JPS61244072A - Amorphous silicon photoelectric conversion element - Google Patents

Amorphous silicon photoelectric conversion element

Info

Publication number
JPS61244072A
JPS61244072A JP60084535A JP8453585A JPS61244072A JP S61244072 A JPS61244072 A JP S61244072A JP 60084535 A JP60084535 A JP 60084535A JP 8453585 A JP8453585 A JP 8453585A JP S61244072 A JPS61244072 A JP S61244072A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
amorphous silicon
atoms
conversion element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60084535A
Other languages
Japanese (ja)
Inventor
Katsufumi Kumano
勝文 熊野
Koichi Haga
浩一 羽賀
Akishige Murakami
明繁 村上
Kenji Yamamoto
健司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RICHO OYO DENSHI KENKYUSHO KK
Ricoh Co Ltd
Original Assignee
RICHO OYO DENSHI KENKYUSHO KK
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RICHO OYO DENSHI KENKYUSHO KK, Ricoh Co Ltd filed Critical RICHO OYO DENSHI KENKYUSHO KK
Priority to JP60084535A priority Critical patent/JPS61244072A/en
Publication of JPS61244072A publication Critical patent/JPS61244072A/en
Priority to US07/309,688 priority patent/US5140397A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve photoelectric conversion characteristics and increase a sensitivity in a short wavelength region by a method wherein an a-Si layer, which contains oxygen and nitrogen atoms, is made to be photoconductive in the region where an optical band gap is 2.0eV or higher. CONSTITUTION:An a-Si layer 103 of a photoelectric conversion element 100 consists of an a-Si basic body which contains at least one kind of hydrogen atoms, halogen atoms and deuterium atoms and further contains oxygen atoms and nitrogen atoms. This a-Si layer 103 is produced by a glow discharge decomposition of mixture gas of hydride, deuteride or halogenide of silicon and carbon dioxide and nitrogen. The a-Si layer produced by this method is photoconductive in the region where an optical band gap is 2.0eV or higher. With this constitution, a sensitivity in a short wavelength region can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光エネルギーを電気エネルギーに、あるいは
光の情報を電気的情報に変換する光電変換素子に関し、
特に、短波長増感のアモルファスシリコン光電変換素子
に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a photoelectric conversion element that converts optical energy into electrical energy or optical information into electrical information.
In particular, it relates to short wavelength sensitized amorphous silicon photoelectric conversion elements.

(従来の技術) アモルファスシリコン(以下a−8iと記す)を用いた
光電変換素子には、サンドインチ型とコブレナー型の2
つの型式がある。このうちコプレナー型は、サンドイン
チ型と比較して応答速度が遅いので、高速の光電変換素
子を目的とする場合、通常、サンドインチ型が使用され
る。
(Prior art) There are two types of photoelectric conversion elements using amorphous silicon (hereinafter referred to as a-8i): sandwich type and coblenner type.
There are two models. Among these, the coplanar type has a slower response speed than the sandwich type, so the sandwich type is usually used when a high-speed photoelectric conversion element is intended.

一般に、光電変換素子に用いられる、不純物を添加して
いない水素化アモルファスシリコン(以下a−3i:H
と記す)は、光学的バンドギャップが約1.7 eVで
ある。そのため、a−8i:Hの分光感度は約600n
m付近にピークを持つことになる。
Hydrogenated amorphous silicon (hereinafter a-3i: H
) has an optical bandgap of approximately 1.7 eV. Therefore, the spectral sensitivity of a-8i:H is approximately 600n
It will have a peak around m.

600nm以下の短波長光を利用する目的で、短波長側
に増感を持たせるための材料として、従来、炭素原子を
a−Si:Hにドーピングし、光学的バンドギャップを
炭素原子によって1.9〜2.4 eVに広げたa−S
i:C:Hが用いられている。
For the purpose of utilizing short wavelength light of 600 nm or less, a-Si:H has been conventionally doped with carbon atoms as a material to provide sensitization on the short wavelength side, and the optical band gap is increased to 1. a-S expanded from 9 to 2.4 eV
i:C:H is used.

参考文献; (1) Anderson、 D、A、、5pear、
 11.E、: IElectricaland op
tical properties of amorp
houssilicon carbide、 5ili
con n1tride andgeri+aniuI
lcarbide prepared by the 
glowdischarge techniqua、 
Ph1los、 Mag、、35 : 1(2) Su
ssmann、 R,S、、 Ogden、 R,: 
Photolu+5i−nescanca and o
ptical properties ofplasm
a−deposited  amorphous  5
ixC□−。
References; (1) Anderson, D.A., 5pear,
11. E: IElectricaland op
tical properties of amorp
houssilicon carbide, 5ili
con n1tride andgeri+aniuI
lcarbide prepared by the
glow discharge techniqua,
Ph1los, Mag, 35: 1(2) Su
ssmann, R.S., Ogden, R.:
Photolu+5i-nescanca and o
physical properties of plasma
a-deposited amorphous 5
ixC□-.

allays、 Ph1los、 Mag、 B、 4
4 : 137(1981)(発明が解決しようとする
問題点) しかしながら炭素原子によって光学的バンドギャップを
広げたa−8i:C:Hはa−8i:Hと比較してダン
グリングボンドが多く、局在準位密度が高い、そのため
暗伝導では、活性型伝導の他にホッピング伝導を起こし
易く、大きなσ2./σ4を得ることが難しい、このこ
とは光電変換素子にとって機能上問題となる。また、光
電変換素子の電極としてITOやSnO,のような透明
導電膜を用いる場合、a−8i:C:Hの炭素源となる
cH4等がITOやSnO,の酸素原子を還元し、Sn
、 Inを生成させ、これがa−8i:C:H層へ入り
込んで光電変換特性の低下を来したり、さらに透明導電
膜の劣化を招くことになる。
allays, Ph1los, Mag, B, 4
4: 137 (1981) (Problems to be Solved by the Invention) However, a-8i:C:H, whose optical band gap is widened by carbon atoms, has more dangling bonds than a-8i:H. The localized level density is high, so in dark conduction, hopping conduction is likely to occur in addition to active conduction, resulting in a large σ2. /σ4 is difficult to obtain, which poses a functional problem for the photoelectric conversion element. In addition, when using a transparent conductive film such as ITO or SnO as an electrode of a photoelectric conversion element, cH4, etc., which is a carbon source of a-8i:C:H, reduces the oxygen atoms of ITO or SnO, and
, In enters into the a-8i:C:H layer, resulting in deterioration of photoelectric conversion characteristics and further deterioration of the transparent conductive film.

そこで本発明は、従来技術の欠点を除去した、短波長増
感のある光電変換素子を提供するものである。
Therefore, the present invention provides a photoelectric conversion element with short wavelength sensitization that eliminates the drawbacks of the prior art.

(問題点を解決するための手段) a−8iを母体とし、これに構成原子として水素原子、
ハロゲン原子、重水素原子の少なくとも1種を含む単層
のa−8i層の両主面にそれぞれ電極を設けてなる光電
変換素子において、a−8i層を形成する際に、SiH
4等に、グロー放電分解により酸素原子及び窒素原子を
発生する例えば二酸化炭素と窒素を混合して使用し、a
−8i層中にそれらの原子を含有させる。
(Means for solving the problem) A-8i is used as a matrix, and hydrogen atoms and hydrogen atoms are added to it as constituent atoms.
In a photoelectric conversion element in which electrodes are provided on both main surfaces of a single a-8i layer containing at least one of halogen atoms and deuterium atoms, when forming the a-8i layer, SiH
For example, a mixture of carbon dioxide and nitrogen is used to generate oxygen atoms and nitrogen atoms by glow discharge decomposition.
- Contain those atoms in the 8i layer.

(作 用) 上記のような酸素原子及び窒素原子の含有により局在準
位密度の小さいa−5i層が形成され、光学的バンドギ
ャップが2.0eV以上の領域で、光導電性を有する。
(Function) Due to the inclusion of oxygen atoms and nitrogen atoms as described above, an a-5i layer with a small local level density is formed, and has photoconductivity in a region where the optical band gap is 2.0 eV or more.

また、σ2./σ1が10”以上と高い値を示す、さら
に酸素原子及び窒素原子を含むことで耐熱性が向上し、
また窒素を混合することで、より低い高周波電力で酸素
原子及び窒素原子を含ませることが可能となり、膜質の
良好なa−Si層を形成することができる。
Also, σ2. /σ1 shows a high value of 10” or more, and contains oxygen atoms and nitrogen atoms, which improves heat resistance.
Further, by mixing nitrogen, oxygen atoms and nitrogen atoms can be included with lower radio frequency power, and an a-Si layer with good film quality can be formed.

(実施例) 以下図面を参照しながら実施例を詳細に説明する。第1
図及び第2図は、それぞれ本発明のa−8i光電変換素
子の構成を示したものである。
(Example) Examples will be described in detail below with reference to the drawings. 1st
The figure and FIG. 2 each show the structure of the a-8i photoelectric conversion element of the present invention.

まず第1図に示す光電変換素子100は、支持基板とし
てのガラスあるいは透明高分子フィルム等の透明基板1
01の一方の面に下部電極102を設け、その上にa−
8i層103を積層し、さらに上部電極104を設けて
いる。この種のタイプのものは、光入射面として透明基
板101の他方の面105又は上部電極の表面106の
いずれかを選択することができる。
First, the photoelectric conversion element 100 shown in FIG.
A lower electrode 102 is provided on one side of 01, and a-
8i layers 103 are stacked, and an upper electrode 104 is further provided. In this type of device, either the other surface 105 of the transparent substrate 101 or the surface 106 of the upper electrode can be selected as the light incident surface.

第2図に示す光電変換素子200は、支持基板として、
At、Fe、Nxe Crなどの金属基板、あるいはセ
ラミック基板等の一方の面を導電処理した不透明基板2
01が使用され、その上にa−8i層203を積層し、
さらに上部電極204を設けている。この種のタイプの
ものは、不透明基板201が下部電極を兼ねている。ま
た光入射面としては上部電極の表面206に限定される
The photoelectric conversion element 200 shown in FIG. 2 includes, as a support substrate,
Opaque substrate 2 with conductive treatment on one side of a metal substrate such as At, Fe, Nxe Cr, or a ceramic substrate
01 is used, a-8i layer 203 is laminated on it,
Further, an upper electrode 204 is provided. In this type of device, the opaque substrate 201 also serves as the lower electrode. Further, the light incident surface is limited to the surface 206 of the upper electrode.

光電変換素子100.200のa−8i層103.20
3は、a−8iを母体とし、これに水素原子、ハロゲン
原子、重水素原子の少なくとも1種を含むものに、さら
に酸素原子及び窒素原子を含有させたものである。この
a−8i層は、シリコンの水素化物1重水素化物、ある
いはハロゲン化物と二酸化炭素(以下Coよと記す)及
び窒素(以下N2と記す)の混合ガスのグロー放電分解
で形成される。このようにして作製されたa−8i層は
、光学的バンドギャップが2.0eV以上の領域で光導
電性を有する。
A-8i layer 103.20 of photoelectric conversion element 100.200
No. 3 has a-8i as a base material, which contains at least one of hydrogen atoms, halogen atoms, and deuterium atoms, and further contains oxygen atoms and nitrogen atoms. This a-8i layer is formed by glow discharge decomposition of a mixed gas of a silicon hydride monodeuteride or a halide, carbon dioxide (hereinafter referred to as Co), and nitrogen (hereinafter referred to as N2). The a-8i layer produced in this way has photoconductivity in a region where the optical band gap is 2.0 eV or more.

第3図にこのa−Si層の赤外吸収特性を示す、横軸は
波長、縦軸は透過率をそれぞれ示す、第3図より酸素原
子及び窒素原子が含有されていることが確認できる。
FIG. 3 shows the infrared absorption characteristics of this a-Si layer. The horizontal axis shows the wavelength, and the vertical axis shows the transmittance. From FIG. 3, it can be confirmed that oxygen atoms and nitrogen atoms are contained.

第4図は、a−8i層103.203の分光感度特性を
示したものであり、横軸は波長、縦軸は光電流をそれぞ
れ示す、第4図よりこのa−8i層が500nm付近に
光感度のピークを有しており、短波長増感がなされてい
ることが判る。また、光学的バンドギャップを変えるこ
とで光感度のピーク波長を変えることができる。
Figure 4 shows the spectral sensitivity characteristics of the a-8i layer 103.203, where the horizontal axis shows the wavelength and the vertical axis shows the photocurrent. It has a peak in photosensitivity, indicating that short wavelength sensitization has been achieved. Furthermore, the peak wavelength of photosensitivity can be changed by changing the optical bandgap.

a−3i層103.203にAM1(擬似太陽光)10
0mW/dを照射したときの光導電率σ、hは、光学的
バンドギャップが2.0eV以上の領域において、Si
H,等に混合するCO2及びN8のガス量によりlo−
6〜10−’(Ω3)−1の間で変化する。一方、暗導
電率σ、は、前記のCo2及びN2の混合ガス量でLt
lO−” 〜10−”(Qm)−’t’アルノテ、17
th/+74が103より大きくなり、高いσph/’
σ、を有している。これは、a−8i層の酸素及び窒素
源としてCo、、N、を用いることにより局在準位密度
の小さいa−8i層を作製できるためと考えられる。
AM1 (pseudo sunlight) 10 on a-3i layer 103.203
The photoconductivity σ, h when irradiated with 0 mW/d is
lo- depending on the amount of CO2 and N8 gas mixed with H, etc.
It varies between 6 and 10-'(Ω3)-1. On the other hand, the dark conductivity σ is Lt with the above-mentioned mixed gas amount of Co2 and N2.
lO-” ~10-”(Qm)-'t'alnote, 17
th/+74 becomes larger than 103, high σph/'
It has σ. This is considered to be because the a-8i layer with a small local level density can be formed by using Co, , N as the oxygen and nitrogen sources for the a-8i layer.

混合するN2は、Co2とN2の励起準位が近いためN
2の励起エネルギーがco、の励起に移行し、Co8の
分解に触媒として関与する。またa−8i層にN2より
窒素原子が含有されることでさらに局在準位密度が低下
し、耐熱性も向上する。
The N2 to be mixed is N2 because the excited levels of Co2 and N2 are close to each other.
The excitation energy of 2 is transferred to the excitation of co, which participates as a catalyst in the decomposition of Co8. Further, by containing more nitrogen atoms than N2 in the a-8i layer, the localized level density is further reduced, and heat resistance is also improved.

a−8i層103.203は、■族原子、■族原子をド
ーピングし、それぞれp型、n型としても光電変換素子
として使用することができる。ドーピングする■族原子
としては、 B、 AJ、 Ga、 In、 Tffi
等が好適なものとして挙げられ、また■族原子としては
、P、As、Sbg Bi等が好適なものとして挙げら
れる。ドーピングする量としては、通常の場合10” 
〜10−”atomic%とするのが望ましい。
The a-8i layer 103.203 can be doped with a group II atom or a group II atom, and can be used as a photoelectric conversion element as a p-type or an n-type, respectively. Group ■ atoms to be doped include B, AJ, Ga, In, Tffi
Suitable examples include P, As, Sbg Bi, and the like as group (I) atoms. The amount of doping is usually 10”
It is desirable to set it to 10-" atomic%.

a−5i層への不純物のドーピング方法としては、シリ
コンの水素化物、重水素化物あるいはハロゲン化物とC
o、、 N、を用いてグロー放電分解を行なう際に、■
族、■族等の不純物の水素化物1重水素化物あるいはハ
ロゲン化物(B*Hi、BsDs。
As a method for doping impurities into the a-5i layer, silicon hydride, deuteride, or halide and C
When performing glow discharge decomposition using o,, N, ■
Hydride monodeuteride or halide (B*Hi, BsDs.

BF、、 PH,、PD3. PF、等)を反応器内に
導入することによって達成される。不純物の含有量は、
反応器内へ導入する不純物の水素化物1重水素化物ある
いはハロゲン化物等のガス量を制御する等によって達成
される。
BF,, PH,, PD3. PF, etc.) into the reactor. The content of impurities is
This is achieved by controlling the amount of impurity gas such as hydride, monodeuteride or halide introduced into the reactor.

a−8i層103.203の膜厚は、使用する光の波長
等によって決定されるが、通常の場合0.1〜5μ腸、
好ましくは0.3〜2μmである。
The film thickness of the a-8i layer 103.203 is determined by the wavelength of the light used, etc., but in normal cases it is 0.1 to 5μ,
Preferably it is 0.3 to 2 μm.

光電変換素子100の構成において、光を入射する面と
して透明基板101の面105あるいは上部電極、10
4の表面106が選択される。透明基板面105から光
を入射させる場合は、下部電極102はa−8i層10
3との接合をショットキー接合とすることが望ましい、
その場合の下部電極は、pt等の金属の蒸着あるいはス
パッタリング等により形成される。
In the configuration of the photoelectric conversion element 100, the surface 105 of the transparent substrate 101 or the upper electrode 10 is used as the surface on which light is incident.
4 surface 106 is selected. When light is incident from the transparent substrate surface 105, the lower electrode 102 is formed by the a-8i layer 10.
It is desirable that the junction with 3 be a Schottky junction,
In this case, the lower electrode is formed by vapor deposition or sputtering of metal such as PT.

下部電極の膜厚としては、光の透過を考慮して通常50
〜300人、好ましくは50〜100人である。
The thickness of the lower electrode is usually 50 mm in consideration of light transmission.
~300 people, preferably 50-100 people.

また、下部電極102とa−8i層103との接合を、
ショットキー接合の代りにITO,SnO,等の透明導
電膜を用いてヘテロ接合としてもよい。透明導電膜を用
いた場合、a−8i層103を形成する際にグロー放電
分解により酸素原子及び窒素原子を発生するガスを混合
するため、透明導電膜のITOやSnO,の酸素原子の
還元が抑制され、透明導電膜の劣化を抑えることができ
、a−SL:C:Hで見られるような光電変換特性の低
下は起こらない。
In addition, the bond between the lower electrode 102 and the a-8i layer 103 is
Instead of a Schottky junction, a transparent conductive film such as ITO, SnO, etc. may be used to form a heterojunction. When a transparent conductive film is used, a gas that generates oxygen atoms and nitrogen atoms by glow discharge decomposition is mixed when forming the a-8i layer 103, so the reduction of oxygen atoms in ITO, SnO, and the like of the transparent conductive film is reduced. The deterioration of the transparent conductive film can be suppressed, and the deterioration of photoelectric conversion characteristics as seen in a-SL:C:H does not occur.

上部電極104としては、A(Ig Ni、Crなどの
金属膜を用いるのが望ましい、これらの金属膜は蒸着あ
るいはスパッタリング等により形成される。
As the upper electrode 104, it is desirable to use a metal film such as A (Ig Ni, Cr, etc.), and these metal films are formed by vapor deposition, sputtering, or the like.

光電変換素子100に上部電極の表面106から光を入
射する場合は、前述とは逆に、下部電極102をA−等
の金属膜で形成し、上部電極104としてショットキー
接合を形成するPt、Au、Pd等の金属薄膜か、ペテ
ロ接合を形成するITO等の透明導電膜を用いるとよい
When light enters the photoelectric conversion element 100 from the surface 106 of the upper electrode, contrary to the above, the lower electrode 102 is formed of a metal film such as A-, and the upper electrode 104 is formed of Pt, which forms a Schottky junction. It is preferable to use a metal thin film such as Au or Pd, or a transparent conductive film such as ITO that forms a Peter junction.

また、光電変換素子200においては、光は上部電極表
面206からのみ入射するので、上部電極204は、光
の透過を考慮してショットキー接合、あるいはヘテロ接
合を形成する金属薄膜あるいは透明導電膜とすることが
望ましい。
Furthermore, in the photoelectric conversion element 200, since light enters only from the upper electrode surface 206, the upper electrode 204 is made of a metal thin film or a transparent conductive film that forms a Schottky junction or a heterojunction in consideration of light transmission. It is desirable to do so.

次に、実施例をあげて具体的に説明する。Next, a specific explanation will be given by giving examples.

実施例1 ガラス基板(25閣×50鵬、t=1.o■)上に下部
電極としてITO膜を形成し、その上に酸素原子を含有
する水素化アモルファスシリコン(a −S i:0:
H)をグロー放電分解により約5000人堆積した。
Example 1 An ITO film was formed as a lower electrode on a glass substrate (25 × 50 × t = 1.o■), and hydrogenated amorphous silicon containing oxygen atoms (a-Si:0:
Approximately 5,000 pieces of H) were deposited by glow discharge decomposition.

a−5i層の作製条件は以下の通りである。The conditions for producing the a-5i layer are as follows.

作製方法  プラズマCVD法 原料ガス  5IH4in Hl 10%100s10
05c、    100%25〜100sec■N、 
     100% 25−25−1O0sc Oz 
/ N z      1 基板温度  250℃ 反応器内圧力1.0Torr 高周波出力  8W a−8i層上に上部電極としてAJを蒸着により形成し
た。
Production method: Plasma CVD method Raw material gas: 5IH4in Hl 10%100s10
05c, 100% 25~100sec■N,
100% 25-25-1O0sc Oz
/ N z 1 Substrate temperature: 250° C. Reactor internal pressure: 1.0 Torr High frequency output: 8 W AJ was formed as an upper electrode on the a-8i layer by vapor deposition.

第5図は、このようにして作製された光電変換素子にお
ける酸素原子及び窒素原子を含むa−8i層の光学的バ
ンドギャップ、光導電率σPh、Ph型率σ、を示した
ものである。横軸は(CO,+ N、)/SiH,のガ
ス流量比を、縦軸は導電率、光学的バンドギャップをそ
れぞれ示す、第5図によれば。
FIG. 5 shows the optical bandgap, photoconductivity σPh, and Ph type ratio σ of the a-8i layer containing oxygen atoms and nitrogen atoms in the photoelectric conversion element thus produced. According to FIG. 5, the horizontal axis shows the gas flow rate ratio of (CO, +N, )/SiH, and the vertical axis shows the electrical conductivity and optical band gap.

光学的バンドギャップは2.0〜2.45 eVの範囲
にある。AMl(擬似太陽光)100mW/aJを照射
したときの光導電率σ、は(Co、+N、)/SiH4
のガス流量比の増加に伴い10−8より10−”(Ω3
)−1へと減少する。一方、暗導電率σ、はlO−2〜
io””(00m)−1の範囲にあり、apJ6mが1
03より大きいことが判った。
The optical bandgap is in the range 2.0-2.45 eV. Photoconductivity σ when irradiated with AMl (simulated sunlight) 100 mW/aJ is (Co, +N,)/SiH4
As the gas flow rate ratio increases, 10-” (Ω3
)-1. On the other hand, the dark conductivity σ is lO-2~
io"" (00m)-1 range, and apJ6m is 1
It turned out to be larger than 03.

実施例2 光電変換素子の構成は実施例1と同様とし、酸素原子及
び窒素原子を含む5−8i層へ■族原子、■族原子のド
ーピングを行なった。ドーピングする不純物としてはB
、Pを選択した。酸素原子及び窒素原子を含むa−3i
層の形成条件は以下に示す通りである。
Example 2 The structure of a photoelectric conversion element was the same as that of Example 1, and the 5-8i layer containing oxygen atoms and nitrogen atoms was doped with group II atoms and group II atoms. B as an impurity for doping
, P was selected. a-3i containing oxygen atoms and nitrogen atoms
The conditions for forming the layer are as shown below.

作製方法  プラズマCVD法 原料ガス  SiH,in H,10%100s100
5e、     100%25secmN、     
      100% 25sec1B、H,in H
,2000ppm 10〜150sccmPH,in 
 H,2000ppm  10〜250sccm第6図
は、このようにして製作された酸素原子及び窒素原子を
含むa−8i層のAM1(擬似太陽光)100mW/d
照射時の光導゛電率σ2.及び暗導電率σ1を示したも
のである。横軸はB s Hs / S iH4+ G
 O,+ N、、PH,/SiH,+GO,+N、(7
)ガス流量比を、縦軸は導電率をそれぞれ示す、第6図
より、それぞれガス流量比が増加するに伴い、光導電率
σ25、暗導電率σ、が大きくなることが判明した。つ
まり、酸素原子及び窒素原子を含むa−8i層は荷電子
制御が可能であることが判り、Pen接合も可能である
Production method: Plasma CVD method Raw material gas: SiH, in H, 10%100s100
5e, 100% 25secN,
100% 25sec1B, H, in H
,2000ppm 10~150sccmPH,in
H, 2000ppm 10-250sccm Figure 6 shows the AM1 (simulated sunlight) 100mW/d of the a-8i layer containing oxygen atoms and nitrogen atoms manufactured in this way.
Photoconductivity during irradiation σ2. and dark conductivity σ1. The horizontal axis is B s Hs / SiH4+ G
O, + N, PH, /SiH, +GO, +N, (7
) From FIG. 6, in which the gas flow rate ratio and the vertical axis represent the conductivity, it was found that as the gas flow rate ratio increases, the photoconductivity σ25 and the dark conductivity σ increase. In other words, it was found that charge electron control is possible in the a-8i layer containing oxygen atoms and nitrogen atoms, and Pen junction is also possible.

実施例3 ITOの代りに、ショットキー接合とするためptを約
100人蒸着し、実施例1,2と同様に光電変換素子を
作製した。これらの素子においても良好な結果が得られ
た。
Example 3 Instead of ITO, about 100 pts were deposited to form a Schottky junction, and a photoelectric conversion element was produced in the same manner as in Examples 1 and 2. Good results were also obtained with these devices.

実施例4 SiH,の代りに重水素化物5iD4.ハロゲン化物S
iF、を用いて同様の光電変換素子を作製した。
Example 4 Deuteride 5iD4. instead of SiH. Halide S
A similar photoelectric conversion element was fabricated using iF.

これらの素子においても良好な結果が得られた。Good results were also obtained with these devices.

(発明の効果) 以上説明したように、本発明によれば、光学的バンドギ
ャップが2.0eV以上の領域で光導電性を有し、かつ
σ2./σ、>to’と高い値を示すとともに、優れた
光電変換特性と短波長増感を有する光電変換素子を実現
することができる。
(Effects of the Invention) As explained above, according to the present invention, the optical band gap has photoconductivity in a region of 2.0 eV or more, and σ2. It is possible to realize a photoelectric conversion element that exhibits a high value of /σ, >to', and has excellent photoelectric conversion characteristics and short wavelength sensitization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ本発明の光電変換素子の
構成図、第3図は、赤外吸収特性図、第4図は、同分光
特性図、第5図は、本発明における酸素原子及び窒素原
子を含むa−3L膜の(CO□”Ns)/SiH4のガ
ス流量比と光学的バンドギャップ及び光導電率σ21.
暗導電率σ、の関係を示す図、第6図は、酸素原子及び
窒素原子を含むa−8i膜への■族原子、■族原子をド
ーピングしたときの光導電率σ25、暗導電率σ6を示
す図である。 100.200・・・光電変換素子、 101・・・透
明基板、102 ・・・下部電極、  103,203
−  a−8i層、104.204・・・上部電極、 
201・・・不透明基板。 特許出願人 株式会社  リ  コ −リコ一応用電子
研究所株式会社 第1図 第2図 第3図 液長(回内 第4図 λ(nm)
1 and 2 are block diagrams of the photoelectric conversion element of the present invention, FIG. 3 is an infrared absorption characteristic diagram, FIG. 4 is a spectral characteristic diagram, and FIG. 5 is an oxygen absorption characteristic diagram of the present invention. Gas flow rate ratio of (CO□”Ns)/SiH4, optical band gap and photoconductivity σ21. of a-3L film containing atoms and nitrogen atoms.
Figure 6 shows the relationship between the dark conductivity σ and the photoconductivity σ25 and the dark conductivity σ6 when an a-8i film containing oxygen atoms and nitrogen atoms is doped with group II atoms and group II atoms. FIG. 100.200... Photoelectric conversion element, 101... Transparent substrate, 102... Lower electrode, 103,203
- a-8i layer, 104.204... upper electrode,
201... Opaque substrate. Patent applicant Rico Co., Ltd. - Rico Applied Electronics Research Institute Co., Ltd. Figure 1 Figure 2 Figure 3 Liquid length (pronation Figure 4 λ (nm)

Claims (5)

【特許請求の範囲】[Claims] (1)アモルファスシリコンを母体とし、構成原子とし
て水素原子、ハロゲン原子、重水素原子の少なくとも1
種を含む単層のアモルファスシリコン層の両主面にそれ
ぞれ電極を設けてなる光電変換素子において、前記アモ
ルファスシリコン層が酸素原子及び窒素原子を含み、か
つ光学的バンドギャップが2.0eV以上の領域で、光
導電性を有することを特徴とするアモルファスシリコン
光電変換素子。
(1) Amorphous silicon is used as the base material, and at least one constituent atom is a hydrogen atom, a halogen atom, or a deuterium atom.
In a photoelectric conversion element in which electrodes are provided on both principal surfaces of a single-layer amorphous silicon layer containing seeds, a region where the amorphous silicon layer contains oxygen atoms and nitrogen atoms and has an optical band gap of 2.0 eV or more. An amorphous silicon photoelectric conversion element characterized by having photoconductivity.
(2)前記アモルファスシリコン層がIII族原子及びV
族原子を含むことを特徴とする特許請求の範囲第(1)
項記載のアモルファスシリコン光電変換素子。
(2) The amorphous silicon layer contains group III atoms and V atoms.
Claim No. (1) characterized in that it contains a group atom.
The amorphous silicon photoelectric conversion element described in .
(3)前記アモルファスシリコン層のσ_p_h/σ_
dが、AM1(擬似太陽光)100mW/cm^2入射
時にσ_p_h/σ_d>10^3であることを特徴と
する特許請求の範囲第(1)項記載のアモルファスシリ
コン光電変換素子。
(3) σ_p_h/σ_ of the amorphous silicon layer
The amorphous silicon photoelectric conversion element according to claim 1, wherein d is σ_p_h/σ_d>10^3 when AM1 (simulated sunlight) is incident at 100 mW/cm^2.
(4)前記アモルファスシリコン層の一方の主面とこれ
に接する電極との接合がショットキー接合であることを
特徴とする特許請求の範囲第(1)項記載のアモルファ
スシリコン光電変換素子。
(4) The amorphous silicon photoelectric conversion element according to claim (1), wherein a junction between one main surface of the amorphous silicon layer and an electrode in contact therewith is a Schottky junction.
(5)前記アモルファスシリコン層の一方の主面とこれ
に接する電極との接合がヘテロ接合であることを特徴と
する特許請求の範囲第(1)項記載のアモルファスシリ
コン光電変換素子。
(5) The amorphous silicon photoelectric conversion element according to claim (1), wherein a junction between one main surface of the amorphous silicon layer and an electrode in contact therewith is a heterojunction.
JP60084535A 1985-03-14 1985-04-22 Amorphous silicon photoelectric conversion element Pending JPS61244072A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60084535A JPS61244072A (en) 1985-04-22 1985-04-22 Amorphous silicon photoelectric conversion element
US07/309,688 US5140397A (en) 1985-03-14 1989-02-10 Amorphous silicon photoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084535A JPS61244072A (en) 1985-04-22 1985-04-22 Amorphous silicon photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS61244072A true JPS61244072A (en) 1986-10-30

Family

ID=13833332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084535A Pending JPS61244072A (en) 1985-03-14 1985-04-22 Amorphous silicon photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS61244072A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5983916A (en) * 1982-11-01 1984-05-15 Kanegafuchi Chem Ind Co Ltd Amorphous multielement semiconductor
JPS6041269A (en) * 1984-03-16 1985-03-04 Shunpei Yamazaki Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511329A (en) * 1978-07-08 1980-01-26 Shunpei Yamazaki Semiconductor device
JPS5983916A (en) * 1982-11-01 1984-05-15 Kanegafuchi Chem Ind Co Ltd Amorphous multielement semiconductor
JPS6041269A (en) * 1984-03-16 1985-03-04 Shunpei Yamazaki Semiconductor device

Similar Documents

Publication Publication Date Title
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
JPH04332176A (en) Photovoltaic element
JPS59971A (en) Compensating amorphous silicon solar battery
JPH0595126A (en) Thin film solar battery and manufacturing method thereof
JPH0658971B2 (en) Photovoltaic device manufacturing method
JPS61244073A (en) Amorphous silicon photoelectric conversion element
JPS61244072A (en) Amorphous silicon photoelectric conversion element
JP3245962B2 (en) Manufacturing method of thin film solar cell
JP4187328B2 (en) Photovoltaic element manufacturing method
JPS61218177A (en) Amorphous silicon photoelectric conversion element
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JPS61242085A (en) Amorphous silicon photoelectric conversion element
JPS60210825A (en) Solar battery
JPS61236171A (en) Amorphous silicon photoelectric conversion element
JPS63503103A (en) Multi-junction semiconductor device
JP3123816B2 (en) Method for producing amorphous silicon carbide layer and photovoltaic device using the same
JP3099957B2 (en) Photoconductive member
JPS61222282A (en) Amorphous silicon solar battery
JP2966908B2 (en) Photoelectric conversion element
JPS60163429A (en) Manufacture of amorphous silicon solar cell
JPS63244888A (en) Semiconductor device
JPH0376020B2 (en)
JP3268053B2 (en) Photovoltaic element
JPH0276266A (en) Photoelectric conversion element
KR880002131B1 (en) Photo responsive device processing method