JPS61244273A - Control power source - Google Patents

Control power source

Info

Publication number
JPS61244273A
JPS61244273A JP60084403A JP8440385A JPS61244273A JP S61244273 A JPS61244273 A JP S61244273A JP 60084403 A JP60084403 A JP 60084403A JP 8440385 A JP8440385 A JP 8440385A JP S61244273 A JPS61244273 A JP S61244273A
Authority
JP
Japan
Prior art keywords
voltage
current
signal
phase
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60084403A
Other languages
Japanese (ja)
Inventor
Isamu Ukai
鵜飼 勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60084403A priority Critical patent/JPS61244273A/en
Publication of JPS61244273A publication Critical patent/JPS61244273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To obtain an inexpensive and economic control power source by using a photocoupler to detect an output voltage, and forming the function of fourquadrant calculations of an operational amplifier. CONSTITUTION:An AC power source 1 is converted by a rectifier 2 to a DC, smoothed by a condenser 3, and supplied to a load 4. A switch element 5 is connected in parallel with a rectifier 2A, and an energy from a load side is regenerated to a power source 1 side. Further, the R-phase, S-phase current reference I*R, I*S are compared by current controllers 13A, 13B with current detection signals IR, IS from current detectors 7A, 7B of the phases, and controlled to a target voltage VSR while controlling the current with switch elements 5 to 100% of power factor. In this case, current reference generators 24A, 24B and a voltage controller 23 are provided, a photocoupler for detecting the output voltage Vc is provided in the controller 23, a triangular wave signal VTR is compared with an error signal, and a pulse-width-modulated pulselike switching signal VSW is output to the generators 24A, 24B.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、パルス幅変調制御の可能な電源装置&:係り
、特に高調波電流が減少するように入力電流を制御する
電流基準発生回路を備えた制御電源装置に関するもので
ある。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a power supply device capable of pulse width modulation control, and particularly includes a current reference generation circuit that controls input current so as to reduce harmonic current. This invention relates to a controlled power supply device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

主回路に大容量コンデンサを有する電源装置の一般的な
構成を第8図に示す。
FIG. 8 shows a general configuration of a power supply device having a large-capacity capacitor in the main circuit.

電源lより供給された交流は整流回路2C:より整流さ
れ直流に変換される。コンデンサ3は直流電圧を平滑す
るためのものである。
The alternating current supplied from the power supply l is rectified by a rectifier circuit 2C and converted into direct current. The capacitor 3 is for smoothing the DC voltage.

このような回路の入力電流1..は第9図(b) 、 
(C)に示すような波形の電流Iasとなる。なお、同
図において、(b)は負荷が小さい場合、(C)は負荷
が大きい場合を示し、(、)は比較のためにコンデンサ
3がない場合を示したものである。
Input current of such a circuit1. .. is shown in Figure 9(b),
The current Ias has a waveform as shown in (C). In the figure, (b) shows the case where the load is small, (C) shows the case where the load is large, and (,) shows the case where the capacitor 3 is not provided for comparison.

このようにコンデンサ入力形の電源装置は非常に大きな
高調波成分を含み電源側に悪影響を与える。それを防止
するため人力°電流1..が第9図(d)に示したよう
な正弦波に近い電流で力率が1となるような制御電源が
開発されている。第10図はその装置の従来構成を示す
In this way, a capacitor input type power supply device contains very large harmonic components, which adversely affects the power supply side. To prevent this, human power ° current 1. .. A control power source has been developed in which the power factor is 1 with a current close to a sine wave as shown in FIG. 9(d). FIG. 10 shows the conventional configuration of the device.

この装置は電源の入側に挿入されたりアクドル6と整流
素子2人に並列に接続されたスイッチ素子5のスイッチ
ング動作により低次高調波が少なく、力率が1の正弦波
に近い第9図(d)に示すような入力電流1.。とする
ことができる。
This device has few low-order harmonics due to the switching operation of the switching element 5, which is inserted at the input side of the power supply and connected in parallel to the accelerator 6 and the two rectifying elements, and the power factor is close to a sine wave with a power factor of 1 (Fig. 9). Input current 1 as shown in (d). . It can be done.

