JPS6124275A - Bipolar transistor - Google Patents

Bipolar transistor

Info

Publication number
JPS6124275A
JPS6124275A JP14447784A JP14447784A JPS6124275A JP S6124275 A JPS6124275 A JP S6124275A JP 14447784 A JP14447784 A JP 14447784A JP 14447784 A JP14447784 A JP 14447784A JP S6124275 A JPS6124275 A JP S6124275A
Authority
JP
Japan
Prior art keywords
emitter
type
base
bipolar transistor
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14447784A
Other languages
Japanese (ja)
Inventor
Tadatsugu Ito
伊藤 糾次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP14447784A priority Critical patent/JPS6124275A/en
Publication of JPS6124275A publication Critical patent/JPS6124275A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a bipolar transistor consisting of a hetero-junction having structure, in which the speed of response can be increased and the hetero-junction can be manufactured easily, by using the hetero-junction between a compound semiconductor and an element semiconductor, the lattice constants of crystals thereof have approximate values. CONSTITUTION:A hetero-junction between a compound semiconductor and an element semiconductor, the lattice constants of crystals thereof have mutually approximate values, is used. N<+> type GaP is employed as an emitter 7, P<+> type Si as a base 6 and N<-> type GaP as a collector 1, and N<+> type Si 8 is inserted between the emitter 7 and a metallic electrode 10, thus constituting a bipolar transistor. Or N<+> type GaAs may be used as the emitter, P<+> type Ge as the base and N<-> type GaAs as the collector.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、バイポーラトランジスタの構造、特に、ペテ
ロ接合から成るバイポーラトランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a bipolar transistor, and in particular to a bipolar transistor consisting of a peterojunction.

(従来技術) 従来、接合形バイポーラトランジスタの応答速度を高め
るためには、エミッタの不純物濃度をベースに比べて十
分に高めることが必要であったが、エミッタ領域の結晶
性をN保する必要性から、これには限界があった。
(Prior art) Conventionally, in order to increase the response speed of a junction bipolar transistor, it was necessary to sufficiently increase the impurity concentration of the emitter compared to the base, but it was necessary to maintain the crystallinity of the emitter region N. Therefore, there was a limit to this.

(発明の目的) 本発明は、バイポーラトランジスタQエミッタの不純物
濃度をあまシ高めないで、その応答速度を高めることが
でき、がっ、容易に製作することができる構造のヘテp
wk合から取るバイポーラトランジスタを提供すること
である。
(Objective of the Invention) The present invention provides a bipolar transistor Q emitter with a structure that can increase its response speed without significantly increasing its impurity concentration, and that can be easily manufactured.
The object of the present invention is to provide a bipolar transistor that takes the wk combination.

(発明の構成) 本発明によるバイポーラトランジスタは、この目的を達
成するために、結晶の格子定数が相互に近い直を有する
化合物半導体と元素半導体とのヘテロ接合から瓜ってお
シ、特に、ベースを元素半導体で構成し、この元素半導
体より大きなバンドギャップを持つ化合物半導体でエミ
ッタおよびコレクタを構成したものである。
(Structure of the Invention) In order to achieve this object, the bipolar transistor according to the present invention is based on a heterojunction between a compound semiconductor and an elemental semiconductor whose crystal lattice constants are close to each other. is composed of an elemental semiconductor, and the emitter and collector are composed of a compound semiconductor with a larger band gap than the elemental semiconductor.

また、エミッタとなる大きなバンドギャップを持つ化合
物半導体とエミッタ用金属xiとの間に、より小さいバ
ンドギャップを持つ元素半導体を挿入し、エミッタと金
椙電極とQ間■オーム性接続を容易にすることが望まし
い。
In addition, an elemental semiconductor with a smaller bandgap is inserted between the compound semiconductor with a large bandgap serving as the emitter and the metal xi for the emitter to facilitate the ohmic connection between the emitter, Kanasu electrode, and Q. This is desirable.

さらに、n+形G&Pをエミッタとし 、+形Siをベ
ースとし、n−形GaPまたはn″″形Siをコレクタ
とすることが望ましく、この場合、エミッタと金1!4
wLfILとの間に挿入する元素半導体をn1形Siと
することが望ましい。
Furthermore, it is desirable to use n+ type G&P as the emitter, + type Si as the base, and n- type GaP or n'''' type Si as the collector; in this case, the emitter and gold 1!4
It is desirable that the elemental semiconductor inserted between wLfIL and wLfIL is n1 type Si.

また、n十形GaA3をエミッタとし、p+形Geをベ
ースとし、n−形GaAsをコレクタとしても良い。
Alternatively, n+ type GaA3 may be used as the emitter, p+ type Ge may be used as the base, and n− type GaAs may be used as the collector.

(実施列) 接合形バイポーラトランジスタの応答速度を向上するに
は、基本的に次のような対策が考えられる。すなわち、
第1は、―子および正孔の移動匿が大きな十都体材lF
+を利用し、npn構造とすることであシ、第2は、ト
ランジスタとして動作する実効ベース幅、すなわち、^
性ベース領域の厚さを薄く設計して、エミッタから注入
されるキャリアの通過時間を短縮することであるが、こ
の池にも、ベース接合抵抗ならびに寄生容緻を低減する
ことが必要である。
(Implementation column) In order to improve the response speed of a junction bipolar transistor, the following measures can basically be considered. That is,
The first is the ten-body material IF, which has large electron and hole transfer.
The second is the effective base width that operates as a transistor, that is, ^
The purpose is to design the thickness of the active base region to be thin to shorten the transit time of carriers injected from the emitter, but it is also necessary to reduce the base junction resistance and parasitic density in this region.

ベース幅を例えば5 Q nm 以下に設計したとする
と、ベースシート抵抗の増加を避けるためには、通常の
トランジスタで用いられている1o17〜1o18/c
rn5という不純物siを少なくとも1桁増加する必要
が生じる。一方、同様の半導体から成るエミッタ接合の
場合には、その電子注入効率を維持するために、エミッ
タのドナーlul& (以下場とする)をベースの7ク
セブタa度(以下NAとする)に対して2桁程度高くと
ることが要求される。しかし、ベースのNAを1019
/C−以上とした場合、エミッタのへをこの値より2桁
近く高くすることは、結晶性の低下を招く結果となるの
で好ましくない。
For example, if the base width is designed to be 5 Q nm or less, in order to avoid an increase in base sheet resistance, it is necessary to
It becomes necessary to increase the impurity si called rn5 by at least one order of magnitude. On the other hand, in the case of an emitter junction made of a similar semiconductor, in order to maintain its electron injection efficiency, the emitter donor lul It is required to be about two digits higher. However, the base NA is 1019
/C- or more, it is not preferable to make the emitter's temperature nearly two orders of magnitude higher than this value because this results in a decrease in crystallinity.

そのような問題を解決する方法として、ヘテロ接合の利
用が考えられる。
One possible way to solve such problems is to use heterojunctions.

ヘテロ接合npn )ランジスタのエネルギーバンド構
造を第1図に示す。この図は、エミッタおよびコレクタ
にn形G&Pを用い、ベースにp形Siを用いた場合の
例である。また、第1図の熱干衡状組におけるエネルギ
ーバンドに対して、第2図は、エミッタ電圧V、および
コレクタ電圧■。をそれぞれベースに対して印加した場
合のエネルギー構造を示している。まず、第1図より明
らか々ように、エミッタからベースに向5IE子流Jn
K対する電位障壁4は、ベースからエミッタに向う正孔
流J、に対する電位障壁ちより十分に低い。npn )
ランジスタを動作させるには、血常第2図に示すように
V、とV。をベースに対して印加するので、4は8話な
シ、樫は杉となる。
The energy band structure of a heterojunction npn) transistor is shown in FIG. This figure shows an example in which n-type G&P is used for the emitter and collector, and p-type Si is used for the base. Furthermore, for the energy band in the thermal equilibrium set of FIG. 1, FIG. 2 shows the emitter voltage V and the collector voltage ■. The energy structure is shown when each is applied to the base. First, as is clear from Fig. 1, the 5IE condensate flow Jn flows from the emitter to the base.
The potential barrier 4 to K is much lower than the potential barrier to hole flow J from the base to the emitter. npn)
To operate the transistor, connect the blood to V and V as shown in Figure 2. is applied to the base, so 4 becomes 8 stories, and oak becomes cedar.

したがって、NLJ”; NAとしても、この接合を流
れる電子ωLJ′nと正孔 J′pとの比は、はぼMe
xp(杉−絋)/ kT) 10’ (Mはそれぞれベ
ースおよびエミッタ中の電子および正孔の拡散距離、拡
散係数等Q比で決まる係数で、この場@r1σ3程kQ
値をとる)となシ、十分なエミッタの電子注入効率が得
られることが分かる。また、コレクタ半導体のバンドギ
ャップはベースより大きいので、逆方向バイアス電圧V
0が印加されているコレクタ接合の正孔wL流が十分に
少なくなシ、電子wL流と正孔電流の比としてのコレク
タ効率が増すことになる。
Therefore, even if NLJ''; NA, the ratio of the electron ωLJ'n flowing through this junction and the hole J'p is approximately Me
xp (Sugi-Ki) / kT) 10' (M is a coefficient determined by the Q ratio such as the diffusion distance and diffusion coefficient of electrons and holes in the base and emitter, respectively; in this case, @r1σ3 is approximately kQ
It can be seen that sufficient electron injection efficiency of the emitter can be obtained. Also, since the bandgap of the collector semiconductor is larger than that of the base, the reverse bias voltage V
If the hole wL flow at the collector junction to which 0 is applied is sufficiently small, the collector efficiency as a ratio of the electron wL flow to the hole current will increase.

以上述べたように、第1図のようなヘテロ接合を用いる
ことによって、ベースとエミッタの不純物濃度を岡じレ
ベルとしたバイポーラトランジスタを実現することがで
きる。また、GaPとSiの格子定数は、それぞれ5.
45 Xと5.43Aであシ、容易に良好なエピタキシ
ャル成長層を分子線エピタキシャル装置を用いて形成す
ることができる。
As described above, by using a heterojunction as shown in FIG. 1, it is possible to realize a bipolar transistor in which the base and emitter impurity concentrations are at the same level. Furthermore, the lattice constants of GaP and Si are 5.
45X and 5.43A, a good epitaxial growth layer can be easily formed using a molecular beam epitaxial apparatus.

次に、このような構造のトランジスタの製作工程の具体
例を第3図を診照にして説明する。
Next, a specific example of the manufacturing process of a transistor having such a structure will be explained with reference to FIG.

この図により、”形GaPをエミッタとコレクターに用
い、P#Siをベースに用いてヘドロ接合形トランジス
タを製と[する場合の製作工程を順を追って示す。
This figure shows step by step the manufacturing process for manufacturing a sludge junction transistor using GaP as the emitter and collector and P#Si as the base.

■ コレクタとして必要な数μmのn−GaP @ i
を上向に形成しfcn+Gap基板2を用い、下面にコ
レクタ電極を被着し易ぐするためのn$i膜3を雇成し
、表面に5i02膜4を形成する。
■ Several micrometers of n-GaP @i required as a collector
An fcn+Gap substrate 2 is used, an n$i film 3 is formed on the bottom surface to facilitate attachment of the collector electrode, and a 5i02 film 4 is formed on the surface.

5i02膜4の一部をペース領域5とするため、図に示
すように除去しておく。
A portion of the 5i02 film 4 is removed as shown in the figure in order to serve as a pace region 5.

■ この基板表面に、p+Si6、n”G、P 7、n
+si8の順で、分子線エピタキシャル法を利用して、
必要な膜厚をエピタキシャル成長を行う。
■ On the surface of this substrate, p+Si6, n”G, P7, n
+si8 using molecular beam epitaxial method,
Perform epitaxial growth to the required thickness.

例えば、各層Q膜厚は、それぞれ、5Qnm以下、30
0 nm以下、1100n以下とする。n+GaP 7
 (7)上ノn+Si  膜8は、多層構造とすること
によってペテロL 台によって生じるひず与を緩和する
こと、ならびに鴫Pに比べてエネルギー・ギャップ−の
小さいsiを介して、At尋の虻属電極とオーミック接
触を容易にすることを目的としている。
For example, the thickness of each layer Q is 5Q nm or less, 30 nm or less, respectively.
0 nm or less and 1100 nm or less. n+GaP 7
(7) The upper n+Si film 8 has a multilayer structure to alleviate the strain caused by the Peter L base, and also to reduce the energy gap of At The purpose is to facilitate ohmic contact with metal electrodes.

■ フォトレジストをマスクとして、エミッタとなる部
分以外のn”Si膜8をエツチングによって除去する。
(2) Using the photoresist as a mask, the n''Si film 8 other than the portion that will become the emitter is removed by etching.

■ 幌いて、n”GaP膜7をエツチングによって除去
し、エミッタ領域を形成する。
(2) Go back and remove the n'' GaP film 7 by etching to form an emitter region.

■ 表面全域に、絶縁用のSiO2膜9をCVD法を利
用して1〜2μmの厚さに形成する。
(2) An insulating SiO2 film 9 is formed over the entire surface using the CVD method to a thickness of 1 to 2 μm.

■ エミッタおよびベースに電極を形成するためのコン
タクト・ホールをあけ、両面にAt層10.11を被着
した後、フォト・リンタグラフ法によって亀甑を整形す
る。
(2) Contact holes for forming electrodes are made in the emitter and base, and after At layers 10 and 11 are deposited on both sides, the turtle shell is shaped by the photo-lintagraph method.

以上は、本発明のへトロ接合から成るバイポーラトラン
ジスタの構造と製作方法の1例を示すものであるが、本
発明はこれに駆足されるものではない。
Although the above describes one example of the structure and manufacturing method of a bipolar transistor comprising a heterojunction according to the present invention, the present invention is not limited to this.

なお、n+GaAsをエミッタとし、p+Gさベースと
し、n−GaA、をコレクタとすることによって、同様
なヘテロ接合のバイポーラトランジスタを構成すること
もできる。
Note that a similar heterojunction bipolar transistor can be constructed by using n+GaAs as the emitter, p+G as the base, and n-GaA as the collector.

以上説明したヘテロバイポーラトランジスタは、次のよ
うな簡易な構造とすることが可能である。すなわち、@
3図において説明したGaP基をSi4板によって置き
かえるものでおるOn+31  基板上にn−Si層を
エピタキシャル成長した基板を用い、第3図2以下は全
く同一のプロセスにより、GaPをエミッタとするバイ
ポーラトランジスタを構成するものである。この場合に
は、ベースとエミッタのバンドギャップが等しくなるた
め、コレクタ効率がやや低下するが、代って、コレクタ
抵抗がGaP =iコレクタに用いる場合に比べて低減
するばかシでなく、GaPに比べて結晶性の優れたSi
を用いることが出来るため、コレクタ接合の特性低下を
十分に補1XすることがpJ’能である。
The hetero bipolar transistor described above can have the following simple structure. In other words, @
Using an On+31 substrate in which the GaP base explained in Fig. 3 is replaced by a Si4 plate and an n-Si layer epitaxially grown on the substrate, a bipolar transistor with GaP as an emitter is fabricated using the same process as shown in Fig. 2 and below. It consists of In this case, the bandgap of the base and emitter are equal, so the collector efficiency decreases a little, but in return, the collector resistance is not reduced compared to the case where GaP = i is used for the collector, but it is Si has superior crystallinity compared to
Since it is possible to use pJ', it is possible to sufficiently compensate for the deterioration in characteristics of the collector junction by 1X.

(発明の効果) 以上に説明したような本発明のヘテロ扱きを応用したバ
イポーラトランジスタにより、下記の効果が11jられ
る。
(Effects of the Invention) The bipolar transistor to which the hetero treatment of the present invention is applied as explained above provides the following effects.

(1)  エミッタの不純物濃kをベースに比べて十分
に茜くすることなく、エミッタの電子圧入効率を縄くす
ることができる。このことは、エピタキシャルJmでる
るエミッタ領域の結晶性を確保するために有効に作用す
る。
(1) The electron injection efficiency of the emitter can be improved without making the impurity concentration of the emitter sufficiently darker than that of the base. This effectively works to ensure the crystallinity of the emitter region in the epitaxial Jm.

(2)  コレクタ千導体のバンドキャンプをベースよ
り大きくとっであるので、逆方同バイアス電圧が印加さ
れあいろコレクタ接合の正孔電流が十分に少なくなシ、
電子電流の比としてのコレクタ効率が増す。
(2) Since the band camp of the collector conductor is set larger than the base, the same reverse bias voltage is applied and the hole current in the black collector junction is sufficiently small.
Collector efficiency as a ratio of electron current increases.

(3)  エミッタをバンドギャップの大きな半導体と
小さな半導体から成る2層構造とすることにより、エミ
ッタと金@電極とQオーム性接続を容易にすることがで
きると同時に、ペース・コレクタ半導体と同様な材料か
ら成る多層構造となル、機械的ひずみを稜和できる。
(3) By making the emitter a two-layer structure consisting of a semiconductor with a large band gap and a semiconductor with a small band gap, it is possible to easily connect the emitter to the gold@electrode in a Q-ohm manner, and at the same time, it is possible to make a Q-ohm connection between the emitter and the gold@electrode. The multi-layered structure made of materials can compensate for mechanical strain.

(4)ベース材料に81を用いることにより、電子およ
び正孔移動度が共に低いGaPを用いて、Si)ランジ
スタと同等の応答速度を実現することができる0同様に
、G6をペースに用いてGaA、lエミッタとコレクタ
に用いて、Geトランジスタと同等のものを実現するこ
とができる。
(4) By using 81 as the base material, it is possible to achieve a response speed equivalent to that of a Si) transistor using GaP, which has low electron and hole mobility. Similarly to 0, using G6 as the pace. By using GaA for the emitter and collector, it is possible to realize something equivalent to a Ge transistor.

(5)放射線耐性の強いG&Pを実用性のある応答速度
を持つトランジスタに利用することができる。
(5) G&P, which has strong radiation resistance, can be used for transistors with a practical response speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のバイポーラトランジスタの熱〒衡状態
におけるエネルギー構造を説明するための説明図、第2
図は本発明のバイポーラトランジスタにエミッタ電圧、
コレクタ電圧を印加し状態におけるエネルギー構造を説
明するための説明図、第3図は本発明のバイポーラトラ
ンジスタの製作工程の1実施向を説明するための工程図
である。 1 : n−GaP層、2 : n”GaP基板 3 
: n+3 。 膜 4 : S、02膜 5:ベース領域 6:p+S
i層  7 : n+GaP層  8 : n+Si膜
  9 : SiO□膜10.11:AtJm 特許出願人  新技術開発事業団 出願人代理人 弁理士 佐  藤  文  男+   
                         
         →荘
FIG. 1 is an explanatory diagram for explaining the energy structure in the thermal equilibrium state of the bipolar transistor of the present invention, and FIG.
The figure shows the emitter voltage and
FIG. 3 is an explanatory diagram for explaining the energy structure in a state where a collector voltage is applied, and FIG. 3 is a process diagram for explaining one implementation of the manufacturing process of the bipolar transistor of the present invention. 1: n-GaP layer, 2: n”GaP substrate 3
: n+3. Film 4: S, 02 film 5: Base region 6: p+S
I layer 7: n+GaP layer 8: n+Si film 9: SiO□ film 10.11: AtJm Patent applicant New Technology Development Corporation Applicant's agent Patent attorney Fumi Sato Male+

→ Sou

Claims (6)

【特許請求の範囲】[Claims] (1)結晶の格子定数が相互に近い値を有する化合物半
導体と元素半導体とのヘテロ接合から成ることを特徴と
するバイポーラトランジスタ。
(1) A bipolar transistor comprising a heterojunction of a compound semiconductor and an elemental semiconductor whose crystal lattice constants have values close to each other.
(2)特許請求の範囲第1項において、ベースを元素半
導体で構成し、この元素半導体より大きなバンドギャッ
プを持つ化合物半導体でエミッタを構成し、コレクタを
バンドギャップの大きいかまたは同一の半導体で構成し
たことを特徴とするバイポーラシスタ。
(2) In claim 1, the base is made of an elemental semiconductor, the emitter is made of a compound semiconductor with a larger band gap than the elemental semiconductor, and the collector is made of a semiconductor with a larger band gap or the same semiconductor. Bipolar sister is characterized by the following.
(3)特許請求の範囲第2項において、エミッタとなる
大きなバンドギャップを持つ化合物半導体とエミッタ用
金属電極との間に、より小さいバンドギャップを持つ元
素半導体を挿入し、エミッタと金属電極との間のオーム
性接続を容易にしたことを特徴とするバイポーラトラン
ジスタ。
(3) In claim 2, an elemental semiconductor having a smaller bandgap is inserted between a compound semiconductor having a large bandgap serving as an emitter and a metal electrode for emitter, and the emitter and metal electrode are connected together. A bipolar transistor characterized by easy ohmic connection between the two.
(4)特許請求の範囲第2項において、n^+形GaP
をエミッタとし、p^+形Siをベースとし、n^−形
GaPまたはn^−形Siをコレクタとしたことを特徴
とするバイポーラトランジスタ。
(4) In claim 2, n^+ type GaP
A bipolar transistor characterized in that it has an emitter, p^+ type Si as a base, and n^- type GaP or n^- type Si as a collector.
(5)特許請求の範囲第3項において、n^+形GaP
をエミッタとし、p^+形Siをベースとし、n^−形
GaPまたはn^−形Siをコレクタとし、エミッタと
金属電極との間に挿入する元素半導体をn^+形Siと
したことを特徴とするバイポーラトランジスタ。
(5) In claim 3, n^+ type GaP
is used as the emitter, p^+ type Si is used as the base, n^- type GaP or n^- type Si is used as the collector, and the elemental semiconductor inserted between the emitter and the metal electrode is n^+ type Si. Characteristic bipolar transistor.
(6)特許請求4範囲第2項において、n^+形GaA
sをエミッタとし、p^+形Geをベースとし、n^−
形GaAsをコレクタとしたことを特徴とするバイポー
ラトランジスタ。
(6) In claim 4, paragraph 2, n^+ type GaA
s as the emitter, p^+ type Ge as the base, n^-
A bipolar transistor characterized by having a collector made of GaAs.
JP14447784A 1984-07-13 1984-07-13 Bipolar transistor Pending JPS6124275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14447784A JPS6124275A (en) 1984-07-13 1984-07-13 Bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14447784A JPS6124275A (en) 1984-07-13 1984-07-13 Bipolar transistor

Publications (1)

Publication Number Publication Date
JPS6124275A true JPS6124275A (en) 1986-02-01

Family

ID=15363211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14447784A Pending JPS6124275A (en) 1984-07-13 1984-07-13 Bipolar transistor

Country Status (1)

Country Link
JP (1) JPS6124275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023011A (en) * 2001-07-05 2003-01-24 Matsushita Electric Ind Co Ltd Bipolar transistor device and manufacturing method therefor
JP2015015411A (en) * 2013-07-08 2015-01-22 日本電信電話株式会社 Heterojunction bipolar transistor and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128268A (en) * 1975-04-30 1976-11-09 Sony Corp Semiconductor unit
JPS5735365A (en) * 1980-08-13 1982-02-25 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128268A (en) * 1975-04-30 1976-11-09 Sony Corp Semiconductor unit
JPS5735365A (en) * 1980-08-13 1982-02-25 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023011A (en) * 2001-07-05 2003-01-24 Matsushita Electric Ind Co Ltd Bipolar transistor device and manufacturing method therefor
JP2015015411A (en) * 2013-07-08 2015-01-22 日本電信電話株式会社 Heterojunction bipolar transistor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4996166A (en) Process for fabricating a heterojunction bipolar transistor
US3409812A (en) Space-charge-limited current triode device
JPS6357947B2 (en)
JPS6359272B2 (en)
JPS6124275A (en) Bipolar transistor
JPS61147577A (en) Complementary semiconductor device
JPS61182257A (en) Hetero-junction bipolar transistor
JPS59181060A (en) Semiconductor device
JPH0346334A (en) Bipolar transistor
JP2808145B2 (en) Semiconductor device
JP2611474B2 (en) Method for manufacturing compound semiconductor device
JPS61294857A (en) Manufacture of bipolar transistor
JP2522378B2 (en) Bipolar transistor and manufacturing method thereof
JPS6357946B2 (en)
JPH0575170B2 (en)
GB2168848A (en) Semiconductor devices
JPS63287058A (en) Manufacture of hetero-junction bipolar transistor
JPS60196976A (en) Semiconductor device
JPH0131314B2 (en)
JPS60177672A (en) Hetero junction bi-polar semiconductor device
JPS5987889A (en) Manufacture of semiconductor element
JPH0621079A (en) Semiconductor device
JPH01273353A (en) Bipolar transistor and manufacture thereof
JPS60176275A (en) Integrated type semiconductor device
JPS6174367A (en) Heterojunction bipolar transistor