給し
て所定のガス雰囲気とし、または真空排気しても
しくは排気なしにポンプ3から加圧気体供給によ
り加圧雰囲気とする。ワイヤ6は電極4の穿孔を
挿通して先端が対向電極5に近接もしくは接触す
る状態として、そこに所要の充電されたコンデン
サ8をスイツチ9の導通によつて放電させる。放
電衝撃電流は電極4,5間のワイヤ6を流れ、ワ
イヤ6は衝撃的に溶断爆発し、ブラズマを発生
し、多量の金属蒸気を発生する。金属蒸気はワイ
ヤ6を中心にして周囲に飛散するが、このときコ
ンデンサ12の位相制御によつてコイル11が励
磁され磁界を形成作用し、前記ワイヤ6の爆発に
より発生した金属蒸気に作用し、周囲に飛散しよ
うとする蒸気を被処理体7方向に移動作用させ
る。この磁界作用により金属蒸気の被処理体7に
向けての移動が起り、移動加速させて被処理体7
を飛着せしめる。
In the above apparatus, when performing vapor deposition, the inside of the container 1 is first evacuated by the vacuum pump 5, and either the chamber 1 is kept in a predetermined vacuum state, or after the vacuum is evacuated, a gas such as argon, nitrogen, carbon dioxide, air, etc. is supplied from the pump 3. to create a predetermined gas atmosphere, or to create a pressurized atmosphere by evacuation or by supplying pressurized gas from the pump 3 without evacuation. The wire 6 is inserted through the hole in the electrode 4 so that its tip is close to or in contact with the counter electrode 5, and the capacitor 8 charged therein is discharged by the conduction of the switch 9. The discharge shock current flows through the wire 6 between the electrodes 4 and 5, and the wire 6 fuses and explodes due to the impact, generating plasma and a large amount of metal vapor. The metal vapor scatters around the wire 6, but at this time, the coil 11 is excited by the phase control of the capacitor 12 to form a magnetic field, which acts on the metal vapor generated by the explosion of the wire 6, The steam that is about to scatter around is moved in the direction of the object to be processed 7. Due to the action of this magnetic field, the metal vapor moves toward the object 7 to be processed, accelerates the movement, and moves the vapor toward the object 7 to be processed.
to be blown away.

雰囲気の気体の種類,気圧等は蒸着目的によつ
て異なり、任意の金属蒸着ができ、雰囲気ガスと
の化合物蒸着ができる。従来処理雰囲気は真空蒸
着しか処理できなかつたものが、蒸気発生手段が
異なるため任意の雰囲気で蒸着できることが大き
な特徴である。金属蒸気の発生が前記のように蒸
着材ワイヤの衝撃放電爆発によつて行なわれるた
め瞬間的に多量の蒸気が発生でき、ワイヤ6の電
極4,5間への供給とコンデンサ8の充放電の繰
返し制御によつて多量の蒸気発生を繰返し発生で
き蒸着速度を従来の加熱蒸着に比較して飛躍的に
向上させることができる。そして発生したプラズ
マ,金属蒸気に対して被処理体7に向う磁界を形
成作用し、発生プラズマの飛散を防止し効率的に
被処理体7に向けて移動させ加速衝突させて溶着
させるから蒸着処理が有効にでき蒸着速度を高め
高能率の蒸着処理効果を期待できる。
The type of gas in the atmosphere, the atmospheric pressure, etc. vary depending on the purpose of vapor deposition, and any metal can be vapor-deposited, and compounds with the atmospheric gas can be vapor-deposited. Conventionally, only vacuum deposition was possible in the processing atmosphere, but a major feature of this method is that vapor deposition can be performed in any atmosphere because the vapor generation means is different. Since metal vapor is generated by the impact discharge explosion of the vapor deposition material wire as described above, a large amount of vapor can be generated instantaneously, and it is necessary to supply the wire 6 between the electrodes 4 and 5 and charge/discharge the capacitor 8. Through repetitive control, a large amount of steam can be repeatedly generated, and the deposition rate can be dramatically improved compared to conventional heating deposition. Then, a magnetic field is applied to the generated plasma and metal vapor toward the object 7 to be processed, preventing the generated plasma from scattering and efficiently moving it toward the object 7 to be processed, causing it to accelerate and collide with the object 7 for welding, resulting in the vapor deposition process. can be effectively achieved, increasing the deposition rate and providing highly efficient deposition processing effects.

なお第1図におけるワイヤの放電爆発を、スイ
ツチ9を予じめ閉じてワイヤ6に送りを与えるこ
とにより、ワイヤ6先端を対向電極5に近接送り
して放電さるように制御してもよい。
Note that the discharge explosion of the wire in FIG. 1 may be controlled by closing the switch 9 in advance and feeding the wire 6 so that the tip of the wire 6 is fed close to the counter electrode 5 and discharge occurs.

第2図は金属プラズマ,蒸気発生の他の実施例
で、穿孔電極13,14を対向して設け、これに
蒸着材のワイヤ(線,帯等)15,16を送給し
てワイヤ先端で放電させるようにしたもので、こ
れによつても前記と同様の高速蒸着処理をするこ
とができる。ワイヤ15,16間の放電を制御す
るのに、放電雰囲気圧の制御を行なうことによつ
て任意に行なうことができる。また電極間放電は
ワイヤに限らず、棒状,板状,ブロツク状の任意
の電極を用いることができる。
Fig. 2 shows another embodiment of metal plasma and steam generation, in which perforated electrodes 13 and 14 are provided facing each other, and wires (wires, bands, etc.) 15 and 16 of vapor deposition material are fed to these, and the tips of the wires are The device is designed to generate electric discharge, and with this, high-speed vapor deposition processing similar to that described above can be performed. The discharge between the wires 15 and 16 can be controlled as desired by controlling the discharge atmosphere pressure. Further, the interelectrode discharge is not limited to wires, but any rod-shaped, plate-shaped, or block-shaped electrode can be used.

第3図は蒸着材の粉末,粒子を原料とするもの
で、17がその粉粒体で、フオイルまたは皿18
の上に載積され、これに対向電極19を近接対向
して放電爆発させる。コンデンサによる衝撃放電
により粉粒体17は爆発飛散し、分割して微粉子
化し、プラズマ及び金属蒸気を多量に発生させる
ことができる。この方式によるときは粉粒体17
に異種金属,非金属を混合して蒸着することが容
易にできる。
In Figure 3, the raw material is powder or particles of vapor deposition material, 17 is the powder and granules, and foil or plate 18
The counter electrode 19 is placed close to the electrode 19 to cause a discharge explosion. Due to the impact discharge from the capacitor, the granular material 17 is exploded and scattered, divided into fine particles, and a large amount of plasma and metal vapor can be generated. When using this method, powder 17
It is easy to mix and deposit different metals and non-metals.

以上は一実施例により説明したが、蒸着処理の
雰囲気は任意の気体の任意の気圧の雰囲気で処理
することができ、材質,目的により任に選択制御
することができる。磁界形成装置は金属蒸気の発
生用放電に位相差をもつて、放電により所要の金
属蒸気群が形成されたときに衝撃磁場を発生して
前記金属蒸気群に作用させ被処理体に向けて加速
衝突させるようにしたから、磁場が金属蒸気発生
時の放電に作用して悪影響を与えるようなことが
なく、多量の微細な金属蒸気の安定な発生が可能
である。また磁場の強さは放電により発生する金
属蒸気の被処理体への蒸着が良好に行なわれるよ
うに制御し、発生蒸気の移動,速度を制御して蒸
着処理することが有効である。
Although the above description has been made based on one embodiment, the atmosphere for the vapor deposition process can be an atmosphere of any gas at any pressure, and can be arbitrarily selected and controlled depending on the material and purpose. The magnetic field forming device has a phase difference in the discharge for generating metal vapor, and when a desired metal vapor group is formed by the discharge, it generates an impact magnetic field to act on the metal vapor group and accelerate it toward the object to be processed. Since the metal vapors are collided, the magnetic field does not affect the discharge during metal vapor generation and has no adverse effect, and a large amount of fine metal vapor can be stably generated. Further, it is effective to control the strength of the magnetic field so that the metal vapor generated by the discharge is well deposited on the object to be processed, and to control the movement and speed of the generated vapor to perform the vapor deposition process.

本発明は以上のように、電極間放電,粉粒体の
放電爆発,ワイヤの放電爆発等によつて蒸着材の
蒸気を発生するから多量の蒸気が瞬間的に得ら
れ、放電の繰返しにより繰返して多量の蒸気を発
生でき、発生する蒸気に被処理体に向う磁界を形
成作用したから蒸気の飛着凝着効果を高めること
ができ、蒸気速度を向上して高能率の蒸着加工を
行なうことができる。また処理雰囲気は任意に制
御することが可能で蒸着目的に応じて最良の雰囲
気で蒸着処理することができ、多目的蒸着を可能
ならしめる。
As described above, the present invention generates vapor of the deposition material by interelectrode discharge, discharge explosion of powder and granular material, discharge explosion of wire, etc., so a large amount of vapor can be obtained instantaneously, and it can be repeatedly produced by repeating the discharge. A large amount of steam can be generated, and the generated steam acts to form a magnetic field toward the object to be processed, which increases the effect of vapor adhesion and adhesion, increasing the steam speed and performing highly efficient vapor deposition processing. I can do it. Further, the processing atmosphere can be arbitrarily controlled, and the vapor deposition process can be carried out in the best atmosphere depending on the purpose of vapor deposition, making multi-purpose vapor deposition possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例構成図、第2図は他
の実施例の一部構成図、第3図もまた他の実施例
の一部構成図である。 1は処理容器、2は真空ポンプ、3は気体供給
ポンプ、4,5は電極、6はワイヤ、7は被処理
体、8は衝撃コンデンサ、11は磁界形成コイ
ル、12は位相制御コンデンサである。
FIG. 1 is a block diagram of one embodiment of the present invention, FIG. 2 is a partial block diagram of another embodiment, and FIG. 3 is also a partial block diagram of another embodiment. 1 is a processing container, 2 is a vacuum pump, 3 is a gas supply pump, 4 and 5 are electrodes, 6 is a wire, 7 is an object to be processed, 8 is an impact capacitor, 11 is a magnetic field forming coil, and 12 is a phase control capacitor. .

Claims (1)

【特許請求の範囲】[Claims] 1 所要雰囲気を形成する処理容器と、該処理容
器内に送給される放電電極、放電粉粒体、または
放電ワイヤの蒸着材と、該蒸着材に衝撃放電を作
用して多量の蒸気を発生する衝撃電源と、前記蒸
着材の発生蒸気に対して被処理体または型に向か
う磁界を形成作用する磁界形成装置と、該磁界形
成装置が励磁コイルと該コイルに前記衝撃電源に
よる衝撃放電に対して所定の位相差をもつて励磁
電流を通電する回路とから成ることを特徴とする
蒸着装置。
1. A processing container that forms the required atmosphere, a vapor deposition material such as a discharge electrode, discharge powder, or discharge wire that is fed into the processing container, and a large amount of vapor generated by applying an impact discharge to the vapor deposition material. a magnetic field forming device that acts on the generated vapor of the vapor deposition material to form a magnetic field directed toward the object to be processed or the mold; 1. A vapor deposition apparatus comprising: a circuit through which an excitation current is passed with a predetermined phase difference.
JP11055579A 1979-08-30 1979-08-30 Vapor depositing apparatus Granted JPS5635768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11055579A JPS5635768A (en) 1979-08-30 1979-08-30 Vapor depositing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11055579A JPS5635768A (en) 1979-08-30 1979-08-30 Vapor depositing apparatus

Publications (2)

Publication Number Publication Date
JPS5635768A JPS5635768A (en) 1981-04-08
JPS6124462B2 true JPS6124462B2 (en) 1986-06-11

Family

ID=14538790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11055579A Granted JPS5635768A (en) 1979-08-30 1979-08-30 Vapor depositing apparatus

Country Status (1)

Country Link
JP (1) JPS5635768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015888A1 (en) * 1989-06-16 1990-12-27 Litovskaya Selskokhozyaistvennaya Akademia Installation for applying coatings on articles by explosion of a conductor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136775A (en) * 1982-02-08 1983-08-13 Hitachi Ltd Method and device for vapor deposition
JPS59146623U (en) * 1983-03-22 1984-10-01 東海ゴム工業株式会社 elastic joints
IL74360A (en) * 1984-05-25 1989-01-31 Wedtech Corp Method of coating ceramics and quartz crucibles with material electrically transformed into a vapor phase
JPS62250168A (en) * 1986-04-23 1987-10-31 Hitachi Ltd Microwave plasma film forming device
AUPM365594A0 (en) * 1994-02-02 1994-02-24 Australian National University, The Method and apparatus for coating a substrate
US7608151B2 (en) * 2005-03-07 2009-10-27 Sub-One Technology, Inc. Method and system for coating sections of internal surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990015888A1 (en) * 1989-06-16 1990-12-27 Litovskaya Selskokhozyaistvennaya Akademia Installation for applying coatings on articles by explosion of a conductor

Also Published As

Publication number Publication date
JPS5635768A (en) 1981-04-08

Similar Documents

Publication Publication Date Title
US3092165A (en) Magnetic forming method and apparatus therefor
US6280802B1 (en) Method of forming film of ultrafine particles
US7557511B2 (en) Apparatus and method utilizing high power density electron beam for generating pulsed stream of ablation plasma
US4005956A (en) Powder activation and integrated powder metallurgy system
US3738828A (en) Method of powder activation
US4035604A (en) Methods and apparatus for finishing articles
JPS6124462B2 (en)
US3932760A (en) Powder activation in an inert atmosphere
JPH06511518A (en) Solid surface treatment method and device
US5640009A (en) Fast atom beam source
US3212914A (en) Electric pulse coating process and apparatus
US5216241A (en) Fast atom beam source
EP0639939A1 (en) Fast atom beam source
RU2707673C1 (en) Method of forming coating from cubic tungsten carbide
RU2205893C2 (en) Method and apparatus for plasma chemical deposition of coatings
JPH09511028A (en) Deposition using pulsed ion beam
RU2479668C1 (en) Ion-plasma alloying method of product surface
RU2339735C1 (en) Method for film coating
JP3409874B2 (en) Ion plating equipment
JPH05320886A (en) Ion plating device
JP3186777B2 (en) Plasma source
RU2607398C2 (en) Method of coatings application by plasma spraying and device for its implementation
JP2001081555A (en) Thin film deposition device and shunting arc discharge electrode device
JP2006344387A (en) Method and device for electron beam surface reformation
US3198927A (en) Electromagnetic compression apparatus