JPS6124318A - Impedance converter - Google Patents

Impedance converter

Info

Publication number
JPS6124318A
JPS6124318A JP14534084A JP14534084A JPS6124318A JP S6124318 A JPS6124318 A JP S6124318A JP 14534084 A JP14534084 A JP 14534084A JP 14534084 A JP14534084 A JP 14534084A JP S6124318 A JPS6124318 A JP S6124318A
Authority
JP
Japan
Prior art keywords
fet
constant current
current source
impedance converter
trq2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14534084A
Other languages
Japanese (ja)
Inventor
Tetsuya Iida
哲也 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14534084A priority Critical patent/JPS6124318A/en
Publication of JPS6124318A publication Critical patent/JPS6124318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Networks Using Active Elements (AREA)

Abstract

PURPOSE:To obtain an impedance converter with very small distortion by connecting a depletion FET and an enhancement FET in series, giving an input signal in common and eliminating channel modulation of the enhancement FET. CONSTITUTION:N channel transistors (TR) Q1, Q2 and a constant current source 1 are connected in series between a power suply VDD and ground, gates of the TRs Q1, Q2 are connected in common and the substrate of the TRQ2 and the source are connected. An input signal VIN is fed in common to the gate electrode of the TRs Q1, Q2 and an output signal VOUT is extracted from the connecting point between the TRQ2 and the constant current source 1. The TRQ1 is the depletion FET and the TRQ2 is the enhancement FET.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は歪を非常に小さくしたインピーダンス変換器に
関するもので、高精度(例えば1OBit以上)のD−
ACデシタル−アナログ)変換器出力のインピーダンス
変換などに使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an impedance converter with extremely low distortion, and a D-
It is used for impedance conversion of the output of an AC digital-to-analog converter.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来のインピーダンス変換器としては、第6図に示すよ
うなソース・フォロワがある。ここでQ□はMO8型F
ET (電界効果トランジスタ)、1は定電流源、vD
Dは電源である。上記トランジスタQ1はエンハンスメ
ント型FETであシ、ソースと基板が共通接続されてい
るため、ボディ効果(パックゲートバイアス効果)は無
視できる。しかしチャネル変調があるため、入力電圧v
1Nが高くなるにつれて、出力電圧V。U、との関係’
 VfN−v+IT ”が大きくなる。これが歪の原因
となるため、第6図のものは低歪が請求される高精度D
−A変換器のインピーダンス変換に用いることができな
いものであった。
As a conventional impedance converter, there is a source follower as shown in FIG. Here, Q□ is MO8 type F
ET (field effect transistor), 1 is constant current source, vD
D is a power source. The transistor Q1 is an enhancement type FET, and since its source and substrate are commonly connected, the body effect (pack gate bias effect) can be ignored. However, due to channel modulation, the input voltage v
As 1N increases, the output voltage V. Relationship with U'
VfN-v+IT" increases. This causes distortion, so the one in Figure 6 is a high-precision D that requires low distortion.
- It could not be used for impedance conversion of the A converter.

〔発明の目的〕[Purpose of the invention]

本発明は上記実情に鑑みてなされたもので、非常に歪を
小さくしたインピーダンス変換器を提供しようとするも
のである。
The present invention has been made in view of the above circumstances, and aims to provide an impedance converter with extremely low distortion.

〔発明の概要〕[Summary of the invention]

本発明は、デプレッション型f’ETとエンハンスメン
ト型FETを直列接続し、これらに入力信の回路を例え
ば第6図のトランジスタQ1の代わシに用いることによ
り、歪の小さいインピーダンス変換器が構成できるよう
にしたものである。
The present invention makes it possible to configure an impedance converter with low distortion by connecting a depletion type f'ET and an enhancement type FET in series and using an input signal circuit for these in place of the transistor Q1 in FIG. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

以下図面を診照して本発明の一実施例を説明する。本発
明の構成は例えば1図に示される如く、電源vDDと接
地との間に、Nチャネル型トランノスタQl  、Q2
及び定電流源1を直列接続シ、トランジスタQt+Qs
のゲート電極を共通接続し、トランジスタQ2の基板と
ソース端を接続する。トランジスタQl−Q2のゲート
電極に共通に入力信号v1Nを供給し、トランジスタQ
zと定電流源1の接続点より出力信号■o、JTを取り
出す構成である。
An embodiment of the present invention will be described below with reference to the drawings. The configuration of the present invention is, for example, as shown in FIG.
and constant current source 1 are connected in series, transistor Qt+Qs
The gate electrodes of the two transistors are connected in common, and the substrate and source end of the transistor Q2 are connected. Input signal v1N is commonly supplied to the gate electrodes of transistors Ql-Q2, and transistor Q
The configuration is such that the output signals ①o and JT are taken out from the connection point between z and the constant current source 1.

上記トランジスタQtはデプレッション型F’ET 、
 ) 5ンゾスタQ2はエンハンスメント型FFJTで
、各々のgm(相互コンダクタンス)をgml”rn2
とし、トランジスタQl  、Q2のチャネル長をそれ
ぞれLl  + Lg  +チャネル変調係数をに1 
 z K 2 とし、また入力電圧の変化分をΔV1N
I出力電圧の変化分を14f′voU1.チャネル長L
1  + L 2の変化分をそれぞれΔL8.ΔL2.
トランソスタQl  、Q2間の電圧Vlの変化分をΔ
V、とすれば、次式が成立する2、Δ工0はトランジス
タQ五 、Q2を通る電流Ioの変化分で(Δ工◇=0
) ΔL、=−Kl@ΔvXN。
The above transistor Qt is a depression type F'ET,
) 5Nzostar Q2 is an enhancement type FFJT, and each gm (mutual conductance) is gml”rn2
Let the channel lengths of transistors Ql and Q2 be Ll + Lg + channel modulation coefficient 1, respectively.
z K 2 and the change in input voltage is ΔV1N
The change in I output voltage is 14f'voU1. Channel length L
1 + L 2 changes are respectively ΔL8. ΔL2.
The change in voltage Vl between transformer Ql and Q2 is Δ
V, then the following equation holds.2, ΔWork 0 is the change in the current Io passing through the transistors Q5 and Q2 (ΔWork◇=0
) ΔL, = −Kl@ΔvXN.

ΔL2=に4(ΔV□−ΔVIN) ここで例えば、K、=に2=0.1μm/v、 I o
 = 1 m A(Jm1=gm2=1m Q r L
i ””L2 =20/’mとすればΔV −ΔV  
 =2.5X10  、ΔV、 、     −・・−
・(2)IN        0LlT となる。
ΔL2=4(ΔV□−ΔVIN) Here, for example, K,=2=0.1 μm/v, I o
= 1 m A (Jm1=gm2=1m Q r L
If i ""L2 = 20/'m, ΔV - ΔV
=2.5X10, ΔV, , −・・−
・(2) IN 0LIT.

一方、第6図の従来例の場合は ΔL、= −に拳ΔvXN となる。前記の各位を用いた場合 ΔvIN−ΔvoUT=5刈0−Δ”sN””’(4)
となシ、(2)式の本発明の場合に比較して2桁程度歪
が大きいことが予想される。
On the other hand, in the case of the conventional example shown in FIG. 6, ΔL=- is equal to fist ΔvXN. When using each of the above, ΔvIN - ΔvoUT = 5 0 - Δ"sN""' (4)
It is expected that the distortion will be about two orders of magnitude larger than in the case of the present invention using equation (2).

第2図は本発明の他の実施例であシ、導電型を第1図の
Nチャネル構成からPチャネル構成シ に変更した〆のである。この構成の場合も第1図の場合
と同様のことが云えるので、対応個所には同一符号を用
いかつこれにダッシュを付して説明を省略する。
FIG. 2 shows another embodiment of the present invention, in which the conductivity type is changed from the N-channel configuration shown in FIG. 1 to the P-channel configuration. In the case of this configuration, the same thing can be said as in the case of FIG. 1, so the same reference numerals are used for corresponding parts, a dash is attached thereto, and the explanation is omitted.

第3図〜第5図は従来からの前記定電流源1の回路例で
ある。第3図はトランジスタQ11゜Qtz+インピー
ダンスZll よりなシ、第4図はトランゾスタQ21
−Q241インピーダンスz21よりなシ、第5図はト
ランジスタQ 3l−Q341インピーダンスz3□よ
りなる。第4図、第5図においてトランジスタQ 21
r Q 221インピーダンスz211)ランソスタQ
ssrQzz*インピーダンスz31はバイアス用であ
シ、トランジスタQzs及びQz4−トランジスタQ3
a及びQ34 を飽和領域で動作させておシ、第3図に
比較して第4図、第5図の方が定電流性が非常に優れて
いる。
FIG. 3 to FIG. 5 are circuit examples of the conventional constant current source 1. Figure 3 shows the transistor Q11゜Qtz + impedance Zll, Figure 4 shows the transistor Q21.
-Q241 impedance z21, FIG. 5 consists of transistor Q3l-Q341 impedance z3□. In FIGS. 4 and 5, transistor Q 21
r Q 221 impedance z211) Lansostar Q
ssrQzz* Impedance z31 is not for bias, transistor Qzs and Qz4 - transistor Q3
When a and Q34 are operated in the saturation region, the constant current properties in FIGS. 4 and 5 are much better than in FIG. 3.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、非常に歪の小さいイ
ンピーダンス変換器が提供できるものである。
As explained above, according to the present invention, an impedance converter with extremely low distortion can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は本発
明の他の実施例を示す回路図、第3図ないし第5図は前
記回路に用いられる定電流源の回路図、第6図は従来の
インビータ“ンス変換器を示す回路図である。 QtyQ’t・・・デルツション型”’T N Q z
  yQ’2 ・・・エン−・ンスメント型FET、1
・・・定電流源、vDD・・・電源。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 第3図 第5図 VDD    VDD 第4図 DD
Fig. 1 is a circuit diagram showing one embodiment of the present invention, Fig. 2 is a circuit diagram showing another embodiment of the invention, and Figs. 3 to 5 are circuit diagrams of constant current sources used in the circuit. , FIG. 6 is a circuit diagram showing a conventional impedance converter.
yQ'2...Enforcement type FET, 1
...constant current source, vDD...power supply. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 5 VDD VDD Figure 4 DD

Claims (2)

【特許請求の範囲】[Claims] (1)第1の電位供給端と第2の電位供給端との間に、
デプレッション型の第1のFETとエンハンスメント型
の第2のFETと定電流源とを直列に接続し、前記第1
のFETと第2のFETのゲート電極を共通接続し、こ
れらゲート電極の共通接続点に入力信号を供給し、前記
第2のFETと定電流源の接続点より出力信号を取り出
すことを特徴とするインピーダンス変換器。
(1) Between the first potential supply end and the second potential supply end,
A first depletion type FET, a second enhancement type FET, and a constant current source are connected in series, and the first
The gate electrodes of the FET and the second FET are commonly connected, an input signal is supplied to the common connection point of these gate electrodes, and an output signal is taken out from the connection point of the second FET and the constant current source. impedance converter.
(2)前記定電流源は、飽和領域で動作する2つのFE
Tの直列回路からなることを特徴とする特許請求の範囲
第1項に記載のインピーダンス変換器。
(2) The constant current source includes two FEs operating in the saturation region.
The impedance converter according to claim 1, characterized in that it consists of a series circuit of T.
JP14534084A 1984-07-13 1984-07-13 Impedance converter Pending JPS6124318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14534084A JPS6124318A (en) 1984-07-13 1984-07-13 Impedance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14534084A JPS6124318A (en) 1984-07-13 1984-07-13 Impedance converter

Publications (1)

Publication Number Publication Date
JPS6124318A true JPS6124318A (en) 1986-02-03

Family

ID=15382909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14534084A Pending JPS6124318A (en) 1984-07-13 1984-07-13 Impedance converter

Country Status (1)

Country Link
JP (1) JPS6124318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971017A (en) * 1996-04-16 1999-10-26 Toyota Jidosha Kabushiki Kaisha Inlet pipe structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5971017A (en) * 1996-04-16 1999-10-26 Toyota Jidosha Kabushiki Kaisha Inlet pipe structure

Similar Documents

Publication Publication Date Title
KR0137046B1 (en) Tunable operational transconductance amplifier and two-quardant multiplier employing mos transistors
JPS63153903A (en) Amplifier circuit
US7532069B2 (en) Differential amplifying circuit
JPS62228172A (en) Voltage comparing circuit
GB2184623A (en) Voltage repeater circuit
US5043652A (en) Differential voltage to differential current conversion circuit having linear output
JPH05225364A (en) Variable-resistance type mosfet analog multiplier
JPH0758872B2 (en) Power amplifier circuit
JP2705317B2 (en) Operational amplifier
JPS6119134B2 (en)
JPS6124318A (en) Impedance converter
JP3081210B2 (en) Linear gain amplifier
US5872482A (en) Amplifier circuit having a pair of differential transistors with differing threshold values for perform offset compensation
JPH0690736B2 (en) MOSFET multiplication calculator
CN103425168A (en) Voltage-to-current converter
US4333025A (en) N-Channel MOS comparator
JPH0612856B2 (en) Amplifier circuit
US5783954A (en) Linear voltage-to-current converter
JPS61134124U (en)
JPS61186009A (en) Operational amplifier circuit
TWI739215B (en) Amplifying apparatus and voltage-to-current converter apparatus
JPS613516A (en) Interface circuit
JPS63217718A (en) Logic circuit
JP2693501B2 (en) Differential amplifier circuit
KR100259337B1 (en) Simulated floating inductor