JPS61243206A - Steam boiler - Google Patents

Steam boiler

Info

Publication number
JPS61243206A
JPS61243206A JP8504685A JP8504685A JPS61243206A JP S61243206 A JPS61243206 A JP S61243206A JP 8504685 A JP8504685 A JP 8504685A JP 8504685 A JP8504685 A JP 8504685A JP S61243206 A JPS61243206 A JP S61243206A
Authority
JP
Japan
Prior art keywords
air
coal
stoker
combustion
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8504685A
Other languages
Japanese (ja)
Other versions
JPH0327803B2 (en
Inventor
Masanobu Shigaki
志垣 政信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP8504685A priority Critical patent/JPS61243206A/en
Publication of JPS61243206A publication Critical patent/JPS61243206A/en
Publication of JPH0327803B2 publication Critical patent/JPH0327803B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Fuel Combustion (AREA)

Abstract

PURPOSE:To reduce the cost of facility and operating cost and to improve a low Nox state as well as an efficiency of boiler by a method wherein a fine powdered coal burner is arranged at a position above a spreader in a combustion chamber, and both fine powdered coals and air for fine powdered coal combustion less than a theoretical required volume of air are injected from the burner. CONSTITUTION:On the stoker 6, a part of the coal-combustion air B as a surplus air C to be not in use for combustion is generated. The coal A to be supplied to a coal feeder 16 is ground by a mill 17 and made as a fine powdered coal D, fed to the fine powdered coal burner 3 by the fine powdered coal air E passed air E passed from an extrusion air blower 15 through an air heater 11 and branched and fed to the mill 17, then injected into the combustion chamber 4. In this case, the fine powdered coal combustion air E is made less than the theoretical required air volume and the fine powdered coal D is injected under a less volume of air. The fine powdered coal D is ignited together with the fine powder coal air E injected simultaneously and the surplus air C generated on the stoker 6, thereby a reducing zone is generated. Therefore, a low NOx can be attained by this reducing zone.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭を燃料とする蒸気ボイラに係り、とりわ
け、スプレッダストーカ焚ボイラの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a steam boiler using coal as fuel, and particularly to improvements in a spreader stoker fired boiler.

(従来の技術) 最近、石油価格の高騰と価格不安定の問題から、供給量
が無尽蔵で安定供給が見込まれると共に価格的にも安価
な石炭が燃料として見直されて来て居り、代替燃料とし
て急速に普及しつつある。
(Prior art) Recently, due to the problem of soaring oil prices and price instability, coal, which is expected to be inexhaustible and stable in supply and is inexpensive, has been reconsidered as a fuel, and as an alternative fuel. It is rapidly becoming popular.

旧石炭時代では、むしろ石炭が主で、石油は特殊な条件
下で使われていた。
In the Old Coal Age, coal was the main ingredient, and oil was used under special conditions.

従って、石炭を燃料とする石炭焚ボイラは、常識的に使
用され、大型ボイラでは微粉炭焚、中小型ボイラではス
トーカ焚が常識であった。
Therefore, coal-fired boilers using coal as fuel were commonly used, with large boilers using pulverized coal firing and small and medium sized boilers using stoker firing.

然しなから、近年にあっては、ボイラの大型化が一段と
進み、微粉炭焚とストーカ焚との経済的均衡が上方に移
り、最近に於ては、微粉炭焚とストーカ焚(とりわけス
プレッダストーカ焚)との設備費と運転費が比較され、
一時間当りのトン数(T/H)かどのぐらいであれば均
衡点であるのかが最大の問題とされている。
However, in recent years, boilers have become larger and the economic balance between pulverized coal-fired and stoker-fired has shifted upwards. The equipment costs and operating costs are compared with
The biggest issue is whether the tonnage per hour (T/H) is an equilibrium point.

即ち、大力の見方では、石炭の質にも依るが、70〜1
30 T/Hが均衡点のボーダラインであるとされてい
る。
In other words, from Dairyoku's point of view, depending on the quality of the coal, 70 to 1
It is said that 30 T/H is the borderline of the equilibrium point.

