JPH0126447B2 - - Google Patents

Info

Publication number
JPH0126447B2
JPH0126447B2 JP56163374A JP16337481A JPH0126447B2 JP H0126447 B2 JPH0126447 B2 JP H0126447B2 JP 56163374 A JP56163374 A JP 56163374A JP 16337481 A JP16337481 A JP 16337481A JP H0126447 B2 JPH0126447 B2 JP H0126447B2
Authority
JP
Japan
Prior art keywords
combustion
pulverized coal
air
coal
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56163374A
Other languages
Japanese (ja)
Other versions
JPS5864409A (en
Inventor
Masatoshi Kudome
Tomotsuchi Kawamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16337481A priority Critical patent/JPS5864409A/en
Publication of JPS5864409A publication Critical patent/JPS5864409A/en
Publication of JPH0126447B2 publication Critical patent/JPH0126447B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 本発明は、微粉炭燃焼ボイラに関する。[Detailed description of the invention] The present invention relates to a pulverized coal combustion boiler.

従来の微粉炭燃焼システムとして、微粉炭機が
バーナと微粉炭管で直結されているものがあり、
これは単一直接方式と呼ばれているが、本方式に
おいては微粉炭搬送媒体は微粉炭機に供給された
乾燥用空気であり、微粉炭はこの搬送用空気と共
にコールノズルより火炉に投入される。この搬送
用空気(一次空気)の運転条件は微粉炭機運用条
件(微粉炭機負荷、石炭性状)より決められてお
り、低NOx運転、燃焼安定性向上およびボイラ
効果向上とは無関係に扱れていた。
Some conventional pulverized coal combustion systems have a pulverized coal machine directly connected to a burner through a pulverized coal pipe.
This is called the single direct method, but in this method the pulverized coal transport medium is the drying air supplied to the pulverizer, and the pulverized coal is fed into the furnace from the coal nozzle together with this transport air. Ru. The operating conditions of this conveying air (primary air) are determined by the pulverizer operating conditions (pulverizer load, coal properties), and are treated independently of low NOx operation, improved combustion stability, and improved boiler efficiency. was.

又、他の従来例として、微粉炭機とバーナが微
粉炭貯槽を界いに微粉炭製造システムと微粉炭輸
送および燃焼システムが独立した恰好の方式があ
り、これは貯蔵方式と呼ばれているが、本方式に
おいては微粉炭機における石炭の乾燥用熱ガスは
再循環されたり、火炉に投入されている。又、微
粉炭貯槽よりの微粉炭輸送用の一次空気は独立の
一次通風機によるものであり、これらの方式にお
いては微粉炭輸送媒体の酸素濃度制御又はバーナ
(又はバーナグループ)毎の輪送媒体の切替(燃
焼ガス、空気)等の操作制御はできない。
Another conventional example is a method in which a pulverizer and burner are separated by a pulverized coal storage tank, and a pulverized coal production system and pulverized coal transportation and combustion system are independent, and this is called a storage method. However, in this method, the hot gas used to dry the coal in the pulverizer is recirculated or fed into the furnace. In addition, the primary air for transporting pulverized coal from the pulverized coal storage tank is provided by an independent primary ventilator, and in these systems, oxygen concentration control of the pulverized coal transport medium or circular feeding medium for each burner (or burner group) is required. It is not possible to control operations such as switching (combustion gas, air), etc.

本発明は、以上述べたような従来の問題を解消
するためになされたもので、微粉炭燃焼ボイラに
おいて、微粉炭輪送媒体の酸素濃度、バーナ(バ
ーナグループ)毎の酸素濃度変化はNOx発生量
および燃焼安定性に大きく影響するが、従来方式
ではこれらの制御操作ができない為、石炭性状に
見合つた最適運転はできなかつたので、これを可
能とすると共に低温燃焼排ガス(空気予熱器排ガ
ス)を石炭乾燥に有効利用し、微粉炭製造システ
ムの不活性化とボイラ効率向上を図ることを目的
とする。
The present invention has been made to solve the conventional problems as described above. However, in the conventional method, these control operations were not possible, so it was not possible to perform optimal operation that matched the coal properties. The purpose of this project is to effectively utilize coal for drying coal to inert the pulverized coal production system and improve boiler efficiency.

本発明によれば、微粉体輪送媒体として燃焼排
ガス(酸素濃度低い)、燃焼用空気(酸素濃度高
い)の二種類を単独に又は適正酸素濃度となる様
に混合して、一次混合気の酸素濃度を制御し、ボ
イラ運転条件(石炭性状、ボイラ負荷)に応じた
最適な低NOx運転、安定燃焼を行い、又微粉炭
機用乾燥用熱源は空気予熱器出口排ガスを有効利
用し、粉砕後このガスは誘引通風機入口側に排出
することによりボイラ効率向上を併せて図るよう
にしたものである。
According to the present invention, two types of fine powder transport media, combustion exhaust gas (low oxygen concentration) and combustion air (high oxygen concentration), are used singly or mixed to obtain an appropriate oxygen concentration to form a primary air-fuel mixture. The oxygen concentration is controlled to achieve optimal low NOx operation and stable combustion according to the boiler operating conditions (coal properties, boiler load), and the drying heat source for the pulverizer makes effective use of air preheater outlet exhaust gas. This gas is then discharged to the induced draft fan inlet side to improve boiler efficiency.

以下図面を参照して本発明の実施例について詳
述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において、蒸気発生装置(以下ボイラと
いう)の火炉1にバーナ12より投入された微粉
炭は、風箱2より投入された二次空気と混合燃焼
して燃焼ガスとなり、節炭器3より排出され空気
予熱器5で燃焼用空気と熱交換を行い、集塵器7
で除塵して誘引通風機8により昇圧され煙突へ排
出される。この燃焼排ガスの一部を集塵器7出口
より採り昇圧通風機19で昇圧の上低温側燃焼ガ
スコモンダクト20へ供給する。又、温度調整用
の燃焼排ガスを空気予熱器5上流側より採り、除
塵器15で除塵後昇圧通風機16で昇圧した後高
温側燃焼ガスコモンダクト17へ供給する。ここ
より、低温及び高温燃焼ガスは微粉炭機運転条件
に適応して風量/温度制御ダンパ21にて自動制
御され、微粉炭機22に乾燥用熱源として供給さ
れる。なお、石炭は石炭貯槽24より給炭機23
にて微粉炭機22へ供給され、粉砕後微粉炭管2
5にてサイクロン26へ運ばれ分離され、更に微
粉はバクフイルタ又は電気式集塵器27で捕集さ
れ、微粉炭貯槽28に貯炭される。分離後の燃焼
ガスは誘引通風機8入口側に接続された排気煙道
29を経て廃却される。この燃焼排ガスは多量の
湿分(石炭の表面湿分の略全部と固有水分の一部
を含む)を含み、温度は50℃〜70℃とする。
In FIG. 1, pulverized coal is charged into a furnace 1 of a steam generator (hereinafter referred to as a boiler) from a burner 12, mixes with secondary air introduced from a wind box 2, and burns to become combustion gas. The air is discharged from the air preheater 5, where it exchanges heat with the combustion air, and then passes through the dust collector 7.
The dust is removed from the air, the pressure is increased by an induced draft fan 8, and the air is discharged into the chimney. A part of this combustion exhaust gas is taken from the outlet of the dust collector 7 and is supplied to the upper and lower temperature side combustion gas common duct 20 where the pressure is increased by the booster fan 19 . Further, combustion exhaust gas for temperature adjustment is taken from the upstream side of the air preheater 5, removed by a dust remover 15, boosted in pressure by a booster fan 16, and then supplied to the high temperature side combustion gas common duct 17. From here, the low-temperature and high-temperature combustion gases are automatically controlled by the air volume/temperature control damper 21 in accordance with the operating conditions of the pulverizer, and are supplied to the pulverizer 22 as a drying heat source. In addition, the coal is transported from the coal storage tank 24 to the coal feeding machine 23.
The coal is supplied to the pulverizer 22, and after pulverization, the pulverized coal pipe 2
5, the pulverized coal is transported to a cyclone 26 for separation, and the fine powder is further collected by a back filter or an electric precipitator 27 and stored in a pulverized coal storage tank 28. The separated combustion gas is disposed of through an exhaust flue 29 connected to the inlet side of the induced draft fan 8. This combustion exhaust gas contains a large amount of moisture (including almost all of the surface moisture of the coal and a part of the inherent moisture), and has a temperature of 50°C to 70°C.

次に、上記の微粉炭製造システムで製造貯蔵さ
れた微粉炭のバーナ12への輸送供給システムに
ついて説明する。
Next, a system for transporting and supplying pulverized coal produced and stored in the pulverized coal production system to the burner 12 will be described.

微粉炭輪送媒体は燃焼排ガスと燃焼用空気の二
種類が準備されているが、まず燃焼排ガスの系統
について説明する。燃焼排ガスは前記微粉炭機用
燃焼排ガス系統より低温燃焼排ガスおよび高温燃
焼排ガスを夫々煙道36,37で抽出し、温度制
御ダンパ38にて所定の温度になる様に混合し燃
焼排ガスコモンダクト39に供給する。
Two types of pulverized coal transportation media are prepared: combustion exhaust gas and combustion air. First, the combustion exhaust gas system will be explained. As for the combustion exhaust gas, low-temperature combustion exhaust gas and high-temperature combustion exhaust gas are extracted from the combustion exhaust gas system for the pulverizer through flues 36 and 37, respectively, and mixed to a predetermined temperature using a temperature control damper 38, and then transferred to a combustion exhaust gas common duct 39. supply to.

次に空気系統について説明する。高温空気は空
気予熱器5、出口二次空気風道11より採り、又
は低温空気は押込通風機9出口空気より、温度制
御ダンパ31で調整の上一次空気通風機32にて
昇圧し、一次空気コモンダクト33に供給する。
微粉炭管(母管)41は各バーナ又はバーナグル
ープ毎に設備されているが、これは第2図に示す
様に流量制御ダンパ34,40を装着した抜管3
5,42で燃焼排ガスコモンダクト39、一次空
気コモンダクト33に接続される。
Next, the air system will be explained. High-temperature air is taken from the air preheater 5 and outlet secondary air duct 11, or low-temperature air is taken from the forced draft fan 9 outlet air, adjusted with a temperature control damper 31, and then boosted in pressure by the primary air fan 32, and the primary air It is supplied to the common duct 33.
A pulverized coal pipe (main pipe) 41 is installed for each burner or burner group, and as shown in FIG.
5 and 42 are connected to a combustion exhaust gas common duct 39 and a primary air common duct 33.

微粉炭管41入口には流量計及び酸素濃度計が
装備されており、制御機構(FC、AC、S、CD)
により所定の酸素濃度および流量となる様に搬送
媒体が制御される。
The inlet of the pulverized coal pipe 41 is equipped with a flow meter and an oxygen concentration meter, and a control mechanism (FC, AC, S, CD)
The conveying medium is controlled to have a predetermined oxygen concentration and flow rate.

微粉炭は、微粉炭貯槽28より微粉炭給炭機3
0によりボイラ出力に応じ制御の上、微粉炭管4
1に供給され、エゼクタ43等により搬送媒体に
混合輸送されバーナに到る。
The pulverized coal is delivered to the pulverized coal feeder 3 from the pulverized coal storage tank 28.
0, the pulverized coal pipe 4 is controlled according to the boiler output.
1, is mixed with a conveying medium and transported by an ejector 43, etc., and reaches a burner.

なお、微粉炭管41がバーナグループ毎に設備
される場合は、分配器44(第3図参照)にて混
合気は各バーナ毎の微粉炭管に配分されバーナに
供給される。第3図の例はバーナを5グループに
分け火炉に上から下へ5段設備している例を示す
が、この場合各バーナ段毎に搬送媒体を任意に変
えることができる。
In addition, when the pulverized coal pipes 41 are installed for each burner group, the air-fuel mixture is distributed to the pulverized coal pipes for each burner by a distributor 44 (see FIG. 3) and supplied to the burners. The example in FIG. 3 shows an example in which the burners are divided into five groups and installed in five stages from top to bottom in the furnace, but in this case, the conveyance medium can be arbitrarily changed for each burner stage.

次に、その効果について説明する。 Next, the effect will be explained.

石炭燃焼において発生するNOxはその大部分
が石炭中の窒素分の酸化により生成するNOx(フ
エールNOx)であり、又この中の大部分は揮発
性窒素分によるものである為揮発分燃焼域の雰囲
気をコントロールすることによりNOx低減を効
果的に行なうことができるが、これは微粉炭搬送
媒体中の酸素濃度を制御することにより燃焼に悪
影響を与えることなく効率的に行なうことができ
る。例えば、第4図に示す様に、輸送媒体(微粉
炭と共に火炉に投入される)の酸素濃度により窒
素酸化物(NOx)発生量は変化する。この場合、
領域A又はBで運用するとNOxを低減すること
が出来る。
Most of the NOx generated during coal combustion is NOx (fail NOx) generated by the oxidation of nitrogen in the coal, and since most of this is due to volatile nitrogen, it is NOx reduction can be effectively achieved by controlling the atmosphere, and this can be done efficiently without adversely affecting combustion by controlling the oxygen concentration in the pulverized coal carrier medium. For example, as shown in FIG. 4, the amount of nitrogen oxides (NOx) generated changes depending on the oxygen concentration of the transport medium (injected into the furnace together with pulverized coal). in this case,
When operated in region A or B, NOx can be reduced.

又、第5図に石炭燃焼火炎の火炎伝播速度と微
粉炭輸送媒体中の酸素濃度の関係を示すが、石炭
性状(特に揮発分含有量)により変化する。火炎
伝播速度が速すぎる場合、逆火を起し微粉炭管内
爆発を起す危険性が生ずる。逆に火炎伝播速度が
遅すぎる場合は、火炎の安定性が失われ燃焼不安
定を生ずる危険性がある。この様な場合、輸送媒
体中の酸素濃度をコントロールすることにより、
広範囲の石炭性状に対し安定した良好な燃焼が可
能となる。
Further, FIG. 5 shows the relationship between the flame propagation speed of a coal combustion flame and the oxygen concentration in the pulverized coal transport medium, which changes depending on the coal properties (particularly the volatile content). If the flame propagation speed is too fast, there is a risk of flashback and explosion within the pulverized coal pipe. Conversely, if the flame propagation speed is too slow, there is a risk that flame stability will be lost and combustion instability will occur. In such cases, by controlling the oxygen concentration in the transport medium,
Stable and good combustion is possible for a wide range of coal properties.

更に、本発明によるシステムでは、例えばバー
ナ段毎に酸素濃度を制御しうるので、バーナ段毎
に酸素濃度に濃淡をつけることによりバーナ段を
燃焼安定用と低NOx運転用に区分・組合せ、低
NOx安定燃焼を行うこともできる。
Furthermore, in the system according to the present invention, the oxygen concentration can be controlled for each burner stage, so by varying the oxygen concentration for each burner stage, the burner stages can be divided and combined into combustion stabilization and low NOx operation, and low NOx operation can be performed.
It is also possible to perform stable NOx combustion.

以上述べた本発明の効果及びその他の効果を列
記すれば、次の通りである。
The effects of the present invention described above and other effects are listed below.

(1) 微粉炭搬送用媒体の酸素濃度を第4図のA又
Bの領域に制御し、NOx低減運転を行うこと
ができる。
(1) NOx reduction operation can be performed by controlling the oxygen concentration of the pulverized coal conveying medium to the region A or B in Fig. 4.

(2) 微粉炭搬送用媒体の酸素濃度を第5図に示す
石炭性状に応じ調整して広範囲の運用条件に対
し安定した良好な燃焼を行うことができる。
(2) By adjusting the oxygen concentration of the pulverized coal transport medium according to the coal properties shown in Figure 5, stable and good combustion can be achieved under a wide range of operating conditions.

(3) 燃焼性の悪い石炭を使用してNOx低減を図
る場合、例えばバーナ段毎に微粉炭搬送媒体の
酸素濃度に濃淡をつけ、安定燃焼を図りながら
低NOx運転を行うことができる。
(3) When aiming to reduce NOx using coal with poor combustibility, for example, by varying the concentration of oxygen in the pulverized coal carrier medium for each burner stage, it is possible to achieve low NOx operation while achieving stable combustion.

(4) 石炭乾燥用熱源としてボイラ燃焼排ガスを空
気予熱器出入口より採り排熱を有効利用する。
この際、微粉炭機出口微粉炭−燃焼排ガス混合
気温度を極力低下し、微粉炭を完全捕集後、廃
棄する。通常空気予熱器出口排ガス温度は150
〜130℃であるのに対し、石炭乾燥用の使用燃
焼ガスは50℃〜70℃で系外に廃棄するので、乾
燥用排ガス量全燃焼ガス量の25%(通常20〜35
%)とすると、ボイラ効率を 4.5%×0.25×100〜60/100=1.1%〜0.7% 程度改善することができる。
(4) Boiler combustion exhaust gas is taken from the air preheater entrance and exit as a heat source for coal drying, and the exhaust heat is effectively used.
At this time, the temperature of the pulverized coal-combustion exhaust gas mixture at the outlet of the pulverized coal machine is lowered as much as possible, and the pulverized coal is completely collected and then discarded. Normal air preheater outlet exhaust gas temperature is 150
~130℃, whereas the combustion gas used for coal drying is disposed of outside the system at a temperature of 50℃ to 70℃.
%), the boiler efficiency can be improved by approximately 4.5% x 0.25 x 100 to 60/100 = 1.1% to 0.7%.

(5) 燃焼用空気は微粉炭搬送用空気を含め実質的
には全量空気予熱器を通過させる(微粉炭搬送
用空気温度を上げることにより可能となる)一
方、燃焼ガスは一部石炭乾燥用熱源として空気
予熱器入口より微粉炭機に供給されるので、そ
の分丈空気予熱器バイパスすることとなり、空
気予熱器のガス側と空気側の温度差が大きくな
り、又空気予熱器における熱交換量の低減(空
気予熱器入口、出口ガス温度一定として)する
為空気予熱器を縮小することができる。例えば
入口ガス温度380℃、出口ガス温度140℃、入口
空気温度40℃の条件で空気予熱器通過ガス量が
2割減少する場合、第6図に示す通り空気予熱
器必要伝熱面積を略半減することができる。す
なわち、第6図において、aは従来例(対流平
均温度差66℃)、bは本発明(対流平均温度差
100℃)を示し、空気予熱器必要伝熱面積HSは
HS∝K×Δtm/Q(但し、Kは熱電流率、Δt
は対数平均温度差、Qは熱交換量)と表わされ
るからHS=66/100×0.8≒53%となる。
(5) Substantially all of the combustion air, including the air for transporting pulverized coal, passes through the air preheater (this is possible by increasing the temperature of the air for transporting pulverized coal), while a portion of the combustion gas is used for coal drying. Since the heat source is supplied to the pulverizer from the inlet of the air preheater, the air preheater is bypassed by that amount, resulting in a large temperature difference between the gas side and the air side of the air preheater, and the heat exchange in the air preheater. The air preheater can be downsized to reduce the amount (assuming a constant air preheater inlet and outlet gas temperature). For example, if the amount of gas passing through the air preheater is reduced by 20% under the conditions of inlet gas temperature 380°C, outlet gas temperature 140°C, and inlet air temperature 40°C, the required heat transfer area of the air preheater will be approximately halved as shown in Figure 6. can do. That is, in FIG. 6, a is the conventional example (convective average temperature difference 66°C), b is the present invention (convective average temperature difference
100℃), the required heat transfer area HS of the air preheater is
HS∝K×Δtm/Q (K is the thermal current rate, Δt
is the logarithmic average temperature difference, and Q is the amount of heat exchange), so HS = 66/100 x 0.8≒53%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2
図はその一部詳細図、第3図はそのバーナのグル
ープ分け例を示す図、第4図は輸送媒体の酸素濃
度と窒素酸化物(NOx)発生量との関係を示す
図、第5図はかかる酸素濃度と火炎伝播速度との
関係を示す図、第6図は本発明の効果のひとつを
従来例と対比して説明するための図である。 1……火炉、2……風箱、3……節炭器、5…
…空気予熱器、7……集塵器、8……誘引通風
機、9……押込通風機、11……二次空気風道、
12……バーナ、15……除塵器、16……昇圧
通風機、17……高温側燃焼ガスコモンダクト、
19……昇圧通風機、20……低温側燃焼ガスコ
モンダクト、21……ダンパ、22……微粉炭
機、23……給炭器、24……石炭貯槽、25…
…微粉炭管、26……サイクロン、27……集塵
器、28……微粉炭貯槽、29……煙道、30…
…微粉炭給炭器、31……ダンパ、32……一次
空気通風機、33……一次空気コモンダクト、3
4……ダンパ、35……抜管、36,37……煙
道、38……ダンパ、39……燃焼排ガスコモン
ダクト、40……ダンパ、41……微粉炭管、4
2……抜管、43……エゼクタ、44……分配
器。
Figure 1 is a system diagram showing one embodiment of the present invention, Figure 2 is a system diagram showing an embodiment of the present invention.
The figure is a partially detailed view, Figure 3 is a diagram showing an example of grouping of burners, Figure 4 is a diagram showing the relationship between the oxygen concentration of the transport medium and the amount of nitrogen oxides (NOx) generated, and Figure 5 6 is a diagram showing the relationship between oxygen concentration and flame propagation speed, and FIG. 6 is a diagram for explaining one of the effects of the present invention in comparison with a conventional example. 1... Furnace, 2... Wind box, 3... Economizer, 5...
... Air preheater, 7 ... Dust collector, 8 ... Induced draft fan, 9 ... Forced draft fan, 11 ... Secondary air duct,
12... Burner, 15... Dust remover, 16... Boosting ventilator, 17... High temperature side combustion gas common duct,
19...Boost ventilator, 20...Low temperature side combustion gas common duct, 21...Damper, 22...Pulverized coal machine, 23...Coal feeder, 24...Coal storage tank, 25...
...pulverized coal pipe, 26...cyclone, 27...dust collector, 28...pulverized coal storage tank, 29...flue, 30...
...Pulverized coal feeder, 31...Damper, 32...Primary air ventilator, 33...Primary air common duct, 3
4... Damper, 35... Extracting pipe, 36, 37... Flue duct, 38... Damper, 39... Combustion exhaust gas common duct, 40... Damper, 41... Pulverized coal pipe, 4
2... Extubation, 43... Ejector, 44... Distributor.

Claims (1)

【特許請求の範囲】[Claims] 1 空気予熱器出口排ガスおよび入口燃焼排ガス
を石炭乾燥用熱源として利用し、微粉炭機出口温
度を極力低下し、微粉炭製造後微粉炭を分離捕集
したのち乾燥用燃焼ガスを系外に廃棄する微粉炭
燃焼設備を有する微粉炭燃焼ボイラにおいて、微
粉炭貯蔵槽より供給される微粉炭をボイラ燃焼排
ガス、燃焼用空気又は両者の混合ガスでバーナに
搬送する微粉炭燃焼装置において各バーナ毎又は
各バーナグループ毎に搬送媒体の酸素濃度および
量をNOx低減および安定燃焼となるように制御
し、微粉炭の一次燃焼域における燃焼を制御でき
る様にしたことを特徴とした微粉炭燃焼ボイラ。
1 Use the air preheater outlet exhaust gas and inlet combustion exhaust gas as a heat source for coal drying, lower the pulverizer outlet temperature as much as possible, separate and collect the pulverized coal after producing pulverized coal, and then dispose of the drying combustion gas outside the system. In a pulverized coal combustion boiler that has pulverized coal combustion equipment, the pulverized coal combustion equipment transports pulverized coal supplied from a pulverized coal storage tank to the burners using boiler combustion exhaust gas, combustion air, or a mixture of both. A pulverized coal combustion boiler characterized by controlling the oxygen concentration and amount of the carrier medium for each burner group to reduce NOx and achieve stable combustion, thereby controlling combustion in the primary combustion area of pulverized coal.
JP16337481A 1981-10-15 1981-10-15 Pulverized coal firing boiler Granted JPS5864409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16337481A JPS5864409A (en) 1981-10-15 1981-10-15 Pulverized coal firing boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16337481A JPS5864409A (en) 1981-10-15 1981-10-15 Pulverized coal firing boiler

Publications (2)

Publication Number Publication Date
JPS5864409A JPS5864409A (en) 1983-04-16
JPH0126447B2 true JPH0126447B2 (en) 1989-05-24

Family

ID=15772662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16337481A Granted JPS5864409A (en) 1981-10-15 1981-10-15 Pulverized coal firing boiler

Country Status (1)

Country Link
JP (1) JPS5864409A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053714A (en) * 1983-09-03 1985-03-27 Babcock Hitachi Kk Combustion device for pulverized coal
JPH0692814B2 (en) * 1984-05-29 1994-11-16 三菱重工業株式会社 Pulverized coal combustion equipment
LU91517B1 (en) * 2009-01-21 2010-07-22 Paul Wurth A S Method for producing pulverized coal
JP5416425B2 (en) * 2009-01-30 2014-02-12 株式会社タクマ Method of using liquid containing low concentration of combustible organic substance and combustion system using the liquid fuel
US8277523B2 (en) * 2010-01-05 2012-10-02 General Electric Company Method and apparatus to transport solids
CN102189024B (en) * 2010-03-01 2013-03-06 大唐华银株洲发电有限公司 Compound pulverizing system based on coal pulverizer
CN103277808B (en) * 2013-05-07 2015-08-05 西安交通大学 A kind of small-sized industrial boiler coal powder storage and supply system and control method
CN103925607B (en) * 2014-04-16 2016-01-20 西安西热锅炉环保工程有限公司 The pressurized direct pulverizing coal system controlled based on temperature section and control method thereof
CN104132362A (en) * 2014-07-31 2014-11-05 上海理工大学 Open powder making steam warm air type boiler unit and power generation system thereof
CN104132364A (en) * 2014-07-31 2014-11-05 上海理工大学 Open powder making steam warm air type boiler unit and power generation system thereof
CN104132359A (en) * 2014-07-31 2014-11-05 上海理工大学 Open powder making steam warm air type boiler unit and power generation system thereof
CN104132360A (en) * 2014-07-31 2014-11-05 上海理工大学 Open powder making steam warm air type boiler unit and power generation system thereof
CN104315509B (en) * 2014-11-13 2016-08-17 上海理工大学 Superheat steam drying powder process type coal-burning boiler unit
CN104329668B (en) * 2014-11-13 2016-07-20 上海理工大学 Superheat steam drying powder process type coal generating system
CN106224997A (en) * 2016-09-30 2016-12-14 上海垒锦环境科技中心 The Combined type pulverizing system generated electricity for coal and mud coupling combustion
CN107957079B (en) * 2017-11-03 2019-10-15 中国神华能源股份有限公司 The control method of corner tangential firing pulverized-coal fired boiler

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342232B2 (en) * 1973-02-16 1978-11-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723771Y2 (en) * 1976-09-16 1982-05-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342232B2 (en) * 1973-02-16 1978-11-09

Also Published As

Publication number Publication date
JPS5864409A (en) 1983-04-16

Similar Documents

Publication Publication Date Title
EP0081114B1 (en) Method of firing a pulverized fuel-fired steam generator
JPH0126447B2 (en)
JP5789146B2 (en) Operation method of pulverized coal fired boiler facility and pulverized coal fired boiler facility
JPH0560304A (en) Petroleum/coke burning boiler
CN104132363A (en) Open powder making steam warm air type boiler unit and power generation system thereof
CN104132359A (en) Open powder making steam warm air type boiler unit and power generation system thereof
CN104132362A (en) Open powder making steam warm air type boiler unit and power generation system thereof
US5140916A (en) Staged combustion of fuel or sludge to reduce nitrous oxide emission
JP2002243110A (en) Pulverized coal boiler
JPH0617741B2 (en) Control method of primary air temperature at pulverized coal machine outlet for boiler
CN104132361A (en) Open powder making steam warm air type boiler unit and power generation system thereof
SU1755005A1 (en) Method of crushed-coal grate firing
KR102348745B1 (en) High-efficiency and low-emission wood boiler combined with MILD combustion and latent heat recovery of flue gas
CN104132364A (en) Open powder making steam warm air type boiler unit and power generation system thereof
CN112325282A (en) Circulating fluidized bed flue gas and fly ash combined circulating system and control method
CN108386865B (en) A kind of 300MW coal unit reduces the control device and method of unburned carbon in flue dust
CN104132360A (en) Open powder making steam warm air type boiler unit and power generation system thereof
CN104165373B (en) The open weary gas heating type boiler controller system of powder process
CN218914903U (en) Temperature-adjustable tertiary air conveying structure and coal-fired boiler system with same
CN104165371B (en) The open weary gas heating type boiler controller system of powder process
JP2708795B2 (en) Combined plant
CN112833387B (en) Boiler system for adjusting temperature of flue gas in hearth
JPS58102008A (en) Starting of fluidized bed boiler
CN104197355B (en) The open weary gas heating type boiler controller system of powder process
CN112358155A (en) Sludge drying, gasifying and incinerating system and method thereof