負荷4は、たとえばインバータの場合、直流を交流に変
換するスイッチ群を介した誘導電動機であり、レオナー
ドの場合はトランジスタ等のスイッチング素子を介した
直流電動機である。
The load 4 is, for example, in the case of an inverter, an induction motor via a group of switches that convert direct current to alternating current, and in the case of Leonard, a direct current motor via switching elements such as transistors.

この負荷側からのエネルギーを電源側に回生ずることが
可能である。
It is possible to regenerate this energy from the load side to the power source side.

負荷電圧VCは電圧検出回路8により電圧信号V8にと
して検出され、電圧制御回路10にて電圧基準信号Vs
m  と比較増幅される。一方、電源電圧同期回路11
からB相とS相の電源電圧に同期した正弦波の信号軸と
egが出力され1乗算器12人。
The load voltage VC is detected as a voltage signal V8 by the voltage detection circuit 8, and the voltage reference signal Vs is detected by the voltage control circuit 10.
It is compared with m and is amplified. On the other hand, the power supply voltage synchronization circuit 11
A sine wave signal axis and EG synchronized with the B-phase and S-phase power supply voltages are output from the 12 multipliers.

12Bにより電圧制御回路10の出力”RRと乗算され
8相と8相の電流基準信号へ“、■−を発生する。
12B is multiplied by the output "RR" of the voltage control circuit 10 to generate current reference signals of 8 phases and 8 phases.

B相及びS相の各電流基準I−,I−はそれぞれB相及
びS相の相電圧に同期させて発生させており力率が1と
なるように入力電流11.が制御される。すなわち、各
相゛礁流基準I−及びニーは電流制御回路13A 、 
13Bにより、各相の電流検出回路7A、7Bで検出さ
れた電流検出信号”it 工llと比較増幅され、几相
、S相の電圧制御信号v1  とv8となり、各スイッ
チング素子5のスイッチング制御を行い力率100 %
の電流制御を行いなから目標電圧V、、” C’JIE
圧制御を行っている。
The current references I- and I- of the B-phase and S-phase are generated in synchronization with the phase voltage of the B-phase and S-phase, respectively, and the input current 11. is generated so that the power factor becomes 1. is controlled. That is, each phase's reef current reference I- and knee are current control circuits 13A,
13B compares and amplifies the current detection signals detected by the current detection circuits 7A and 7B of each phase, and generates voltage control signals v1 and v8 of the phase and S phases, which control the switching of each switching element 5. Power factor: 100%
If the current control is performed, the target voltage V, ”C'JIE
Pressure control is performed.

しかし、どの従来の装置シーは、゛電源(−同期した正
弦波の電流基準を発生させるための乗算器や電圧検出回
路を必要とし、特に乗算器は四象限演算が必要であり高
価である。また、電圧検出回路は主回路の電圧を絶縁し
て制御回路で使用可能な電圧に変換するためにチョッパ
回路と絶縁トランスを必要としやはり高価なものとなっ
ており、本制御方式を経済的に実現する妨げとなってい
た。
However, all conventional devices require multipliers and voltage sensing circuits to generate a synchronized sinusoidal current reference, and the multipliers in particular require four-quadrant operations and are expensive. In addition, the voltage detection circuit requires a chopper circuit and an isolation transformer to isolate the voltage of the main circuit and convert it into a voltage that can be used by the control circuit, making it expensive as well. This was a hindrance to its realization.

〔発明の目的〕[Purpose of the invention]

本発明は、上記問題点に鑑みてなされたもので、その目
的はPWM制御により入力電流を正弦波状に制御して高
調波成分を減少し力率を100 %に制御するようにし
た電源装置において、電流基準の生成、および電圧検出
の構成に改良を加え一般的な電子部品でそれらを安価(
;実現し経済的な制御電源を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a power supply device in which the input current is controlled in a sinusoidal manner by PWM control to reduce harmonic components and control the power factor to 100%. , improved current reference generation, and voltage detection configurations and made them inexpensive (
The objective is to realize and provide an economical control power source.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成するために交流電圧が入力され
直流側に平滑コンデンサを有しPWM制御により交流と
直流間の変換を行う電力変換器を備えた装置において、
出力電圧に応じた入力電流が流れ所定の範囲の出力電圧
(ユ比例した電圧検出信号を出力するホトカプラを備え
た電圧検出回路と、電圧基準信号と前記電圧検出信号を
比較しその電圧偏差に応じた誤差信号を出力する電圧制
御手段と、前記誤差信号と三角波信号を比較して前記誤
差信号に応じた比率のオン、オフ指令を出力する比較手
段と、前記交流電圧に同期した同期信号と前記オン、オ
フ指令1;より前記誤差信号に応じた電流基準信号を出
力する電流基準生成手段を備え、これらの機能を一般的
な電子部品で安価に実現した経済的な制御電源装置であ
る。
In order to achieve the above object, the present invention provides a device equipped with a power converter to which an AC voltage is input, a smoothing capacitor is provided on the DC side, and converts between AC and DC using PWM control.
A voltage detection circuit includes a photocoupler that outputs a voltage detection signal proportional to the output voltage within a predetermined range through which an input current flows according to the output voltage, and a voltage detection circuit that compares the voltage reference signal with the voltage detection signal and responds to the voltage deviation. voltage control means for outputting an error signal in synchronization with the AC voltage; comparison means for comparing the error signal and the triangular wave signal and outputting an on/off command with a ratio according to the error signal; This is an economical control power supply device that is equipped with a current reference generation means that outputs a current reference signal according to the error signal based on the on/off command 1, and that these functions are realized at low cost using common electronic components.

〔発明の実施例〕[Embodiments of the invention]

本発明の制御電源による一実施例の構成図を第1図ζ;
示す。
A configuration diagram of an embodiment of the control power supply of the present invention is shown in FIG.
show.

本発明の特徴部は′1流基準生成部24A、24Bと電
圧制御回路にあり、他は従来と同じ構成要素で同一符号
を付しである。なお、17は電圧制御部に付随した三角
波発生回路である。
Characteristic parts of the present invention reside in the '1st flow reference generation sections 24A and 24B and the voltage control circuit, and the other components are the same as those of the conventional system and are given the same reference numerals. Note that 17 is a triangular wave generation circuit attached to the voltage control section.

雀圧制御部田は′磁圧基準V□ と制御電源の出力電圧
vcを比較し、その偏差信号と三角波信号v1を比較し
娼差に応じてパルス幅変調されたパルス状のスイッチン
グ信号VS+Wを出力するつ電流基準生成手段人、24
Bでは電源電圧同期回路11から出力された正弦波の同
期信号exe”aと上記スイッチング信号v8W l二
より前記偏差信号と同期信号の積に比例した″繊流基準
信号工R+ 工a  を出力し、以下従来と同様に力率
100%の電流制御が行なわれる。
The pressure control unit compares the magnetic pressure reference V□ and the output voltage vc of the control power supply, compares the deviation signal with the triangular wave signal v1, and generates a pulsed switching signal VS+W whose pulse width is modulated according to the difference. Output current reference generation means, 24
At B, a sine wave synchronization signal ex"a outputted from the power supply voltage synchronization circuit 11 and the switching signal v8W12 output a "flux reference signal R+ ka" which is proportional to the product of the deviation signal and the synchronization signal. , thereafter, current control with a power factor of 100% is performed as in the conventional case.

本発明の特徴部である電圧制御部23.m流基準生成部
24人、 24Bの具体的な実施例を第2図に示す。電
流基準生成部は24Aのみを示したが24Bも同様の回
路で構成される。
Voltage control unit 23, which is a feature of the present invention. FIG. 2 shows a concrete example of the m-flow standard generation section 24B. Although only the current reference generation section 24A is shown, the current reference generation section 24B is also configured with a similar circuit.

電圧制御部nは出力磁圧VCに応じた信号V8mを検出
する電圧検出回路5.電圧基準V、−と信号vanを比
較増幅する比例積分の電圧制御回路10、およびその出
力信号EIIILと三角波信号VTRを比較して信号B
凰ml一応じた時間幅でオン、オフ指令V、Wを出力す
る比較器16で構成される。
The voltage control unit n includes a voltage detection circuit 5. which detects a signal V8m corresponding to the output magnetic pressure VC. A proportional-integral voltage control circuit 10 compares and amplifies the voltage reference V, - and the signal van, and compares the output signal EIIIL with the triangular wave signal VTR to obtain the signal B.
It is composed of a comparator 16 that outputs on/off commands V and W with a time width corresponding to the time range.

電流基準生成部24Aは同期信号amの極性を反対にす
る反転増幅器21人、同期信号emまたは−eBが入力
されロー二くスイッチングを有した加算増m 器18A
 、オン−オフ指令v8Wによりオン、オフするスイツ
f19人、20人および位相遅れを補償する位相補償増
幅器22人で構成される。
The current reference generation unit 24A includes 21 inverting amplifiers that reverse the polarity of the synchronizing signal am, and a summing amplifier 18A that receives the synchronizing signal em or -eB and has low switching.
, consists of 19 and 20 switches f, which are turned on and off by an on-off command v8W, and 22 phase compensation amplifiers, which compensate for phase delays.

電圧検出回路5はホトカプラ25gを使用し、発光ダイ
オードの゛電流を制御し第3図の入出力特性(;示すよ
うに入力電圧VCの所定の制御範囲において入力電圧V
Cに比例した出力電圧Vl1mを得るように構成する。
The voltage detection circuit 5 uses a photocoupler 25g to control the current of the light emitting diode, and as shown in the input/output characteristics of FIG.
The configuration is such that an output voltage Vl1m proportional to C is obtained.

この装置は三相回路であり、R,8相の電流な制御する
事により、T相の電流は必然的に決定される。T相の電
圧制御信号’IT”は合成回路144二よりV−とV−
を合成して生成される。
This device is a three-phase circuit, and by controlling the R and 8 phase currents, the T phase current is inevitably determined. The T-phase voltage control signal 'IT' is output from the combining circuit 1442 to V- and V-.
It is generated by composing.

各電圧制御信号N’R” * vB” g v、”(ア
ナログ信号)はPWM回路(パルス幅変調回路) 15
人、 15B。
Each voltage control signal N'R'' * vB'' g v,'' (analog signal) is a PWM circuit (pulse width modulation circuit) 15
Person, 15B.

15c l二より、オン・オフ指令(ディジタル信号)
i二変換される。
15c From l2, on/off command (digital signal)
i2 converted.

上記オン−オフ指令により、スイッチング素子5が制御
され、負荷側電圧VCが電圧基準信号V1m”に相当す
る値となる様に、かつ入力電流が正弦波に近く総合力率
が1となる様に制御される。
The switching element 5 is controlled by the above on-off command so that the load side voltage VC has a value corresponding to the voltage reference signal V1m'', and the input current is close to a sine wave and the overall power factor is 1. controlled.

以下、第2図の回路の動作を電圧制御回路10の出力電
圧B amの3つのモードについて第4図〜第6図を用
いて詳細4;説明する。
Hereinafter, the operation of the circuit shown in FIG. 2 will be explained in detail with respect to three modes of the output voltage Bam of the voltage control circuit 10 using FIGS. 4 to 6.

(1)  Eiiiが零(HILR= 0 )の場合三
角波信号vTILは正負対称に発生しておりこれと零電
圧が比較されるのでこの場合、比較器16から出力され
るオン・オフ指令Vffは第4図に示すようにオン指令
°1”とオフ指令“0”の発生時間T* * Tlが等
しくなる。このオン指令“1′″でスイッチ20人のみ
が閉路しオフ指令@0′″によりスイッチ19人のみが
閉路する。従って、加算増幅器18人に入力される電流
11sllは同図のように同期信号”Be−e&’二比
例して流入するが正と負が対称になり両者の平均は零と
なる。よって増幅器′ 器18Aの出力信号工、は零となり位相補償増幅器22
人の出力信号すなわち電流基準信号工、も零となる。な
お、三角波信号v1□の周波数は電源周波数に比較して
充分に高く設定され増幅器18人のフィルタ特性により
電流基準信号工、のリップル値はほとんど無視すること
ができる。
(1) When Eiii is zero (HILR=0) The triangular wave signal vTIL is generated symmetrically between positive and negative, and this is compared with the zero voltage, so in this case, the on/off command Vff output from the comparator 16 is As shown in Figure 4, the generation times T* * Tl of the ON command °1" and the OFF command "0" are equal. With this ON command "1'", only 20 switches are closed, and with the OFF command @0'" Only 19 switches are closed. Therefore, the current 11sll input to the 18 summing amplifiers flows in proportion to the synchronizing signal "Be-e&' as shown in the figure, but the positive and negative are symmetrical and the average of both becomes zero. Therefore, the amplifier' The output signal of the amplifier 18A becomes zero and the phase compensation amplifier 22
The human output signal, that is, the current reference signal generator, also becomes zero. Note that the frequency of the triangular wave signal v1□ is set sufficiently high compared to the power supply frequency, and the ripple value of the current reference signal can be almost ignored due to the filter characteristics of the 18 amplifiers.

(2) ERRが負(ERR< O,)の場合この場合
、比較器16から出力されるオン・オフ指令VaWは第
5図に示すように11”の時間T。
(2) When ERR is negative (ERR<O,) In this case, the on/off command VaW output from the comparator 16 is for a time T of 11'' as shown in FIG.

が1o@の時間T1より短かくなリスイッ?20人の閉
路時間よりスイッチ19人の閉路時間の方が長くなる。
Is it shorter than the time T1 of 1o@? The closing time for 19 switches is longer than the closing time for 20 switches.

従って入力電流t、 、 I!の平均値はスイッチ19
人の閉路により流れる電流!、の方が優位となり増幅器
18Aの出力 、+/は第5因のように同期信号eBの
逆相信号(−en)に比例した波形となる。
Therefore, the input current t, , I! The average value of switch 19
Current flowing due to human closed circuit! , is more dominant, and the output of the amplifier 18A, +/, has a waveform proportional to the negative phase signal (-en) of the synchronizing signal eB, as in the fifth factor.

但し、リップル抑制のフィルタ特性1;より同期信号e
8よりθだけ位相遅れが生じる。位相補償増幅器22A
はこの遅れ位相θの分を進み位相として補償しその出力
I−は同期信号e1と同相で信号”1Bに比例した信号
となる。
However, filter characteristic 1 for ripple suppression; synchronization signal e
8, a phase delay of θ occurs. Phase compensation amplifier 22A
compensates for this delayed phase θ as an advanced phase, and its output I- becomes a signal that is in phase with the synchronizing signal e1 and proportional to the signal "1B".

(3)  ER,が正(1iiIB > 0 )の場合
この場合、比較器16の出力であるオン・オフ指令v8
wは第6図に示すように”1”の時間T、が″O”の時
間T、より長くなリスイツy−20人の閉路時間の方が
スイッチ19Aの閉路時間より長くなる。
(3) When ER, is positive (1iiIB > 0) In this case, the on/off command v8 which is the output of the comparator 16
As shown in FIG. 6, w is a time T when it is "1" and a time T when it is "O".

従って、位相補償増幅器22人の出力IIL  は−2
)の場合と逆に同期信号eBの逆相で信号ERRに比例
した値となる。
Therefore, the output IIL of the 22 phase compensation amplifiers is -2
), the value is proportional to the signal ERR with the opposite phase of the synchronizing signal eB.

以上に説明したように位相補償増幅器22Aの出力信号
、すなわち電流基準信号In  は同期信号eBと電圧
制御増幅器10の出力信号ERRの積に比例した信号と
なる。また、第2図はR相の電流基準信号■8 につい
てのみ説明したがS相の電流基準信号■8  について
も同様にして発生させることができる。
As explained above, the output signal of the phase compensation amplifier 22A, that is, the current reference signal In, becomes a signal proportional to the product of the synchronization signal eB and the output signal ERR of the voltage control amplifier 10. Furthermore, although only the R-phase current reference signal 8 has been explained in FIG. 2, the S-phase current reference signal 8 can also be generated in the same manner.

なお、電流基準生成部冴人は第7図に示した回路図のよ
う(=オン・オフ指令VIWにより閉路するスイッチを
1個で行なうことができる。すなわち、加算増幅器18
Aの入力抵抗18ム1の抵抗値を18人、の1/2の値
とすることにより、スイッチ20人が閉路したとき反転
増幅器21人の出力信号から入力される逆相値の2倍の
正相値が入力され等測的に入力極性を反転させ同様の効
果を得ることができる。
Note that the current reference generation section Saeto can be operated with one switch that is closed by the on/off command VIW, as shown in the circuit diagram shown in FIG.
By setting the resistance value of the input resistor 1 of A to 1/2 of 18, when the 20 switches are closed, the inverse phase value input from the output signal of the 21 inverting amplifiers is twice A similar effect can be obtained by inputting a positive phase value and isometrically inverting the input polarity.

〔発明の効果〕 本発明によればPWM制御により入力電流を正弦波状に
制御して高調波成分を減少し力率を1004に制御する
゛電源装置(=おいて、出力電圧の検出にホトカプラを
用い、また、従来の四象限演算の可能な高価な乗算器の
機能を演算増幅器等の一般的な安価な電子部品で実現す
ることが可能となり経済的な制御電源装置を提供するこ
とができる。
[Effects of the Invention] According to the present invention, a photocoupler is used to detect the output voltage in a power supply device that controls the input current in a sinusoidal manner using PWM control to reduce harmonic components and control the power factor to 1004. In addition, the functions of conventional expensive multipliers capable of four-quadrant operations can be realized with common inexpensive electronic components such as operational amplifiers, and an economical control power supply device can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明の制御電源装置による一実施例の構成図
、第2図は第1図中の電圧制御部おおよび電流基準生成
部24A、24Bの詳細な回路図、第3図は′磁圧検出
回路5の入出力特性図、第4図〜第6図はW&2図の回
路を説明するための信号波形図、第7図は電流基準生成
部24Aの他の実施例図、第8図はコンデンサ入力形の
電源装置の一般的な構成図、第9図は第8図の回路の高
調波発生の問題点を説明するための電圧・電流波形図、
第10図は高調波成分を抑制するようにした従来の制御
電源装置の構成図である。 l・・・入力電源     2・・・整流回路2人・・
・整流素子    3・・・コンデンサ4・・・負荷 
      5・・・スイッチング素子6・・・リアク
トル    7人、7B・・パ電流検出器8.25・・
・電圧検出器  25B・・・ホトカプラ゛ 9・・・
基準電圧発生回路 10・・・電圧制御回路11・・・
電源電圧同期回路 12人、12B・・・乗算器13人
、 13B・・・電流制御回路 14・・・合成回路1
5A 、 15B 、 15c・・・パルス幅変調回路
16・・・比較比      17・・・三角波発生回
路18人・・・加算増幅器   19人、20人・・・
スイッチ21人・・・反転増幅器   22A・・・位
相補償増幅器n・・・電圧制御部    8人・・・電
流基準生成部(7317)代理人 弁理士 則 近憲 
佑 (ほか1名)第1図 第3図 第4図 第5図 第6図 第7図 第8図 第9図 第10図
FIG. 1 is a block diagram of an embodiment of the controlled power supply device according to the invention, FIG. 2 is a detailed circuit diagram of the voltage control section and current reference generation sections 24A and 24B in FIG. 1, and FIG. An input/output characteristic diagram of the magnetic pressure detection circuit 5, FIGS. 4 to 6 are signal waveform diagrams for explaining the circuit of FIGS. W&2, FIG. The figure is a general configuration diagram of a capacitor input type power supply device, and Figure 9 is a voltage/current waveform diagram to explain the problem of harmonic generation in the circuit of Figure 8.
FIG. 10 is a configuration diagram of a conventional controlled power supply device designed to suppress harmonic components. l...Input power supply 2...2 rectifier circuits...
- Rectifying element 3... Capacitor 4... Load
5... Switching element 6... Reactor 7 people, 7B... Power current detector 8.25...
・Voltage detector 25B...Photocoupler 9...
Reference voltage generation circuit 10... Voltage control circuit 11...
Power supply voltage synchronization circuit 12 people, 12B...multiplier 13 people, 13B...current control circuit 14...composition circuit 1
5A, 15B, 15c...Pulse width modulation circuit 16...Comparison ratio 17...Triangular wave generation circuit 18 people...Summing amplifier 19 people, 20 people...
21 switches...Inverting amplifier 22A...Phase compensation amplifier n...Voltage control unit 8 people...Current reference generation unit (7317) Agent Patent attorney Nori Chikanori
Yu (and 1 other person) Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 交流電圧が入力され直流側に平滑コンデンサを有しPW
M制御により交流と直流間の変換を行う電力変換器を備
えた装置において、出力電圧に応じた入力電流が流れ所
定の範囲の出力電圧に比例した電圧検出信号を出力する
ホトカプラを備えた電圧検出回路と、電圧基準信号と前
記電圧検出信号を比較しその電圧偏差に応じた誤差信号
を出力する電圧制御手段と、前記誤差信号と三角波信号
を比較して前記誤差信号に応じた比率のオン、オフ指令
を出力する比較手段と、前記交流電圧に同期した同期信
号と前記オン・オフ指令により前記誤差信号に応じた電
流基準信号を出力する電流基準生成手段を備えたことを
特徴とする制御電源装置。
AC voltage is input and there is a smoothing capacitor on the DC side.
In a device equipped with a power converter that converts between alternating current and direct current using M control, voltage detection is equipped with a photocoupler that allows an input current to flow according to the output voltage and outputs a voltage detection signal proportional to the output voltage within a predetermined range. a circuit, a voltage control means for comparing the voltage reference signal and the voltage detection signal and outputting an error signal according to the voltage deviation; and comparing the error signal and the triangular wave signal and turning on a ratio according to the error signal; A control power supply characterized by comprising a comparison means for outputting an off command, and a current reference generation means for outputting a current reference signal according to the error signal based on a synchronization signal synchronized with the alternating current voltage and the on/off command. Device.
JP60084403A 1985-04-22 1985-04-22 Control power source Pending JPS61244273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084403A JPS61244273A (en) 1985-04-22 1985-04-22 Control power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084403A JPS61244273A (en) 1985-04-22 1985-04-22 Control power source

Publications (1)

Publication Number Publication Date
JPS61244273A true JPS61244273A (en) 1986-10-30

Family

ID=13829618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084403A Pending JPS61244273A (en) 1985-04-22 1985-04-22 Control power source

Country Status (1)

Country Link
JP (1) JPS61244273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259419A (en) * 2012-02-20 2013-08-21 株式会社安川电机 Power regeneration device and power conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259419A (en) * 2012-02-20 2013-08-21 株式会社安川电机 Power regeneration device and power conversion device
JP2013172513A (en) * 2012-02-20 2013-09-02 Yaskawa Electric Corp Power supply regeneration device and power conversion device
US8860341B2 (en) 2012-02-20 2014-10-14 Kabushiki Kaisha Yaskawa Denki Power regeneration device and power conversion device

Similar Documents

Publication Publication Date Title
JP3123079B2 (en) Control device for PWM control converter
JPS62221897A (en) Motor control apparatus
US5359277A (en) Low distortion alternating current output active power factor correction circuit using bi-directional bridge rectifier and bi-directional switching regulator
JPS61244273A (en) Control power source
JP3082849B2 (en) Uninterruptible power system
JPH07213067A (en) Control circuit for pwm converter
JPH1132435A (en) Power converter
JPS58105315A (en) Controlling method of pwm converter
JPH02261059A (en) Dc voltage pulsation correcting power source device
JPH0783599B2 (en) Control method of circulating current type cycloconverter
JPS5819169A (en) Controlling method for pwm control converter
JPS6038960B2 (en) Inverter voltage control device
JP2781602B2 (en) Power converter control device and system thereof
JP3070314B2 (en) Inverter output voltage compensation circuit
JP4275223B2 (en) Power supply
JPH0241778A (en) Inverter welding machine
JPH0789742B2 (en) Power converter
JP2658620B2 (en) Power converter control circuit
JPH10164845A (en) Pwm rectifier
JP2745728B2 (en) Inverter control method
JPH11225477A (en) Sine wave converter with filtering function
JPH01315265A (en) Rectifier device
JP2586984Y2 (en) AC power supply
JP3396126B2 (en) Control device for power converter
JPH0667200B2 (en) Control method of current source PWM converter