従って、例えば、70T/Hの蒸気ボイラな検討する場
合は、設備費としてはスプレッダストーカ焚:微粉炭焚
が1.0:1.4、運転費としてはスプレッダストーカ
焚:微粉炭焚がt、o:t、o4であり、スプレッダス
トーカ焚の方が有利であると考えられている。
Therefore, for example, when considering a 70 T/H steam boiler, the equipment cost is 1.0:1.4 for spreader stoker firing: pulverized coal firing, and the operating cost is t for spreader stoker firing: pulverized coal firing. o: t, o4, and spreader stoker firing is considered to be more advantageous.

ところで、微粉炭焚は、ボイラ効率が高い利点がある。By the way, pulverized coal firing has the advantage of high boiler efficiency.

又、最近の微粉炭焚は、二段燃焼成は三段燃焼と称して
、先ず、微粉炭バーナから噴出する際の空気過剰率を理
論必要空気量より低く押え、バーナから微粉炭を噴出さ
せた直後に二次空気を添加したり、或はこれに加えても
う一段上部に微粉炭を噴射して還元帯を形成すると共に
三次空気を噴射したりする事に依りNOxの発生を押え
る事ができる。
In addition, in recent pulverized coal firing, two-stage combustion is called three-stage combustion, and first, the excess air ratio when ejecting from the pulverized coal burner is kept lower than the theoretically required amount of air, and then the pulverized coal is ejected from the burner. It is possible to suppress the generation of NOx by adding secondary air immediately after this, or by injecting pulverized coal to the top of the stage to form a reduction zone and injecting tertiary air. can.

ところが、微粉炭焚は、先述もした如く設備費が高いと
共に、ミルに大きな動力を要するので電気代が嵩ぼって
運転費が高く付く難点があった。
However, as mentioned above, pulverized coal firing has the drawbacks of high equipment costs and the fact that the mill requires a large amount of power, leading to high electricity bills and high operating costs.

他方、スプレッダストーカ焚は、先述もした如く、設備
費と運転費が安い利点がある。
On the other hand, as mentioned above, spreader stoker firing has the advantage of low equipment and operating costs.

然しなから、スプレッダストーカ焚は、ストーカ上の燃
焼が主体であるので、どうしても空気過剰率が微粉炭焚
に比べて高くなってしまい、この事は必要空気量の増加
とこれに依る排ガス量の増加を招いて排ガス熱損失が増
す事になり、ボイラ効率の低下となって現われる。
However, in spreader stoker firing, the combustion is mainly on the stoker, so the excess air ratio is inevitably higher than in pulverized coal firing, which increases the amount of air required and the resulting reduction in the amount of exhaust gas. As a result, exhaust gas heat loss increases, resulting in a decrease in boiler efficiency.

又、過剰酸素率も高くなるので、NOx値も大きくなる
Furthermore, since the excess oxygen rate also increases, the NOx value also increases.

もつとも、低NOx化の為には、煙道から再循環ガスを
導びいてストーカの下に空気と共に供給する事に依って
これを押える事ができるが、これには限度があって問題
であった。
However, in order to reduce NOx, it is possible to suppress this by guiding recirculated gas from the flue and supplying it with air under the stoker, but this has its limits and is a problem. Ta.

この様に、スプレッダストーカ焚ボイラは、設備費と運
転費の上で微粉炭焚ボイラより有利でありながら、ボイ
ラ効率と低NOx化の点で微粉炭焚ボイラより劣ってい
た。
As described above, while the spreader stoker-fired boiler has advantages over the pulverized coal-fired boiler in terms of equipment costs and operating costs, it is inferior to the pulverized coal-fired boiler in terms of boiler efficiency and low NOx.

(発明が解決しようとする問題点) 本発明は、叙上の問題点に鑑み、これを解消する為に創
案されたもので、その目的とする処は、設備費と運転費
を安くすると共に、ボイラ効率と低NOx化を向上させ
、大型ボイラにも容易に適用できる蒸気ボイラを提供す
るにある。
(Problems to be Solved by the Invention) The present invention was devised in view of the above-mentioned problems and to solve them, and its purpose is to reduce equipment costs and operating costs, and The object of the present invention is to provide a steam boiler that improves boiler efficiency and reduces NOx, and that can be easily applied to large boilers.

(問題点を解決するための手段) 本発明の蒸気ボイラは、内部に燃焼室が形成された燃焼
室体と、燃焼室の下部に設けられたストーカと、燃焼室
体の一部に設けられて石炭をストーカの上へ均一に投射
するスプレッダと、燃焼室に連通すべく燃焼室体に連設
されたボイ゛ ラ本体とを備えストーカの下からは石炭
燃焼用空気が供給されてストーカの上では余剰空気が発
生するスプレッダストーカ焚ボイラに於て、前記燃焼室
体のスプレッダより上方の位置に微粉炭バーナを設け、
ここから微粉炭と理論必要空気量以下の微粉炭燃焼用空
気とを噴射すべく構成した事に特徴が存する。
(Means for Solving the Problems) The steam boiler of the present invention includes a combustion chamber body in which a combustion chamber is formed, a stoker provided at the lower part of the combustion chamber, and a part of the combustion chamber body. The stoker is equipped with a spreader that uniformly projects the coal onto the stoker, and a boiler body that is connected to the combustion chamber body so as to communicate with the combustion chamber. Air for coal combustion is supplied from below the stoker and the stoker is heated. In a spreader stoker fired boiler in which surplus air is generated, a pulverized coal burner is provided at a position above the spreader of the combustion chamber body,
The feature lies in the structure in which pulverized coal and air for pulverized coal combustion in an amount less than the theoretically required amount of air are injected from here.

つまり、スプレッダストーカ焚ボイラを主体にしてこれ
と微粉炭焚ボイラとを巧みに組合せたものである。
In other words, it is mainly a spreader stoker-fired boiler and is skillfully combined with a pulverized coal-fired boiler.

(作   用) 石炭は、スプレッダに依りストーカの上に均一に投射さ
れると共に、ストーカの下からは石炭燃焼用空気が供給
され、ストーカの上の全面で石炭が燃焼される。
(Function) Coal is uniformly projected onto the stoker by the spreader, and coal combustion air is supplied from below the stoker to burn the coal over the entire surface above the stoker.

□ この時、ストーカの上では、石炭燃焼用空気の全て
が燃焼に使わ九ず、余剰空気が発生する。
□ At this time, all of the air for coal combustion is not used for combustion above the stoker, and surplus air is generated.

他方、微粉炭焚バーナからは、微粉炭と理論必要空気量
以下の微粉炭燃焼用空気とが噴射される。
On the other hand, from the pulverized coal burning burner, pulverized coal and air for pulverized coal combustion in an amount less than the theoretically required amount of air are injected.

つまり、微粉炭は、空気不足の状態で燃焼室に噴射され
、この不足分はストーカの上で発生した余剰空気で補な
われて燃焼し、ストーカの上方に還元帯を形成する。
In other words, pulverized coal is injected into the combustion chamber in an air-deficient state, and this deficiency is compensated for by surplus air generated above the stoker and combusted, forming a reduction zone above the stoker.

石炭の燃焼並びに微粉炭の燃焼に依り発生1゜た燃焼ガ
スは、ボイラ本体に導びかれて蒸気を発生させる。
Combustion gas generated by combustion of coal and pulverized coal is led to the boiler body to generate steam.

燃焼室では、ストーカの上で発生した余剰空気が微粉炭
の燃焼に利用されるので、総合的な空気過剰率が下がり
、排ガス熱損失を減少せしめると共に、ストーカの上方
には還元帯が形成されるので、NOxの発生が押えられ
る。
In the combustion chamber, the excess air generated above the stoker is used to burn the pulverized coal, which reduces the overall excess air ratio, reduces exhaust gas heat loss, and forms a reduction zone above the stoker. Therefore, the generation of NOx can be suppressed.

(実 施 例) 以下、本発明の実施例を、図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

図面は、本発明の実施例に係る蒸気ボイラの概要構造を
示す略式図である。
The drawing is a schematic diagram showing the general structure of a steam boiler according to an embodiment of the present invention.

蒸気ボイラ1は、スプレッダストーカ焚ボイラ2と微粉
炭バーナ3とからその主要部が構成されている。
The main parts of the steam boiler 1 include a spreader stoker-fired boiler 2 and a pulverized coal burner 3.

スプレッダストーカ焚ボイラ2は、内部に燃焼室4が形
成された燃焼室体5と、燃焼室4の下部に設けられた逆
送型のストーカ6と、燃焼室体5の一部に設けられて石
炭Aをストーカ6の上に均一に投射するスプレッダ7と
、燃焼室4に連通すべく燃焼室体5に連設されたボイラ
本体8とを備え、ストーカ6の下からは石炭燃焼用空気
Bが供給されてストーカ6の上では余剰空気Cが発生す
るものである。
The spreader stoker-fired boiler 2 includes a combustion chamber body 5 in which a combustion chamber 4 is formed, a reverse feed type stoker 6 provided at the bottom of the combustion chamber 4, and a part of the combustion chamber body 5. It includes a spreader 7 that uniformly projects coal A onto the stoker 6, and a boiler body 8 connected to the combustion chamber body 5 to communicate with the combustion chamber 4. Coal combustion air B is supplied from below the stoker 6. is supplied, and surplus air C is generated above the stoker 6.

微粉炭バーナ3は、燃焼室体5のスプレッダ7より上方
の位置に設けられ、ここから微粉炭りと理論必要空気量
以下の微粉炭燃焼用空気Eとを噴射させるものである。
The pulverized coal burner 3 is provided at a position above the spreader 7 of the combustion chamber body 5, from which pulverized coal and pulverized coal combustion air E in an amount less than the theoretically required amount of air are injected.

図中、9は過熱器、lOはエコノマイザ、llはエアヒ
ータ、12は集塵機、13は誘引通風機、14は煙突、
15は押込通風機、116は石炭フィーダ、17はミル
、18はシンダーリインゼクタ用ファン、19はノズル
、20はガス再循環ファン、21は二次空気ノズルであ
る。
In the figure, 9 is a superheater, 1O is an economizer, 11 is an air heater, 12 is a dust collector, 13 is an induced draft fan, 14 is a chimney,
15 is a forced draft fan, 116 is a coal feeder, 17 is a mill, 18 is a cinder reinjector fan, 19 is a nozzle, 20 is a gas recirculation fan, and 21 is a secondary air nozzle.

石炭Aは、スプレッダ7に依りストーカ6の上に均一に
投射されると共に、石炭燃焼用空気Bは押込通風機15
からエアヒータ11を通ってストーカ6の下へ供給され
、石炭Aはストーカ6の上の全面で燃焼する。
Coal A is uniformly projected onto the stoker 6 by the spreader 7, and coal combustion air B is sent to the forced draft fan 15.
The coal A is supplied from the coal A through the air heater 11 to the bottom of the stoker 6, and burns on the entire surface above the stoker 6.

この時、ストーカ6の上では、石炭燃焼用空気Bの一部
が燃焼に使われずに余剰空気Cとして発生する。
At this time, above the stoker 6, a part of the coal combustion air B is not used for combustion and is generated as surplus air C.

燃焼に依り発生した燃焼ガスは、燃焼室4→過熱器9→
ボイラ本体8→エコノマイザ10→集塵機12→誘引通
風機13→煙突14を経て排出され、ボイラ本体8に於
て蒸気を発生させる。
The combustion gas generated by combustion is transferred to the combustion chamber 4 → superheater 9 →
The steam is discharged through the boiler body 8 → economizer 10 → dust collector 12 → induced draft fan 13 → chimney 14, and steam is generated in the boiler body 8.

他方、石炭フィーダ16へ供給された石炭Aは、ミル1
7に依り粉砕されて微粉炭りに為され、押込通風機15
からエアヒータ11を通ってミル17に分岐導入された
微粉炭燃焼用空気Eに依って微粉炭バーナ3に送られ、
ここから燃焼室4に噴射される。
On the other hand, the coal A supplied to the coal feeder 16 is
The charcoal is pulverized and made into pulverized coal according to step 7, and then passed through forced ventilation machine 15.
The air is sent to the pulverized coal burner 3 by the pulverized coal combustion air E branched into the mill 17 through the air heater 11.
From here it is injected into the combustion chamber 4.

この時、微粉炭燃焼用空気Eは、理論必要空気量以下に
して置き、所謂微粉炭りを空気不足の状態で噴射させる
At this time, the air E for pulverized coal combustion is kept below the theoretically required amount of air, and so-called pulverized coal is injected in an air-deficient state.

燃焼室4に噴射された微粉炭りは、同時に噴射された微
粉炭燃焼用空気Eとストーカ6の上で発生した余剰空気
Cとに依って燃焼し、これに依り還元帯を形成する。
The pulverized coal injected into the combustion chamber 4 is combusted by the simultaneously injected pulverized coal combustion air E and the surplus air C generated above the stoker 6, thereby forming a reduction zone.

従って、この還元帯に依り低NOx化が達成できる。Therefore, reduction in NOx can be achieved by this reduction zone.

還元帯に於ける還元度は、微粉、炭燃焼用空気Eを増減
して微粉炭りとの濃度を変える事に依り調整できる。
The degree of reduction in the reduction zone can be adjusted by increasing or decreasing the amount of air E for combustion of fine powder and charcoal to change the concentration of the fine powder and charcoal.

又、押込通風機15からエアヒータllを通って二次空
気ノズル21に分岐導入された二次空気を調整して燃焼
室4に供給する事に依っても還元度を変iる事ができる
The degree of reduction can also be changed by adjusting the secondary air branched into the secondary air nozzle 21 from the forced draft fan 15 through the air heater 11 and supplying it to the combustion chamber 4.

集塵機12を経た排ガスの一部は、ガス再循環ファン2
0に誘引され、押込通風機15からエアヒータ11を経
て送らhて来る燃焼用空気に混ぜてストーカ6の下や微
粉炭バーナ3や二次空気ノズル21から燃焼室4に吹込
まれる事に依り低02運転に依る低N Ox化が促進さ
れる。
A part of the exhaust gas that has passed through the dust collector 12 is sent to the gas recirculation fan 2.
0, mixed with the combustion air sent from the forced draft fan 15 via the air heater 11, and blown into the combustion chamber 4 from under the stoker 6, from the pulverized coal burner 3, and from the secondary air nozzle 21. Low NOx reduction due to low 02 operation is promoted.

ガス再循環7アン20からの排ガスは、シンダーリイン
ゼクタ用ファン18に依り加圧されて燃焼室4に導入す
る事に依り集塵機12まで飛来して来た未燃炭を再吹込
して未燃損失が防止される。
The exhaust gas from the gas recirculation 7 amp 20 is pressurized by the cinder reinjector fan 18 and introduced into the combustion chamber 4, whereupon the unburned coal that has flown to the dust collector 12 is reinjected to eliminate unburned losses. is prevented.

ミル17は、従来の微粉炭焚ボイラの如く全量微粉炭に
しなくても良いので、小型のもので良く、然も多少粒子
が荒くても支障がない。何故なら、荒い粒子の微粉炭は
、ストーカ6の上に落下して燃焼させる事ができるので
、未燃焼する事がないからである。又、細かい粒子の微
粉炭は、未燃焼のままで集塵機12に達してもシンダー
リインゼクタ用ファン18に依り燃焼室4に再吹込され
て燃焼される。
The mill 17 does not need to be made entirely of pulverized coal as in conventional pulverized coal-fired boilers, so it can be small, and there is no problem even if the grains are somewhat rough. This is because the coarse grained pulverized coal can fall onto the stoker 6 and be combusted, so it will not go unburned. Further, even if the fine particles of pulverized coal reach the dust collector 12 unburned, they are re-blown into the combustion chamber 4 by the cinder reinjector fan 18 and burned.

尚、蒸気ボイラ1に於ては、例えば全燃焼量の80%を
ストーカ燃焼させると共に、残りの20%を微粉炭燃焼
させる。
In the steam boiler 1, for example, 80% of the total combustion amount is subjected to stoker combustion, and the remaining 20% is combusted by pulverized coal.

これに関して、更に分り易く単純化して説明する。This will be explained in a simplified manner to make it easier to understand.

今、ストーカ6の上で燃焼させる石炭量を全体量の80
%とし、石炭燃焼用空気の空気過剰率をλ=1.35と
すると、全空気量比は、108となり、これに対して理
論必要空気量比(実際に消費される空気量比)は80、
余剰空気量比は28という事になる。
Now, the amount of coal to be burned on stoker 6 is 80% of the total amount.
% and the excess air ratio of coal combustion air is λ = 1.35, the total air amount ratio is 108, whereas the theoretically required air amount ratio (actually consumed air amount ratio) is 80. ,
The surplus air amount ratio is 28.

スプレッダストーカ焚ボイラでは、この余剰空気が過剰
空気としてそのまま炉外に排出され、結局は排ガス損失
となってボイラ効率が低い原因になっていた。
In a spreader stoker fired boiler, this surplus air is directly discharged outside the furnace as excess air, resulting in exhaust gas loss and causing low boiler efficiency.

然し、蒸気ボイラ1では、この余剰空気が上部に゛吹込
まれる微粉炭の燃焼に一部消費される。
However, in the steam boiler 1, a portion of this surplus air is consumed for combustion of pulverized coal that is blown into the upper part.

即ち、微粉炭燃焼量は、この場合、残りの20%であり
、今、この微粉炭を空気過剰率がλ=0.5の微粉炭燃
焼用空気で燃焼室に吹込んだとすると、理論必要空気量
比は20であるが、微粉炭バーナからはその半分の10
しか供給されていないので、残りlOが不足している事
になる。
That is, the amount of pulverized coal combustion is the remaining 20% in this case, and if this pulverized coal is now blown into the combustion chamber with pulverized coal combustion air with an excess air ratio of λ = 0.5, the theoretically required air The quantity ratio is 20, but from the pulverized coal burner it is half that, 10.
Since only 1O is supplied, there is a shortage of 1O remaining.

そこで、この不足分の10を下から上がって来る余剰空
気量比28の一部でまかなうと、微粉炭燃焼後の余剰空
気量比は18に減少する。
Therefore, if this shortage of 10 is covered by a part of the surplus air amount ratio 28 coming up from below, the surplus air amount ratio after pulverized coal combustion is reduced to 18.

これは、全燃焼量100%に対して空気過剰率がλ= 
1 、1.8となり、総合的な空気過剰率を著しく低減
でき、排ガス損失を少なくできる。
This means that the excess air ratio is λ = 100% of the total combustion amount.
1 and 1.8, the overall excess air ratio can be significantly reduced and exhaust gas loss can be reduced.

この為、従来のスプレッダストーカ焚ボイラに比べてボ
イラ効率が向上する。
For this reason, boiler efficiency is improved compared to conventional spreader stoker fired boilers.

(発明の効果) 以り既述した如く本発明に依れば、次の様な優れた効果
を奏する事ができる。
(Effects of the Invention) As described above, according to the present invention, the following excellent effects can be achieved.

(1)  スプレッダストーカ焚ボイラに微粉炭、バー
ナを設けてここから微粉炭と理論必要空気量以下の微粉
炭燃焼用空気を噴射させる様にし、所謂ストーカ燃焼に
て発生した余剰空気を微粉炭燃焼に利用する様にしたの
で、総合的な空気過剰率が著しく低下して排ガス損失が
減少し、この為、従来のスプレッダストーカ焚ボイラに
比べてボイラ効率が向上する。
(1) A spreader stoker firing boiler is equipped with pulverized coal and a burner, from which pulverized coal and air for pulverized coal combustion that is less than the theoretically required amount of air are injected, and the excess air generated by so-called stoker combustion is used to burn pulverized coal As a result, the overall excess air ratio is significantly reduced and exhaust gas losses are reduced, resulting in improved boiler efficiency compared to conventional spreader stoker fired boilers.

(2)  微粉炭バーナを設けてストーカの上方の燃焼
室に於て微粉炭燃焼させる様にしたので、ここには還元
帯が形成されて、低NOx化を図る事ができる。
(2) Since a pulverized coal burner is provided to burn pulverized coal in the combustion chamber above the stoker, a reduction zone is formed here, making it possible to reduce NOx.

(3)  スプレッダストーカ焚ボイラに微粉炭バーナ
を設けて構成したので、設備費並びに運転費が余り増加
せず、この為に大型ボイラにも容易に適用できる。
(3) Since the spreader stoker-fired boiler is configured with a pulverized coal burner, equipment costs and operating costs do not increase significantly, and therefore it can be easily applied to large boilers.

(4)排ガスの一部を燃焼用空気に混ぜて燃焼室に導入
する様にすれば、より一層の低NOx化が図れる。
(4) If a part of the exhaust gas is mixed with combustion air and introduced into the combustion chamber, further reduction in NOx can be achieved.

(5)前述の例では、微粉炭は小型微粉機に依り作られ
る様に説明したが、別案として水・石炭のスラリーを微
粉炭バーナより供給する事に依り、更に低NOx化と設
備の簡単化を達成できるのでメリットは更に大きい。
(5) In the above example, it was explained that pulverized coal is made using a small pulverizer, but as an alternative, it is possible to further reduce NOx and save equipment by supplying water/coal slurry from a pulverized coal burner. The advantage is even greater because it can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の実施例に係る蒸気ボイラの概要構造を
示す略式図である。 1・・・・・・蒸気ボイラ 2・・・・・・スプレッダストーカ焚ボイラ3・・・・
・・微粉炭バーナ 4・・・・・・燃 焼 室 5・・・・・・燃焼室体 6・・・・・・ストーカ 7・・・・・・スプレッダ 8・・・・・・ボイラ本体 他1名
The drawing is a schematic diagram showing the general structure of a steam boiler according to an embodiment of the present invention. 1... Steam boiler 2... Spreader stoker fired boiler 3...
... Pulverized coal burner 4 ... Combustion chamber 5 ... Combustion chamber body 6 ... Stoker 7 ... Spreader 8 ... Boiler body 1 other person

Claims (1)

【特許請求の範囲】[Claims] 内部に燃焼室が形成された燃焼室体と、燃焼室の下部に
設けられたストーカと、燃焼室体の一部に設けられて石
炭をストーカの上へ均一に投射するスプレッダと、燃焼
室に連通すべく燃焼室体に連設されたボイラ本体とを備
えストーカの下からは石炭燃焼用空気が供給されてスト
ーカの上では余剰空気が発生するスプレッダストーカ焚
ボイラに於て、前記燃焼室体のスプレッダより上方の位
置に乾式微粉炭バーナ又は水・石炭スラリーバーナを設
け、ここから微粉炭と理論必要空気量以下の微粉炭燃焼
用空気とを噴射すべく構成した事を特徴とする蒸気ボイ
ラ。
A combustion chamber body with a combustion chamber formed inside, a stoker provided at the bottom of the combustion chamber, a spreader provided in a part of the combustion chamber body to uniformly project coal onto the stoker, and a In a spreader stoker-fired boiler, the boiler body is connected to the combustion chamber body for communication, and air for coal combustion is supplied from below the stoker, and surplus air is generated above the stoker. A steam boiler characterized in that a dry pulverized coal burner or a water/coal slurry burner is provided above the spreader, and pulverized coal and air for pulverized coal combustion in an amount less than the theoretically required amount of air are injected from the burner. .
JP8504685A 1985-04-19 1985-04-19 Steam boiler Granted JPS61243206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8504685A JPS61243206A (en) 1985-04-19 1985-04-19 Steam boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8504685A JPS61243206A (en) 1985-04-19 1985-04-19 Steam boiler

Publications (2)

Publication Number Publication Date
JPS61243206A true JPS61243206A (en) 1986-10-29
JPH0327803B2 JPH0327803B2 (en) 1991-04-17

Family

ID=13847729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8504685A Granted JPS61243206A (en) 1985-04-19 1985-04-19 Steam boiler

Country Status (1)

Country Link
JP (1) JPS61243206A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019078A1 (en) * 2001-08-23 2003-03-06 Idemitsu Kosan Co., Ltd. Method of predicting compatibility of combustion of coal, system and method for coal commission and trading, program for executing the trading method, and recording medium having the program recorded therein
JP2008281217A (en) * 2007-05-08 2008-11-20 Nepon Inc Gardening house heater including wood burning combustion furnace
CN102661603A (en) * 2011-12-28 2012-09-12 常熟市第二热电有限公司 Method for co-combustion of straws for coal chain-grate boiler of small thermal power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313721A (en) * 1976-07-22 1978-02-07 Happich Gmbh Gebr Sun visor for vehicle
JPS6023712A (en) * 1983-07-20 1985-02-06 Babcock Hitachi Kk Composite denitration combustion method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313721A (en) * 1976-07-22 1978-02-07 Happich Gmbh Gebr Sun visor for vehicle
JPS6023712A (en) * 1983-07-20 1985-02-06 Babcock Hitachi Kk Composite denitration combustion method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019078A1 (en) * 2001-08-23 2003-03-06 Idemitsu Kosan Co., Ltd. Method of predicting compatibility of combustion of coal, system and method for coal commission and trading, program for executing the trading method, and recording medium having the program recorded therein
CN100338390C (en) * 2001-08-23 2007-09-19 出光兴产株式会社 Method for predicting coal combustion suitability, coal mediation/transaction system, coal mediation/transaction method, program for executing the transaction method, and recording medium having the program recorded thereon
JP2008281217A (en) * 2007-05-08 2008-11-20 Nepon Inc Gardening house heater including wood burning combustion furnace
JP4719712B2 (en) * 2007-05-08 2011-07-06 ネポン株式会社 Horticultural house heating device with wood burning combustion furnace
CN102661603A (en) * 2011-12-28 2012-09-12 常熟市第二热电有限公司 Method for co-combustion of straws for coal chain-grate boiler of small thermal power plant

Also Published As

Publication number Publication date
JPH0327803B2 (en) 1991-04-17

Similar Documents

Publication Publication Date Title
CN100504164C (en) Coal firing method with low emission for nitrous oxides
CN104406160A (en) Low-NOx four-arch type W flame boiler for coupling air staging and fuel staging
CN110822412A (en) Low NO of pi-shaped boiler under low loadXModerate temperature flue gas recirculation system and method
CN204574001U (en) A kind of low NOx chain furnace of be coupled fractional combustion and flue gas recirculation
JPS6387508A (en) Pulverized coal igniting burner
JPH0126447B2 (en)
CN105627295B (en) A kind of chain-grate boiler and combustion method
CN103206716B (en) Multi-coal adaptive low NOxCombustion system
CN112902154A (en) Over-fire air system with controllable steam temperature deviation and CO concentration at two sides of opposed firing boiler
CN203549793U (en) Combined type chain grate furnace with pulverized coal burner
JPS61243206A (en) Steam boiler
CN202501451U (en) Novel swirl hedging boiler
CN206222303U (en) A kind of ultralow NOX combustion systems of coal-burning boiler
SU1755005A1 (en) Method of crushed-coal grate firing
CN209540869U (en) A kind of accurate blowing system of pulverized-coal fired boiler
CN209116326U (en) A kind of coal burner
CN106765061B (en) Pulverized coal boiler furnace with variable cross section of burner area and flexibility peak regulation
CN205002105U (en) Low -nitrogen combustion chain furnace with two -stage gas recirculation
CN109578991A (en) A kind of accurate blowing system of pulverized-coal fired boiler
CN214094448U (en) High-temperature low-nitrogen environment-friendly type burn-out air system
CN110220212B (en) Method for improving thermal efficiency of boiler
JPS58108306A (en) Method for low nox combustion of pulverized coal
CN103471091B (en) A kind of combined type chain furnace with coal burner
CN114659097A (en) W flame boiler deep peak shaving combustion system and method based on high-temperature air combustion
JPH0317044B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees