JPH0327803B2 - - Google Patents

Info

Publication number
JPH0327803B2
JPH0327803B2 JP60085046A JP8504685A JPH0327803B2 JP H0327803 B2 JPH0327803 B2 JP H0327803B2 JP 60085046 A JP60085046 A JP 60085046A JP 8504685 A JP8504685 A JP 8504685A JP H0327803 B2 JPH0327803 B2 JP H0327803B2
Authority
JP
Japan
Prior art keywords
air
pulverized coal
stoker
combustion chamber
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60085046A
Other languages
Japanese (ja)
Other versions
JPS61243206A (en
Inventor
Masanobu Shigaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP8504685A priority Critical patent/JPS61243206A/en
Publication of JPS61243206A publication Critical patent/JPS61243206A/en
Publication of JPH0327803B2 publication Critical patent/JPH0327803B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Fuel Combustion (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭を燃料とする蒸気ボイラに係
り、とりわけ、スプレツダストーカ焚ボイラの改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a steam boiler using coal as fuel, and particularly to an improvement of a spretz stoker-fired boiler.

(従来の技術) 最近、石油価格の高騰と価格不安定の問題か
ら、供給量が無尽蔵で安定供給が見込まれると共
に価格的にも安価な石炭が燃料として見直されて
来て居り、代替燃料として急速に普及しつつあ
る。
(Prior art) Recently, due to the problem of soaring oil prices and price instability, coal, which is expected to be inexhaustible and stable in supply and is inexpensive, has been reconsidered as a fuel, and as an alternative fuel. It is rapidly becoming popular.

旧石炭時代では、むしろ石炭が主で、石油は特
殊な条件下で使われていた。
In the Old Coal Age, coal was the main ingredient, and oil was used under special conditions.

従つて、石炭を燃料とする石炭焚ボイラは、常
識的に使用され、大型ボイラでは微粉炭焚、中小
型ボイラではストーカ焚が常識であつた。
Therefore, coal-fired boilers using coal as fuel were commonly used, with large boilers using pulverized coal and small and medium-sized boilers using stoker firing.

然しながら、近年にあつては、ボイラの大型化
が一段と進み、微粉炭焚とストーカ焚との経済的
均衡が上方に移り、最近に於ては、微粉炭焚とス
トーカ焚(とりわけスプレツダストーカ焚)との
設備費と運転費が比較され、一時間当りのトン数
(T/H)がどのくらいであれば均衡点であるの
かが最大の問題とされている。
However, in recent years, boilers have become larger and the economic balance between pulverized coal-fired and stoker-fired has shifted upwards. ) and the equipment costs and operating costs are compared, and the biggest question is what tonnage per hour (T/H) is the equilibrium point.

即ち、大方の見方では、石炭の質にも依るが、
70〜130T/Hが均衡点のボーダラインであると
されている。
In other words, in most people's view, although it depends on the quality of the coal,
It is said that 70 to 130T/H is the borderline of the equilibrium point.

従つて、例えば、70T/Hの蒸気ボイラを検討
する場合は、設備費としてはスプレツダストーカ
焚:微粉炭焚が1.0:1.4、運転費としてはスプレ
ツダストーカ焚:微粉炭焚が1.0:1.04であり、
スプレツダストーカ焚の方が有利であると考えら
れている。
Therefore, for example, when considering a 70T/H steam boiler, the equipment cost is 1.0:1.4 for Spretsuda stoker firing: pulverized coal firing, and the operating cost is 1.0:1.04 for Spretsuda stoker firing: pulverized coal firing. and
It is believed that Spretzda Stoker firing is more advantageous.

ところで、微粉炭焚は、ボイラ効率が高い利点
がある。
By the way, pulverized coal firing has the advantage of high boiler efficiency.

又、最近の微粉炭焚は、二段燃焼或は三段燃焼
と称して、先ず、微粉炭バーナから噴出する際の
空気過剰率を理論必要空気量より低く押え、バー
ナから微粉炭を噴出させた直後に二次空気を添加
したり、或はこれに加えてもう一段上部に微粉炭
を噴射して還元帯を形成すると共に三次空気を噴
射したりする事に依りNOxの発生を押える事が
できる。
In addition, recent pulverized coal firing is called two-stage combustion or three-stage combustion, and first, the excess air ratio when ejecting from the pulverized coal burner is kept lower than the theoretically required amount of air, and then the pulverized coal is ejected from the burner. It is possible to suppress the generation of NOx by adding secondary air immediately after, or by injecting pulverized coal to the top of the stage to form a reduction zone and injecting tertiary air. can.

ところが、微粉炭焚は、先述もした如く設備費
が高いと共に、ミルに大きな動力を要するので電
気代が嵩ばつて運転費が高く付く難点があつた。
However, as mentioned above, pulverized coal firing has the drawbacks of high equipment costs and the fact that the mill requires a large amount of power, leading to high electricity bills and high operating costs.

他方、スプレツダストーカ焚は、先述もした如
く、設備費と運転費が安い利点がある。
On the other hand, as mentioned earlier, the spretz dastalker firing has the advantage of low equipment and operating costs.

然しながら、スプレツダストーカ焚は、ストー
カ上の燃焼が主体であるので、どうしても空気過
剰率が微粉炭焚に比べて高くなつてしまい、この
事は必要空気量の増加とこれに依る排ガス量の増
加を招いて排ガス熱損失が増す事になり、ボイラ
効率の低下となつて現われる。
However, since Spretsuda stoker firing mainly involves combustion above the stoker, the excess air ratio is inevitably higher than in pulverized coal firing, which increases the amount of air required and the resulting increase in the amount of exhaust gas. This results in an increase in exhaust gas heat loss, which results in a decrease in boiler efficiency.

又、過剰酸素率も高くなるので、NOx値も大
きくなる。
Furthermore, since the excess oxygen rate also increases, the NOx value also increases.

もつとも、低NOx化の為には、煙道から再循
環ガスを導びいてストーカの下に空気と共に供給
する事に依つてこれを押える事ができるが、これ
には限度があつて問題があつた。
However, in order to reduce NOx, it is possible to suppress this by guiding recirculated gas from the flue and supplying it with air under the stoker, but this has limitations and problems. Ta.

この様に、スプレツダストーカ焚ボイラは、設
備費と運転費の上で微粉炭焚ボイラより有利であ
りながら、ボイラ効率と低NOx化の点で微粉炭
焚ボイラより劣つていた。。
In this way, although the Spretsuda stoker-fired boiler has advantages over the pulverized coal-fired boiler in terms of equipment costs and operating costs, it is inferior to the pulverized coal-fired boiler in terms of boiler efficiency and low NOx. .

(発明が解決しようとする問題点) 本発明は、叙上の問題点に鑑み、これを解消す
る為に創案されたもので、その目的とする処は、
設備費と運転費を安くすると共に、ボイラ効率と
低NOx化を向上させ、大型ボイラにも容易に適
用できる蒸気ボイラを提供するにある。
(Problems to be Solved by the Invention) The present invention was devised in view of the above-mentioned problems and to solve them, and its purpose is to:
It is an object of the present invention to provide a steam boiler that can reduce equipment costs and operating costs, improve boiler efficiency and reduce NOx, and can be easily applied to large boilers.

(問題点を解決するための手段) 本発明の蒸気ボイラは、内部に燃焼室が形成さ
れた燃焼室体と、燃焼室の下部に設けられてその
下からは石炭燃焼用空気が供給されてその上では
余剰空気が発生するストーカと、燃焼室体の一部
に設けられて石炭をストーカの上へ均一に投射す
るスプレツダと、燃焼室に連通すべく燃焼室体に
連設されたボイラ本体と、燃焼室体のスプレツダ
より上方の位置に設けられて微粉炭と理論必要空
気量以下の微粉炭燃焼用空気とを噴射する微粉炭
バーナと、から構成した事に特徴が存する。
(Means for Solving the Problems) The steam boiler of the present invention includes a combustion chamber body in which a combustion chamber is formed, and a combustion chamber body provided at the lower part of the combustion chamber, from which air for coal combustion is supplied. Above it, there is a stoker that generates excess air, a spreader that is installed in a part of the combustion chamber body and that evenly projects the coal onto the stoker, and a boiler body that is connected to the combustion chamber body to communicate with the combustion chamber. and a pulverized coal burner which is installed above the spreader of the combustion chamber body and injects pulverized coal and pulverized coal combustion air in an amount less than the theoretically required amount of air.

つまり、スプレツダストーカ焚ボイラを主体に
してこれと微粉炭焚ボイラとを巧みに組合せたも
のである。
In other words, it is based on a spretz stoker-fired boiler and is skillfully combined with a pulverized coal-fired boiler.

(作用) 石炭は、スプレツダに依りストーカの上に均一
に投射されると共に、ストーカの下からは石炭燃
焼用空気が供給され、ストーカの上の全面が石炭
で燃焼される。
(Operation) Coal is uniformly projected onto the stoker by the spreader, and air for coal combustion is supplied from below the stoker, so that the entire surface above the stoker is combusted with coal.

この時、ストーカの上では、石炭燃焼用空気の
全てが燃焼に使われず、余剰空気が発生する。
At this time, all of the air for coal combustion is not used for combustion above the stoker, and surplus air is generated.

他方、微粉炭焚バーナからは、微粉炭と理論必
要空気量以下の微粉炭燃焼用空気とが噴射され
る。
On the other hand, from the pulverized coal burning burner, pulverized coal and air for pulverized coal combustion in an amount less than the theoretically required amount of air are injected.

つまり、微粉炭は、空気不足の状態で燃焼室に
噴射され、この不足分はストーカの上で発生した
余剰空気で補なわれて燃焼し、ストーカの上方に
還元帯を形成する。
In other words, pulverized coal is injected into the combustion chamber in an air-deficient state, and this deficiency is compensated for by surplus air generated above the stoker and combusted, forming a reduction zone above the stoker.

石炭の燃焼並びに微粉炭の燃焼に依り発生した
燃焼ガスは、ボイラ本体に導びかれて蒸気を発生
させる。
Combustion gas generated by combustion of coal and pulverized coal is led to the boiler body to generate steam.

燃焼室では、ストーカの上で発生した余剰空気
が微粉炭の燃焼に利用されるので、総合的な空気
過剰率が下がり、排ガス熱損失を減少せしめると
共に、ストーカの上方には還元帯が形成されるの
で、NOxの発生が押えられる。
In the combustion chamber, the excess air generated above the stoker is used to burn the pulverized coal, which reduces the overall excess air ratio, reduces exhaust gas heat loss, and forms a reduction zone above the stoker. This reduces the generation of NOx.

(実施例) 以下、本発明の実施例を、図面に基づいて説明
する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

図面は、本発明の実施例に係る蒸気ボイラの概
要構造を示す略式図である。
The drawing is a schematic diagram showing the general structure of a steam boiler according to an embodiment of the present invention.

蒸気ボイラ1は、スプレツダストーカ焚ボイラ
2と微粉炭バーナ3とからその主要部が構成され
ている。
The main parts of the steam boiler 1 include a spretted stoker-fired boiler 2 and a pulverized coal burner 3.

スプレツダストーカ焚ボイラ2は、内部に燃焼
室4が形成された燃焼室体5と、燃焼室4の下部
に設けられた逆送型のストーカ6と、燃焼室体5
の一部に設けられて石炭Aをストーカ6の上に均
一に投射するスプレツダ7と、燃焼室4に連通す
べく燃焼室体5に連設されたボイラ本体8とを備
え、ストーカ6の下からは石炭燃焼用空気Bが供
給されてストーカ6の上では余剰空気Cが発生す
るものである。
The spretsuda stoker-fired boiler 2 includes a combustion chamber body 5 in which a combustion chamber 4 is formed, a reverse feed type stoker 6 provided at the lower part of the combustion chamber 4, and a combustion chamber body 5.
A spreader 7 is provided below the stoker 6 to uniformly project the coal A onto the stoker 6, and a boiler main body 8 is connected to the combustion chamber body 5 to communicate with the combustion chamber 4. Coal combustion air B is supplied from the stoker 6, and surplus air C is generated above the stoker 6.

微粉炭バーナ3は、燃焼室体5のスプレツダ7
より上方の位置に設けられ、ここから微粉炭Dと
理論必要空気量以下の微粉炭燃焼用空気Eとを噴
射させるものである。
The pulverized coal burner 3 is connected to the spreader 7 of the combustion chamber body 5.
It is provided at a higher position, from which pulverized coal D and pulverized coal combustion air E in an amount less than the theoretically required amount of air are injected.

図中、9は過熱器、10はエコノマイザ、11
はエアヒータ、12は集塵機、13は誘引通風
機、14は煙突、15は押込通風機、16は石炭
フイーダ、17はミル、18はシンダーリインゼ
クタ用フアン、19はノズル、20はガス再循環
フアン、21は二次空気ノズルである。
In the figure, 9 is a superheater, 10 is an economizer, 11
is an air heater, 12 is a dust collector, 13 is an induced draft fan, 14 is a chimney, 15 is a forced draft fan, 16 is a coal feeder, 17 is a mill, 18 is a cinder re-injector fan, 19 is a nozzle, and 20 is a gas recirculation fan. , 21 is a secondary air nozzle.

石炭Aは、スプレツダ7に依りストーカ6の上
に均一に投射されると共に、石炭燃焼用空気Bは
押込通風機15からエアヒータ11を通つてスト
ーカ6の下へ供給され、石炭Aはストーカ6の上
の全面で燃焼する。
Coal A is uniformly projected onto the stoker 6 by the spreader 7, and coal combustion air B is supplied from the forced draft fan 15 to the bottom of the stoker 6 through the air heater 11. Burns all over the top.

この時、ストーカ6の上では、石炭燃焼用空気
Bの一部が燃焼に使われずに余剰空気Cとして発
生する。
At this time, above the stoker 6, a part of the coal combustion air B is not used for combustion and is generated as surplus air C.

燃焼に依り発生した燃焼ガスは、燃焼室4→過
熱器9→ボイラ本体8→エコノマイザ10→集塵
機12→誘引通風機13、煙突14を経て排出さ
れ、ボイラ本体8に於て蒸気を発生させる。
Combustion gas generated by combustion is discharged through the combustion chamber 4 → superheater 9 → boiler body 8 → economizer 10 → dust collector 12 → induced draft fan 13 and chimney 14, and generates steam in the boiler body 8.

他方、石炭フイーダ16へ供給された石炭A
は、ミル17に依り粉砕されて微粉炭Dに為さ
れ、押込通風機15からエアヒータ11を通つて
ミル17に分岐導入された微粉炭燃焼用空気Eに
依つて微粉炭バーナ3に送られ、ここから燃焼室
4に噴射される。
On the other hand, the coal A supplied to the coal feeder 16
is crushed into pulverized coal D by the mill 17, and sent to the pulverized coal burner 3 by the pulverized coal combustion air E branched into the mill 17 from the forced draft fan 15 through the air heater 11. From here, it is injected into the combustion chamber 4.

この時、微粉炭燃焼用空気Eは、理論必要空気
量以下にして置き、所謂微粉炭Dを空気不足の状
態で噴射させる。
At this time, the air E for pulverized coal combustion is kept below the theoretically required amount of air, and the so-called pulverized coal D is injected in an air-deficient state.

燃焼室4に噴射された微粉炭Dは、同時に噴射
された微粉炭燃焼用空気Eとストーカ6の上で発
生した余剰空気Cとに依つて燃焼し、これに依り
還元帯を形成する。
The pulverized coal D injected into the combustion chamber 4 is combusted by the simultaneously injected pulverized coal combustion air E and the excess air C generated above the stoker 6, thereby forming a reduction zone.

従つて、この還元帯に依り低NOx化が達成で
きる。
Therefore, low NOx can be achieved by this reduction zone.

還元帯に於ける環元度は、微粉炭燃焼用空気E
を増減して微粉炭Dとの濃度を変える事に依り調
整できる。
The ring degree in the reduction zone is the pulverized coal combustion air E.
It can be adjusted by increasing or decreasing the concentration of pulverized coal D.

又、押込通風機15からエアヒータ11を通つ
て二次空気ノズル21に分岐導入された二次空気
を調整して燃焼室4に供給する事に依つても還元
度を変える事ができる。
Further, the degree of reduction can also be changed by adjusting the secondary air branched into the secondary air nozzle 21 from the forced draft fan 15 through the air heater 11 and supplying it to the combustion chamber 4.

集塵機12を経た排ガスの一部は、ガス再循環
フアン20に誘引され、押込通風機15からエア
ヒータ11を経て送られて来る燃焼用空気に混ぜ
てストーカ6の下や微粉炭バーナ3や二次空気ノ
ズル12から燃焼室4に吹込まれる事に依り低
O2運転に依る低NOx化が促進される。
A part of the exhaust gas that has passed through the dust collector 12 is drawn into the gas recirculation fan 20, mixed with the combustion air sent from the forced draft fan 15 through the air heater 11, and is sent under the stoker 6, to the pulverized coal burner 3, and to the secondary The air is blown into the combustion chamber 4 from the air nozzle 12.
Lower NOx is promoted by O 2 operation.

ガス再循環フアン20からの排ガスは、シンダ
ーリインゼクタ用フアン18に依り加圧されて燃
焼室4に導入する事に依り集塵機12まで飛来し
て来た未燃炭を再吹込して未燃損失が防止され
る。
The exhaust gas from the gas recirculation fan 20 is pressurized by the cinder reinjector fan 18 and introduced into the combustion chamber 4, thereby reinjecting the unburned coal that has flown to the dust collector 12 and eliminating unburned loss. Prevented.

ミル17は、従来の微粉炭焚ボイラの如く全量
微粉炭にしなくても良いので、小型のもので良
く、然も多少粒子が荒くても支障がない。何故な
ら、荒い粒子の微粉炭は、ストーカ6の上に落下
して燃焼させる事ができるので、未燃焼する事が
ないからである。又、細かい粒子の微粉炭は、未
燃焼のままで集塵機12に達してもシンダーリイ
ンゼクタ用フアン18に依り燃焼室4に再吹込さ
れて燃焼される。
The mill 17 does not need to be made entirely of pulverized coal as in conventional pulverized coal-fired boilers, so it can be small, and there is no problem even if the grains are somewhat rough. This is because the coarse grained pulverized coal can fall onto the stoker 6 and be combusted, so it will not go unburned. Further, even if fine particles of pulverized coal reach the dust collector 12 unburned, they are re-blown into the combustion chamber 4 by the cinder reinjector fan 18 and burned.

尚、蒸気ボイラ1に於ては、例えば全燃焼量の
80%をストーカ燃焼させると共に、残りの20%を
微粉炭燃焼させる。
In addition, in the steam boiler 1, for example, the total combustion amount
80% is stoker-fired and the remaining 20% is pulverized coal.

これに関して、更に分り易く単純化して説明す
る。
This will be explained in a simplified manner to make it easier to understand.

今、ストーカ6の上で燃焼させる石炭量を全体
量の80%とし、石炭燃焼用空気の空気過剰率をλ
=1.35とすると、全空気量比は、108となり、こ
れに対して理論必要空気量比(実際に消費される
空気量比)は80、余剰空気量比は28という事にな
る。
Now, let us assume that the amount of coal to be burned on the stoker 6 is 80% of the total amount, and the excess air ratio of the air for coal combustion is λ
= 1.35, the total air amount ratio is 108, whereas the theoretically required air amount ratio (actually consumed air amount ratio) is 80 and the surplus air amount ratio is 28.

スプレツダストーカ焚ボイラでは、この余剰空
気が過剰空気としてそのまま炉外に排出され、結
局は排ガス損失となつてボイラ効率が低い原因に
なつていた。
In the Spretsuda stoker-fired boiler, this surplus air is directly discharged outside the furnace as excess air, resulting in exhaust gas loss and resulting in low boiler efficiency.

然し、蒸気ボイラ1では、この余剰空気が上部
に吹込まれる微粉炭の燃焼に一部消費される。
However, in the steam boiler 1, a portion of this surplus air is consumed for combustion of pulverized coal that is blown into the upper part.

即ち、微粉炭燃焼量は、この場合、残りの20%
であり、今、この微焼炭を空気過剰率がλ=0.5
の微粉炭燃焼用空気で燃焼室に吹込んだとする
と、理論必要空気量比は20であるが、微粉炭バー
ナからはその半分の10しか供給されていないの
で、残り10が不足している事になる。
In other words, the amount of pulverized coal burned is the remaining 20% in this case.
Now, the excess air ratio of this pulverized coal is λ=0.5.
If pulverized coal combustion air is blown into the combustion chamber, the theoretical required air ratio is 20, but since only half of that, 10, is supplied from the pulverized coal burner, the remaining 10 is insufficient. Become.

そこで、この不足分の10を下から上がつて来る
余剰空気量比28の一部でまかなうと、微粉炭燃焼
後の余剰空気量比は18に減少する。
Therefore, if this shortfall of 10 is covered by a portion of the surplus air amount ratio 28 that comes up from the bottom, the surplus air amount ratio after pulverized coal combustion is reduced to 18.

これは、全燃焼量100%に対して空気過剰率が
λ=1.18となり、総合的な空気過剰率を著しく低
減でき、排ガス損失を少なくできる。
This means that the excess air ratio is λ=1.18 for a total combustion amount of 100%, which can significantly reduce the overall excess air ratio and reduce exhaust gas loss.

この為、従来のスプレツダストーカ焚ボイラに
比べてボイラ効率が向上する。
For this reason, the boiler efficiency is improved compared to the conventional spretsuda stoker fired boiler.

尚、微粉炭は、先の実施例では、衝撃式ミル等
の小型微粉機に依り作られる乾式微粉炭であつた
が、これに限らず、例えば水・石灰スラリーにし
てこれを微粉炭バーナより供給しても良い。この
様にすれば、更に低NOx化と設備の簡単化を達
成できる。
In the previous example, the pulverized coal was dry pulverized coal made using a small pulverizer such as an impact mill, but it is not limited to this. It may be supplied. In this way, further reduction in NOx and equipment simplification can be achieved.

(発明の効果) 以上既述した如く本発明に依れば、次の様な優
れた効果を奏する事ができる。
(Effects of the Invention) As described above, according to the present invention, the following excellent effects can be achieved.

(1) 燃焼室体、ストーカ、スプレツダ、ボイラ本
体、微粉炭バーナとで構成し、とりわけストー
カ燃焼にて発生した余剰空気を微粉炭燃焼に利
用する様にしたので、総合的な空気過剰率が著
しく低下して排ガス損失が減少し、ボイラ効率
が大幅に向上する。
(1) It consists of a combustion chamber body, a stoker, a spreader, a boiler body, and a pulverized coal burner, and in particular, the surplus air generated during stoker combustion is used for pulverized coal combustion, so the overall excess air ratio is reduced. This significantly reduces exhaust gas losses and significantly improves boiler efficiency.

(2) スプレツダより上方位置に微粉炭バーナを設
けてストーカの上方の燃焼室でスプレツダから
の石炭中の微粉炭を含めて微粉炭燃焼させる様
にしたので、効率の良い燃焼が行なえると共
に、大幅な低NOx化を図る事ができる。
(2) A pulverized coal burner is installed above the stoker to burn the pulverized coal, including the pulverized coal in the coal from the stoker, in the combustion chamber above the stoker, resulting in efficient combustion. Significant reduction in NOx can be achieved.

(3) 微粉炭バーナの下方にはストーカが設けられ
ているので、微粉炭バーナから噴射される微粉
炭の粒度が荒くても差支えない。何故ならば、
粒度の荒い微粉炭は、ストーカ上に落下してス
プレツダからの石炭と共にストーカ燃焼される
からである。従つて、衝撃式ミルの様に微粉炭
の粒度が荒くても設備費が安く所要電力が少な
いものを使用できる。
(3) Since the stoker is provided below the pulverized coal burner, there is no problem even if the pulverized coal injected from the pulverized coal burner has a coarse particle size. because,
This is because the coarse pulverized coal falls onto the stoker and is burned together with the coal from the spreader. Therefore, even if the particle size of pulverized coal is coarse, it is possible to use a mill such as an impact mill that has low equipment costs and requires less power.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の実施例に係る蒸気ボイラの概
要構造を示す略式図である。 1……蒸気ボイラ、2……スプレツダストーカ
焚ボイラ、3……微粉炭バーナ、4……燃焼室、
5……燃焼室体、6……ストーカ、7……スプレ
ツダ、8……ボイラ本体。
The drawing is a schematic diagram showing the general structure of a steam boiler according to an embodiment of the present invention. 1... Steam boiler, 2... Spretsudastoker-fired boiler, 3... Pulverized coal burner, 4... Combustion chamber,
5... Combustion chamber body, 6... Stoker, 7... Spretsuda, 8... Boiler body.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に燃焼室が形成された燃焼室体と、燃焼
室の下部に設けられてその下からは石炭燃焼用空
気が供給されてその上では余剰空気が発生するス
トーカと、燃焼室体の一部に設けられて石炭をス
トーカの上へ均一に投射するスプレツダと、燃焼
室に連通すべく燃焼室体に連設されたボイラ本体
と、燃焼室体のスプレツダより上方の位置に設け
られて微粉炭と理論必要空気量以下の微粉炭燃焼
用空気とを噴射する微粉炭バーナと、から構成し
た事を特徴とする蒸気ボイラ。
1. A combustion chamber body with a combustion chamber formed inside, a stoker installed at the bottom of the combustion chamber to which air for coal combustion is supplied from below and excess air generated above it, and a stoker that is part of the combustion chamber body. a boiler body connected to the combustion chamber body so as to communicate with the combustion chamber; and a boiler body disposed above the spreader in the combustion chamber body to spray fine powder evenly onto the stoker. A steam boiler characterized by comprising a pulverized coal burner that injects coal and air for pulverized coal combustion in an amount less than the theoretically required air amount.
JP8504685A 1985-04-19 1985-04-19 Steam boiler Granted JPS61243206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8504685A JPS61243206A (en) 1985-04-19 1985-04-19 Steam boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8504685A JPS61243206A (en) 1985-04-19 1985-04-19 Steam boiler

Publications (2)

Publication Number Publication Date
JPS61243206A JPS61243206A (en) 1986-10-29
JPH0327803B2 true JPH0327803B2 (en) 1991-04-17

Family

ID=13847729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8504685A Granted JPS61243206A (en) 1985-04-19 1985-04-19 Steam boiler

Country Status (1)

Country Link
JP (1) JPS61243206A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019078A1 (en) * 2001-08-23 2003-03-06 Idemitsu Kosan Co., Ltd. Method of predicting compatibility of combustion of coal, system and method for coal commission and trading, program for executing the trading method, and recording medium having the program recorded therein
JP4719712B2 (en) * 2007-05-08 2011-07-06 ネポン株式会社 Horticultural house heating device with wood burning combustion furnace
CN102661603A (en) * 2011-12-28 2012-09-12 常熟市第二热电有限公司 Method for co-combustion of straws for coal chain-grate boiler of small thermal power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313721A (en) * 1976-07-22 1978-02-07 Happich Gmbh Gebr Sun visor for vehicle
JPS6023712A (en) * 1983-07-20 1985-02-06 Babcock Hitachi Kk Composite denitration combustion method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313721A (en) * 1976-07-22 1978-02-07 Happich Gmbh Gebr Sun visor for vehicle
JPS6023712A (en) * 1983-07-20 1985-02-06 Babcock Hitachi Kk Composite denitration combustion method

Also Published As

Publication number Publication date
JPS61243206A (en) 1986-10-29

Similar Documents

Publication Publication Date Title
CN100504164C (en) Coal firing method with low emission for nitrous oxides
CN205842635U (en) A kind of combustion system reducing Opposite Firing Boiler nitrogen oxides
JPH07318016A (en) Combustion burner for carbon dioxide recovering type discharged gas recirculation boiler facility
CN204574001U (en) A kind of low NOx chain furnace of be coupled fractional combustion and flue gas recirculation
JPS6387508A (en) Pulverized coal igniting burner
CN101280920B (en) Fluidization-suspension combined combustion boiler
CN1963298A (en) Combustion technology for removing low NOx by using superfine powdered coal in re-combustion zone
CN104406160A (en) Low-NOx four-arch type W flame boiler for coupling air staging and fuel staging
CN204593369U (en) The tertiary air of pulverized-coal fired boiler is made into the device that First air carries out burning
CN101569829B (en) Method for jointly controlling emission of NOx by utilizing multi-stage bias combustion and fuel reburning
CN101476739B (en) W-shaped flame boiler with two-stage over-fire wind
CN112902154A (en) Over-fire air system with controllable steam temperature deviation and CO concentration at two sides of opposed firing boiler
CN203549793U (en) Combined type chain grate furnace with pulverized coal burner
JPH0327803B2 (en)
SU1755005A1 (en) Method of crushed-coal grate firing
CN209540869U (en) A kind of accurate blowing system of pulverized-coal fired boiler
CN85100561B (en) The coal dust coal slurry burning boiler of band precombustion chamber
CN108036308B (en) Reduce the air distribution method of boiler furnace outlet amount of nitrogen oxides and the boiler for coal dust firing
CN206001451U (en) A kind of air-distribution device of fluidized-bed combustion boiler and CFBB
CN109578991A (en) A kind of accurate blowing system of pulverized-coal fired boiler
CN219530809U (en) Multi-fuel random-proportion switching and carbon emission controllable steam generation system
CN107202319A (en) A kind of differential fluidized-bed boiler system and its method for producing circulating flue gas
CN114659097A (en) W flame boiler deep peak shaving combustion system and method based on high-temperature air combustion
CN2165333Y (en) Medium-pressure circulation fluidized-bed boiler
JPH0613923B2 (en) Combustion method for fine powdered solid fuel

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees