JPS61243356A - Eddy current flaw detection tester - Google Patents

Eddy current flaw detection tester

Info

Publication number
JPS61243356A
JPS61243356A JP60084219A JP8421985A JPS61243356A JP S61243356 A JPS61243356 A JP S61243356A JP 60084219 A JP60084219 A JP 60084219A JP 8421985 A JP8421985 A JP 8421985A JP S61243356 A JPS61243356 A JP S61243356A
Authority
JP
Japan
Prior art keywords
detection
coils
series
coil
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60084219A
Other languages
Japanese (ja)
Inventor
Yoryo Masuko
益子 羊了
Akira Kimura
彰 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60084219A priority Critical patent/JPS61243356A/en
Publication of JPS61243356A publication Critical patent/JPS61243356A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce effect of liftoff due to chattering, vibration or the like of an object to be detected, by connecting exciting coils and detection coils in series. CONSTITUTION:A plurality of detection ends 1-4 are arranged about a rotor 11 and each made up of the even number of detection coils 1A and 1B and one exciting coil 1E, which is connected in series between the detection ends and the detection coils in one of the detection ends are connected in series. An object to be detected 20 moves straight while the detection ends 1-4 are turning thereabout. The sine wave voltage from an oscillator 31 at a control section is supplied to the exciting coil through an amplifier 32. The impedance of the entire exciting coil is kept almost constant as the effect of a gap with the object being detected is canceled and is detected with the detection coil on the top surface of a defect. The voltage change is equalized due to the series connection of the detection coils while the liftoff signal due to the chattering of the object being detected is canceled and thus, is limited to a large extent.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、捧・線・管などの円形断面を有する、細長
い導電体の表面欠陥を検出する渦流探傷試験装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an eddy current flaw detection testing device for detecting surface defects in elongated conductors having a circular cross section, such as rods, wires, and tubes.

〔従来の技術〕[Conventional technology]

捧・線・管などの外表面の軸方向に伸びた長い欠陥(以
下「線状欠陥」という。)を検出する目的で、渦流探傷
試験を行う場合、通常、プローブコイルを被検体の周り
で回転させるか、あるいはプローブ・コイルを固定して
おいて被検体を回転する、いわゆる回転探傷方式が用い
られる。第2図および第3図は従来技術の1例の説明図
である。
When performing eddy current testing for the purpose of detecting long defects extending in the axial direction on the outer surface of wires, pipes, etc. (hereinafter referred to as "linear defects"), the probe coil is usually placed around the test object. A so-called rotary flaw detection method is used in which the test object is rotated or the probe coil is fixed and the test object is rotated. FIGS. 2 and 3 are explanatory diagrams of an example of the prior art.

その渦流探傷装置は検出部110および制御部130よ
り構成される。検出部110においては、電動機112
の回転はブーIJ 113およびベルト114により回
転子111に伝えられる。回転子111には検出コイル
対A、Bの組が4つ(22IA、221B、222A、
222B、223A。
The eddy current flaw detection device is composed of a detection section 110 and a control section 130. In the detection unit 110, the electric motor 112
The rotation of the rotor 111 is transmitted to the rotor 111 by the boot IJ 113 and the belt 114. The rotor 111 has four detection coil pairs A and B (22IA, 221B, 222A,
222B, 223A.

223B、224A、224B)設けられている。223B, 224A, 224B) are provided.

簡単に動作を説明する。発振器131の正弦波電圧は電
力増幅器132で電力増幅され、検出部の端子板117
、電磁カップリング115を通して、検出コイルに供給
される。逆に、検出コイル対A。
Briefly explain the operation. The sine wave voltage of the oscillator 131 is power amplified by the power amplifier 132, and the power is amplified by the power amplifier 132.
, are supplied to the detection coil through an electromagnetic coupling 115. Conversely, detection coil pair A.

Bからの信号は、電磁カップリング115により固定子
116に伝えられ、それから渦流探傷装置制御部130
に伝送されている。本図の装置では、各コイル対ごとに
ブリッジ回路133、増幅器134、移相器135、位
相検波回路136、帯域濾波器137、波高弁別回路1
38などが設けられる。本図の場合、コイル対は4つで
あるから、上記回路は4系列設けられることになる。一
般にプローブ・コイルを用いた渦流探傷試験は、被検体
とプローブ・コイルとの間隔(以下「リフトオフ」とい
う。)の変動の影響を非常に大きく受けるという欠点が
ある。
The signal from B is transmitted to the stator 116 by the electromagnetic coupling 115 and then to the eddy current flaw detector control section 130.
is being transmitted to. In the device shown in this figure, each coil pair includes a bridge circuit 133, an amplifier 134, a phase shifter 135, a phase detection circuit 136, a bandpass filter 137, and a pulse height discrimination circuit 1.
38 etc. are provided. In the case of this figure, since there are four coil pairs, four series of the above circuits are provided. Generally, eddy current flaw detection tests using probe coils have the disadvantage that they are greatly affected by variations in the distance between the test object and the probe coil (hereinafter referred to as "liftoff").

これに対して、特開昭58−179354 (5B、1
0.20)に示されるように、このリフトオフの変動を
一定にするため、距離センサおよびギャップ調整機構を
設けた回転プローブ形深傷装置が提案されている。しか
しこの装置では、距離センサが必要であり、かつ機構が
複雑になるという欠点がある。また、非破壊検査 第3
3巻 第2号 185頁(昭和59年2月)に示される
ように、2つの周波数を用い、信号処理によって、リフ
トオフの影響を抑制する方法も提案されている。しかし
、この方法では、事前に欠陥信号およびリフトオフ信号
の位相関係を知る必要があり、また被検体の材質変更な
どにより両者の関係が変化した場合は、再度渦流探傷装
置の設定をやりなおさなければならないという欠点があ
る。
On the other hand, JP-A-58-179354 (5B, 1
As shown in 0.20), a rotary probe-type deep wound device equipped with a distance sensor and a gap adjustment mechanism has been proposed in order to keep the variation in lift-off constant. However, this device requires a distance sensor and has a complicated mechanism. In addition, the third non-destructive inspection
As shown in Vol. 3, No. 2, p. 185 (February 1980), a method has also been proposed in which the influence of lift-off is suppressed by using two frequencies and signal processing. However, with this method, it is necessary to know the phase relationship between the defect signal and the lift-off signal in advance, and if the relationship between the two changes due to changes in the material of the test object, the settings of the eddy current flaw detection device must be reset. The disadvantage is that it does not.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上述べてきたように、従来のプローブ・コイルを使用
する渦流探傷装置は、リフトオフの影響が非常に大きく
、それに対して提案されている装置・方法も機構的に複
雑であったり、あるいは複雑な信号処理が必要であると
いう問題点がある。
As mentioned above, eddy current flaw detection equipment that uses conventional probe coils is extremely susceptible to lift-off, and the devices and methods that have been proposed to deal with this are mechanically complex or complex. There is a problem that signal processing is required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みてなされたもので、本発明に係る渦
流探傷装置は、複数個の相互誘導方式プローブ・コイル
を被検体表面にほぼ等間隔に配置し、その励磁コイルを
直列に接続し、かつ検出コイルもまた直列に接続するこ
とを特徴としている。
The present invention has been made in view of the above, and the eddy current flaw detection device according to the present invention has a plurality of mutual induction type probe coils arranged at approximately equal intervals on the surface of a test object, and the excitation coils are connected in series. , and the detection coils are also connected in series.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明の基本概念を示す図である。第1図にお
いて、11は回転子であり、その周りに2個以上の複数
個(この図の場合は4個)の検出端1,2.3.および
4が設けられている。それらの各検出端は偶数個(この
図の場合は2個)の検出コイルIA、IBと1つの励磁
コイルIEとで構成されている。なおこの場合谷検出コ
イルは磁束効率を向上させるため、フェライト・コアな
どの高周波特性の良好な磁心IACおよびIBCを使用
している。そして各検出端間において励磁コイルは直列
に、すなわちIE−2E−3E−4E(2E〜4Eは図
示しないが検出端2〜4の励磁コイル)というように、
接続される。1つの検出端内の複数個の検出コイルは、
同様に、おのおのLA−2A−3A−4AおよびIB−
2B−3B−4Bというように直列に接続される。制御
部30は発振器31、電力増幅器32並びに1つ以上(
この図の場合は1つ)のブリッジ回路33、増幅器34
、移相器35、位相検波回路36、帯域濾波器37およ
び波高弁別回路38で構成される。
FIG. 1 is a diagram showing the basic concept of the present invention. In FIG. 1, 11 is a rotor, around which two or more (four in this figure) detection ends 1, 2, 3, . and 4 are provided. Each of these detection ends is composed of an even number (two in this figure) of detection coils IA, IB and one excitation coil IE. In this case, in order to improve magnetic flux efficiency, the valley detection coil uses magnetic cores IAC and IBC with good high frequency characteristics, such as ferrite cores. The excitation coils are connected in series between each detection terminal, that is, IE-2E-3E-4E (2E to 4E are the excitation coils of detection terminals 2 to 4, although not shown).
Connected. Multiple detection coils within one detection end are
Similarly, LA-2A-3A-4A and IB-
They are connected in series like 2B-3B-4B. The control unit 30 includes an oscillator 31, a power amplifier 32, and one or more (
In this figure, there is one) bridge circuit 33, amplifier 34
, a phase shifter 35, a phase detection circuit 36, a bandpass filter 37, and a pulse height discrimination circuit 38.

〔作用〕[Effect]

次に作用を同じく第1図について説明する。被検体20
は直進し、その周りに検出端1,2.3および4が回転
する。かくして被検体全表面が螺線的に走査される。制
御部の発振器31から出力された正弦波電圧は電力増幅
器32で増幅され、検出部の励磁コイル(IE、2E、
3Eおよび4E)に供給される。このとき、電力増幅器
出力端から見た励磁コイルの入力インピーダンスは、励
磁コイルと被検体との相対位置、とりわけギャップによ
って大きく変化する。しかし本発明の方式では励磁コイ
ルが直列に接続されているため、励磁コイル全体として
のインピーダンスは励磁コイルと被検体とのギャップの
影響が相殺され、ギャップ変動にかかわらず励磁電流は
ほぼ一定に保たれる。被検体表面に欠陥があると検出端
1,2゜3および4のいずれかがその欠陥を走査し、そ
の励磁電流により、交番磁界が発生し、電磁誘導により
被検体表層部には誘導電流(渦電流)が流れる。もしも
被検体表面に欠陥があると、誘導電流の流れが方向的に
も量的にも乱される。その結果その誘導電流による磁束
も同様に変化する。その磁束の変化は欠陥上面の検出コ
イルによって電圧変化として検出される。検出コイルI
A、2A。
Next, the operation will be explained with reference to FIG. Subject 20
travels straight, and the detection ends 1, 2.3 and 4 rotate around it. In this way, the entire surface of the subject is scanned in a spiral manner. The sine wave voltage output from the oscillator 31 of the control section is amplified by the power amplifier 32, and the excitation coil (IE, 2E,
3E and 4E). At this time, the input impedance of the excitation coil viewed from the output end of the power amplifier varies greatly depending on the relative position between the excitation coil and the subject, especially the gap. However, in the method of the present invention, since the excitation coils are connected in series, the impedance of the excitation coil as a whole is canceled out by the influence of the gap between the excitation coil and the subject, and the excitation current is kept almost constant regardless of gap fluctuations. dripping If there is a defect on the surface of the specimen, one of the detection ends 1, 2, 3, and 4 scans the defect, and the excitation current generates an alternating magnetic field, and an induced current ( eddy current) flows. If there is a defect on the surface of the object, the flow of induced current will be disturbed both in direction and quantity. As a result, the magnetic flux due to the induced current changes similarly. The change in magnetic flux is detected as a voltage change by a detection coil on the top surface of the defect. Detection coil I
A, 2A.

3Aおよび4A(並びにIB、2B、3Bおよび4B)
は直列に接続されているから、平均化され、総合的な電
圧変化としてはその1/4の変化として検出されること
になる。しかし4つのコイルが直列に接続されているこ
とにより、被検体のガタなどによるリフトオフ信号が相
殺されて非常に小さくなる。すなわち被検体1が検出端
1に近づくと、検出端lの検出コイルIAの誘導電圧は
増加するが、被検体1は検出端3からは離れるから検出
コイル3Aの誘起電圧は減少する。検出コイルI A 
−2A −3A−4Aは直列に接続されているため、検
出コイル全体としては平均化され、リフトオフ信号は抑
制されるからである。以上の理由により、欠陥検出信号
としてはほぼ1/4になるが、リフトオフの影響が大き
く抑制されるから、欠陥検出能は、各検出端単独の場合
に比し、大幅に向上することになる。
3A and 4A (and IB, 2B, 3B and 4B)
Since they are connected in series, they are averaged and the overall voltage change is detected as 1/4 of that change. However, because the four coils are connected in series, lift-off signals due to backlash of the subject are canceled out and become very small. That is, when the subject 1 approaches the detection end 1, the induced voltage in the detection coil IA of the detection end 1 increases, but as the subject 1 moves away from the detection end 3, the induced voltage in the detection coil 3A decreases. Detection coil IA
This is because -2A, -3A, and 4A are connected in series, so the detection coil as a whole is averaged, and the lift-off signal is suppressed. For the above reasons, the defect detection signal will be reduced to approximately 1/4, but since the influence of lift-off will be greatly suppressed, the defect detection ability will be significantly improved compared to the case of each detection end alone. .

(実施例) 第4図、第5図、第6図および第7図は本発明の1実施
例である。第4図、第5図は検出端の側面図および正面
図であり、第6図はその検出端の被検体に対する位置関
係を示した見取図である。
(Example) FIG. 4, FIG. 5, FIG. 6, and FIG. 7 are examples of the present invention. 4 and 5 are a side view and a front view of the detection end, and FIG. 6 is a sketch showing the positional relationship of the detection end with respect to the subject.

1つの検出端には検出コイルIAa、IAb、IAc、
IAdおよびIBa、]、Bb、IBc、LBdの8つ
の検出コイルと1つの励磁コイル]Eが設けられている
。そして円周方向に設けられた4つの検出端は、第7図
に示すように結線され、4回路を形成している。このよ
うにすることにより、(作用)で説明したリフトオフ信
号抑制効果の外に、励磁コイルが大型なため、被検体に
対する相対的ギヤツブが小さくなり、リフトオフ変動に
さらに強くなるという利点がある。さらに、このように
小型検出コイルを複合して使用することにより、直列接
続による相対的感度低下を補い、かつ高速探傷を可能に
するという効果がある。上記は回転型渦流探傷装置につ
いて説明したが、数多くのプローブ型コイルを被検体円
周方向に配置する、いわゆるマルチ・プローブ方式にも
適用可能であることは明らかである。
One detection end includes detection coils IAa, IAb, IAc,
Eight detection coils, IAd and IBa,], Bb, IBc, and LBd, and one excitation coil]E are provided. The four detection ends provided in the circumferential direction are connected as shown in FIG. 7 to form four circuits. By doing this, in addition to the lift-off signal suppressing effect described in (effect), there is an advantage that since the excitation coil is large, the gearing relative to the subject becomes smaller, making it more resistant to lift-off fluctuations. Furthermore, by using multiple small detection coils in this way, it is effective to compensate for the relative decrease in sensitivity due to series connection and to enable high-speed flaw detection. Although the above description has been made regarding a rotary eddy current flaw detection device, it is clear that the present invention can also be applied to a so-called multi-probe method in which a large number of probe-type coils are arranged in the circumferential direction of the test object.

(発明の効果) 以上説明したように、本発明の渦流探傷試験装置は、各
励磁コイルおよび検出コイルを直列に接続することによ
り、被検体のガタ・振動等によるリフトオフの影響を大
きく軽減することができ、欠陥検出のSN比を改善し、
欠陥検出能力を向上させることができる。
(Effects of the Invention) As explained above, the eddy current flaw detection testing device of the present invention can significantly reduce the influence of lift-off caused by backlash, vibration, etc. of the test object by connecting each excitation coil and detection coil in series. This improves the signal-to-noise ratio of defect detection.
Defect detection ability can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための説明図、第2
図は従来技術の説明図、第3図は従来技術の回転子への
検出コイル配置の説明図、第4図は本発明の実施例に係
る検出端の側面図、第5図は同上正面図、第6図は検出
端と被検体との相対位置関係を示す説明図、第7図は本
発明の実施例の検出コイル結線の説明図である。 1.2,3.4  励磁コイル、検出コイルを含む検出
端  IA、IB、2A、2B、3A、3B、4A、4
B  検出コイル(A、Bで対として使用)    I
Aa、IBa、IAb、IBb、IAc、IBc、IA
d、IBd  検出コイルIAC,ABC検出コイルの
磁心1 1E、22.3E、4E  励磁コイル 10 検出部  11 回転子  12 電動機13 
プーリ  14 ヘルド  15 電磁カンプリング 
 16 固定子  17 端子板20 被検体  30
 制御部  31 発振器32 電力増幅器  33 
ブリッジ回路34 増幅器  35 移相器  36 
検波回路  37 帯域濾波器  38 波高弁別回路
量 願 人  新日本製鐵株式会社 代理人弁理士  青 柳    稔 くの
FIG. 1 is an explanatory diagram for explaining the invention in detail, and FIG.
Figure 3 is an explanatory diagram of the prior art, Figure 3 is an explanatory diagram of the arrangement of detection coils on the rotor in the prior art, Figure 4 is a side view of the detection end according to the embodiment of the present invention, and Figure 5 is a front view of the same. , FIG. 6 is an explanatory diagram showing the relative positional relationship between the detection end and the subject, and FIG. 7 is an explanatory diagram of the detection coil connection according to the embodiment of the present invention. 1.2, 3.4 Detection end including excitation coil and detection coil IA, IB, 2A, 2B, 3A, 3B, 4A, 4
B Detection coil (used as a pair in A and B) I
Aa, IBa, IAb, IBb, IAc, IBc, IA
d, IBd Detection coil IAC, ABC detection coil magnetic core 1 1E, 22.3E, 4E Excitation coil 10 Detection section 11 Rotor 12 Motor 13
Pulley 14 Held 15 Electromagnetic compression ring
16 Stator 17 Terminal board 20 Test object 30
Control unit 31 Oscillator 32 Power amplifier 33
Bridge circuit 34 Amplifier 35 Phase shifter 36
Detection circuit 37 Bandpass filter 38 Amount of pulse height discrimination circuit Patent attorney for Nippon Steel Corporation Minoru Aoyagi

Claims (1)

【特許請求の範囲】[Claims] 棒、線、管などの円形断面を有する細長い導電体の表面
欠陥を検出する渦流探傷試験装置において、複数個の相
互誘導方式プローブ・コイルを当該被検体表面に間隔を
おいて相対向する如く、被検体周方向にほぼ等間隔に配
置し、その励磁コイルを直列に結線し、かつ検出コイル
もまた直列に接続することを特徴とする渦流探傷試験装
置。
In an eddy current flaw detection testing device that detects surface defects in elongated conductors with circular cross sections such as rods, wires, and tubes, a plurality of mutual induction type probe coils are placed facing each other at intervals on the surface of the test object. An eddy current flaw detection testing device characterized in that the excitation coils are arranged at approximately equal intervals in the circumferential direction of a test object, and the excitation coils are connected in series, and the detection coils are also connected in series.
JP60084219A 1985-04-19 1985-04-19 Eddy current flaw detection tester Pending JPS61243356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60084219A JPS61243356A (en) 1985-04-19 1985-04-19 Eddy current flaw detection tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60084219A JPS61243356A (en) 1985-04-19 1985-04-19 Eddy current flaw detection tester

Publications (1)

Publication Number Publication Date
JPS61243356A true JPS61243356A (en) 1986-10-29

Family

ID=13824367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60084219A Pending JPS61243356A (en) 1985-04-19 1985-04-19 Eddy current flaw detection tester

Country Status (1)

Country Link
JP (1) JPS61243356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113647A (en) * 1987-10-27 1989-05-02 Furukawa Electric Co Ltd:The Method of detecting flaw of aluminum-coated steel stranded wire
JP2014062762A (en) * 2012-09-20 2014-04-10 Mitsubishi Heavy Ind Ltd Eddy current flaw detection inspection apparatus, eddy current flaw detection inspection method, probe, and signal processor
JP2020003289A (en) * 2018-06-27 2020-01-09 矢崎エナジーシステム株式会社 Degradation detection device and degradation detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113647A (en) * 1987-10-27 1989-05-02 Furukawa Electric Co Ltd:The Method of detecting flaw of aluminum-coated steel stranded wire
JP2014062762A (en) * 2012-09-20 2014-04-10 Mitsubishi Heavy Ind Ltd Eddy current flaw detection inspection apparatus, eddy current flaw detection inspection method, probe, and signal processor
JP2020003289A (en) * 2018-06-27 2020-01-09 矢崎エナジーシステム株式会社 Degradation detection device and degradation detection method

Similar Documents

Publication Publication Date Title
JP3572460B2 (en) Eddy current probe
US3611120A (en) Eddy current testing systems with means to compensate for probe to workpiece spacing
JP6189870B2 (en) Penetration coil configuration, test apparatus having penetration coil configuration, and test method
JP2007263946A (en) Sensor and method for eddy current flaw detection
JP4003975B2 (en) Metal inspection method and metal inspection apparatus
JP2639264B2 (en) Steel body inspection equipment
JPS61243356A (en) Eddy current flaw detection tester
JPH0465667A (en) Eddy current flaw detecting device
JP3572452B2 (en) Eddy current probe
JPS61198055A (en) Insertion type probe for eddy current examination
JPS6232355A (en) Eddy current flaw inspector
JPH07311179A (en) Eddy current flaw detection coil
JPS63274859A (en) Eddy current flaw detection coil
JP6601226B2 (en) Magnetic flux leakage flaw detector
JPH0125019B2 (en)
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
JP4004878B2 (en) Electromagnetic flow meter
JPH06123732A (en) Eddy current-type flaw detection probe
JP2006053053A (en) Probe device for eddy current flaw detection
JPS58176541A (en) Electromagnetic non-destructive flaw detector
SU1612253A1 (en) Through electromagnetic transducer
SU1767409A1 (en) Eddy current transducer
JPS5841345A (en) Differential transducer
JPH06347448A (en) Eddy current flaw detection probe
JPH04121660A (en) Probe for eddy current flaw detection