JPS61242308A - Production of vertical magnetic recording magnetic head - Google Patents

Production of vertical magnetic recording magnetic head

Info

Publication number
JPS61242308A
JPS61242308A JP8266685A JP8266685A JPS61242308A JP S61242308 A JPS61242308 A JP S61242308A JP 8266685 A JP8266685 A JP 8266685A JP 8266685 A JP8266685 A JP 8266685A JP S61242308 A JPS61242308 A JP S61242308A
Authority
JP
Japan
Prior art keywords
magnetic
recording
thin film
film
erasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8266685A
Other languages
Japanese (ja)
Inventor
Takashi Hatauchi
隆史 畑内
Hiromi Nakajima
中嶋 啓視
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP8266685A priority Critical patent/JPS61242308A/en
Publication of JPS61242308A publication Critical patent/JPS61242308A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/1278Structure or manufacture of heads, e.g. inductive specially adapted for magnetisations perpendicular to the surface of the record carrier

Abstract

PURPOSE:To obtain a vertical magnetic recording head having high permeability up to a high frequency area by securing such a structure where the easy axis for magnetization of a recording main magnetic pole film supported by a thin film supporting member made of a nonmagnetic material is set approximately parallel to the intra-face direction of a magnetic film of a magnetic recording medium and also to the track width direction. CONSTITUTION:A magnetic head consists of a main magnetic pole block 21 and an auxiliary magnetic pole block 22 and is driven in the direction 24 with a magnetic recording medium 23 held between both blocks 21 and 22. The block 21 contains a thin film supporting member 25 which rubs the medium 23 and a core aggregate 26 which is unified with the ember 25. The member 25 contains a monolithic structure of a thin film support member 28 for recording/reproduction which supports a magnetic thin film 27 for recording/ reproduction on one end faces, a thin film supporting member 30 for erasion which supports two magnetic thin films 29 for erasion on an end face with a prescribed apace and an intermediate substance 31 provided between both supporting members 28 and 30 respectively.

Description

【発明の詳細な説明】 (発明のfi用分野ン 本発明は、垂直磁気記録用磁気ヘッドに係り、特に主磁
極励磁型の垂直磁気記録用磁気ヘッドに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (FIELD OF THE INVENTION) The present invention relates to a magnetic head for perpendicular magnetic recording, and more particularly to a main pole excitation type magnetic head for perpendicular magnetic recording.

〔従来技術〕[Prior art]

近年、高密度記録のために垂直磁気記録用磁気ヘッドの
研究、開発が盛んに進められており、この種の磁気ヘッ
ドには主磁極励磁型と補助磁極励磁型とがある。
In recent years, research and development of magnetic heads for perpendicular magnetic recording for high-density recording have been actively conducted, and these types of magnetic heads include main pole excitation type and auxiliary pole excitation type.

前者の主磁極励磁型の垂直磁気記録用磁気ヘッドにおい
て、記録効率および再生効率は主磁極の透磁率に比例し
て増大することが知られている(例えば第18回東北大
通研シンポジウム論文集1982年3月P35〜P45
)、ところで主磁極の透磁率は、磁化容易軸方向と、そ
れを直交する磁化困難軸とでは、その周波数特性が大き
く異なる。
In the former main pole excitation type perpendicular magnetic recording magnetic head, it is known that the recording efficiency and reproduction efficiency increase in proportion to the magnetic permeability of the main pole (for example, Proceedings of the 18th Tohoku University Research Institute Symposium 1982). March P35-P45
), By the way, the frequency characteristics of the magnetic permeability of the main pole differ greatly between the easy magnetization axis direction and the hard magnetization axis perpendicular to the easy magnetization axis direction.

第 図は、0.6μmの膜厚を有するGo−Zr−Nb
アモルファス合金からなる磁性薄膜の初透磁率と周波数
との関係を示す特性図である0図中のMH,A、は磁化
困難軸方向の特性線、ME、A。
The figure shows Go-Zr-Nb with a film thickness of 0.6 μm.
In Figure 0, which is a characteristic diagram showing the relationship between the initial magnetic permeability and frequency of a magnetic thin film made of an amorphous alloy, MH and A are characteristic lines in the direction of the hard magnetization axis, ME and A.

は磁化容易軸方向の特性線である。is the characteristic line in the direction of the easy axis of magnetization.

この図から明らかなように、100KHz以上の高周波
領域では磁化困難軸方向(線H,A、)の方が磁化容易
軸方向(線E、A、)よりも透磁率が、大きくなる。そ
のため高周波特性の良い磁化困難軸方向が主磁極の作動
方向(I気記録媒体の記録面に対して垂直な方向)に向
くように、換言すれば磁化容易軸方向が膜面内方向でか
つ磁気記録媒体のトラック幅方向とほぼ平行になるよう
に主磁極を配置すれば、磁気ヘッドとしての高周波特性
が向上することが分かる。
As is clear from this figure, in the high frequency region of 100 KHz or higher, the magnetic permeability is greater in the direction of the axis of hard magnetization (lines H, A,) than in the direction of the axis of easy magnetization (lines E, A,). Therefore, the direction of the axis of easy magnetization, which has good high frequency characteristics, is directed toward the operating direction of the main magnetic pole (the direction perpendicular to the recording surface of the magnetic recording medium). It can be seen that the high frequency characteristics of the magnetic head are improved by arranging the main pole so as to be substantially parallel to the track width direction of the recording medium.

一方、第 図は従来の垂直磁気記録用磁気ヘッドに用い
る代表的な主磁極の斜視図である。この主磁極1は、磁
気記録媒体と摺接する側に配置される例えばセラミック
スや非磁性フェライトなどからなる硬質の非磁性基板2
と、それと接合された例えば磁性フェライトなどからな
る磁性基板3とを備えている。
On the other hand, FIG. 1 is a perspective view of a typical main pole used in a conventional magnetic head for perpendicular magnetic recording. This main magnetic pole 1 has a hard non-magnetic substrate 2 made of, for example, ceramics or non-magnetic ferrite, which is placed on the side that comes into sliding contact with the magnetic recording medium.
and a magnetic substrate 3 made of, for example, magnetic ferrite, which is bonded thereto.

そしてこれら基板2.3の一側面には、例えばCo−Z
r−Nbアモルファス合金などの磁性薄膜4をスパッタ
リングや蒸着などの手段で形成し:この磁性薄膜4と磁
性基板3との外周にコイル5をSlする構造になってい
る。
On one side of these substrates 2.3, for example, Co-Z
The structure is such that a magnetic thin film 4 of r-Nb amorphous alloy or the like is formed by sputtering or vapor deposition, and a coil 5 is placed around the outer periphery of this magnetic thin film 4 and the magnetic substrate 3.

前述のように磁性薄@4の磁化容易軸方向をトラック幅
方向しようとする場合、磁場中で磁性薄膜4を形成した
り、あるいは磁性薄膜4を形成したのちに磁場中で熱処
理する必要がある。
As mentioned above, if the axis of easy magnetization of the magnetic thin film @4 is to be aligned in the track width direction, it is necessary to form the magnetic thin film 4 in a magnetic field, or to perform heat treatment in a magnetic field after forming the magnetic thin film 4. .

ところで従来の主磁極1は磁性基板3上に直接磁性薄膜
4が形成された構造になっているから、前述の磁場が磁
性基板3の方に集中し、そのために磁性薄膜4への磁界
が弱くなったり、あるいは磁界方向が歪められたりする
。その結果、磁性薄膜4に磁化容易軸方向ができ難く、
またできたとしてもその方向がきれいに揃わず向きの分
散が大きいものとなり、磁化困難軸方向の高周波特性を
十分に発揮することができない。
By the way, since the conventional main magnetic pole 1 has a structure in which the magnetic thin film 4 is formed directly on the magnetic substrate 3, the above-mentioned magnetic field is concentrated toward the magnetic substrate 3, and therefore the magnetic field to the magnetic thin film 4 is weak. or the direction of the magnetic field may be distorted. As a result, it is difficult to form an axis of easy magnetization in the magnetic thin film 4,
Furthermore, even if it were possible, the directions would not be aligned neatly and the dispersion of directions would be large, making it impossible to fully exhibit the high frequency characteristics in the direction of the hard magnetization axis.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述した従来技術の欠点を解消し、高
周波領域まで透磁率の高い垂直磁気記録用磁気ヘッドを
提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide a magnetic head for perpendicular magnetic recording that has high magnetic permeability up to a high frequency range.

〔発明の概要〕[Summary of the invention]

前述の目的を達成するため、本発明は、非磁性材よりな
る薄膜支持部材に支持された記録用主磁極膜の磁化容易
軸方向が、磁気記録媒体における磁性・膜の面内方向と
ほぼ平行でかつトラック幅方向ともほぼ平行になるよう
に構成する。一方、コイルを巻装した記録用コア部を前
記記録用主磁極膜付きの薄膜支持部材とは別個に作製し
て、しかるのち前記記録用主磁極膜の一端と記録用コア
部の一端とを一体に接合して主磁極を組立てることを特
徴とするものである。
In order to achieve the above-mentioned object, the present invention provides a structure in which the axis of easy magnetization of the recording main pole film supported by a thin film support member made of a non-magnetic material is approximately parallel to the in-plane direction of the magnetic film in the magnetic recording medium. In addition, it is configured to be substantially parallel to the track width direction. On the other hand, a recording core portion around which a coil is wound is fabricated separately from the thin film support member with the main recording magnetic pole film, and then one end of the main recording magnetic pole film and one end of the recording core portion are fabricated. It is characterized by assembling the main magnetic pole by joining them together.

〔実施例〕〔Example〕

次に本発明の実施例について図とともに説明する。第1
図は一実施例に係る磁気ヘッドの分解斜視図、第2図は
その磁気ヘッドの使用状態を示す縦断面図である。
Next, embodiments of the present invention will be described with reference to the drawings. 1st
FIG. 2 is an exploded perspective view of a magnetic head according to one embodiment, and FIG. 2 is a longitudinal sectional view showing the state in which the magnetic head is used.

磁気ヘッドは主磁極ブロック21と補助磁極ブロック2
2とから構成され、第2図に示す如く両者間に磁気記録
媒体23が挟まれた状態で24の方向に走行される。
The magnetic head consists of a main pole block 21 and an auxiliary pole block 2.
2, and is run in the direction 24 with a magnetic recording medium 23 sandwiched between them as shown in FIG.

主磁極ブロック21は、磁気記録媒体23と摺接する薄
膜支持部材25と、それと一体に接合されるコア集合体
26とから構成されている。
The main pole block 21 is composed of a thin film support member 25 that is in sliding contact with the magnetic recording medium 23, and a core assembly 26 that is integrally joined to the thin film support member 25.

まず、薄膜支持部材25の構成ならびにそれの製法につ
いて説明する。薄膜支持部材25は第1図に示すように
、端面に1つの記録再生用磁性薄膜27を支持した記録
再生用薄膜支持部材2Bと、端面に所定の間隔をおいて
2つの消去用磁性薄膜29を支持した消去用薄膜支持部
材30と、前記支持部材28.30の間に介在された中
間体31とを一体に接合したものから構成されている。
First, the structure of the thin film support member 25 and its manufacturing method will be explained. As shown in FIG. 1, the thin film supporting member 25 includes a thin film supporting member 2B for recording and reproducing which supports one magnetic thin film 27 for recording and reproducing on its end face, and two magnetic thin films 29 for erasing at a predetermined interval on the end face. The erasing thin film supporting member 30 supporting the supporting members 28 and 30 and an intermediate body 31 interposed between the supporting members 28 and 30 are integrally joined.

支持部材28.30ならびに中間体31は非磁性である
とともに、磁気記録媒体との摺接面を有していることか
ら耐摩耗性などの機械的性質が要求され、これらの要求
に合うものとして例えばカーボン複合材、セラミックス
、ガラス、非磁性フェライトなどがある。
Since the support members 28, 30 and the intermediate body 31 are non-magnetic and have a sliding surface with the magnetic recording medium, they are required to have mechanical properties such as wear resistance. Examples include carbon composites, ceramics, glass, and non-magnetic ferrite.

なかでもカーボン複合材は好適で、これは炭素多孔質体
と、この炭素多孔質体の空隙に充填される金属と、この
充填金属の空孔を閉鎖する合成樹脂とから主に構成され
ている。
Among these, carbon composite materials are preferred, and are mainly composed of a carbon porous body, a metal that fills the voids of the carbon porous body, and a synthetic resin that closes the voids of the filled metal. .

次にこの複合材について詳しく説明する。まず、使用さ
れる炭素材料は、具体的には天然黒鉛、人造黒鉛、石炭
コークス、石油コークス、カーボンブラック、石炭粉な
どが用いられ、炭素質または黒鉛質のいずれか、あるい
は炭素質と黒鉛質の混合物であっても良い。
Next, this composite material will be explained in detail. First, the carbon materials used include natural graphite, artificial graphite, coal coke, petroleum coke, carbon black, coal powder, etc., and are either carbonaceous or graphite, or carbonaceous and graphite. It may be a mixture of.

これら炭素材料は自己潤滑性に優れているが、機械的強
度が十分でない、そのために機械強度増強材が使用され
る訳であるが、この機械強度増強材には結合材と含浸材
とがあり、それぞれを単独で用いてもよいし、あるいは
結合材と含浸材を併用することもできる。
Although these carbon materials have excellent self-lubricating properties, they do not have sufficient mechanical strength, which is why mechanical strength-enhancing materials are used. These mechanical strength-enhancing materials include binders and impregnating materials. , each may be used alone, or a binding material and an impregnating material may be used together.

前記結合材には樹脂結合材、ピッチコークス結合材など
が用いられる。樹脂結合材としては、例えばフェノール
樹脂、ジビニルベンゼン樹脂、フラン系樹脂、エポキシ
樹脂などの各種熱硬化性樹脂、あるいは例えばフッ素樹
脂やポリアセクール樹脂などの各種熱可塑性樹脂が用い
られる。この樹脂結合材は結着後に不活性雰囲気中で熱
処理して、それの一部を炭素化、黒鉛化することもでき
る。
As the binder, a resin binder, a pitch coke binder, or the like is used. As the resin binder, various thermosetting resins such as phenol resin, divinylbenzene resin, furan resin, and epoxy resin, or various thermoplastic resins such as fluororesin and polyacetylene resin are used. After binding, this resin binder can be heat-treated in an inert atmosphere to partially carbonize and graphitize it.

前記ピッチコークス結合材は、石炭ピッチあるいは石油
ピッチを結合材とし、結着後にこれを焼結してピッチコ
ークス化したものである。
The pitch coke binder is made by using coal pitch or petroleum pitch as a binder and sintering it after binding to form pitch coke.

前記炭素材料と機械強度増強材との焼結材料は、その表
面や内部に微細な空隙が形成されるため、機械的強度が
低下する。そのために、炭素多孔質体中の前記空隙に金
属含浸材を充填して機械的強度が向上するようにしであ
る。
The sintered material of the carbon material and the mechanical strength enhancing material has fine voids formed on its surface and inside, resulting in a decrease in mechanical strength. To this end, the voids in the carbon porous body are filled with a metal impregnating material to improve mechanical strength.

前記金属含浸材としては、スズ、アンチモン、銅、亜鉛
、銀、鉛、アルミニウム、マグネシウム、カドミウムな
どの単独あるいはそれらの合金が用いられる。金属含浸
材は、それの融点より約50〜100℃高い温度で含浸
される。
As the metal impregnating material, tin, antimony, copper, zinc, silver, lead, aluminum, magnesium, cadmium, etc. alone or an alloy thereof can be used. The metal impregnating material is impregnated at a temperature of about 50-100° C. above its melting point.

前記金属含浸材は、冷却されることによって表面や内部
に微細な空孔が形成される場合がある。
When the metal impregnated material is cooled, fine pores may be formed on the surface or inside the metal impregnated material.

このように微細な空孔が形成されると、これまた機械的
強度が低下するため、前記空孔に合成樹脂を充填して空
孔を閉鎖し、これによって機械的強度を増している。
When such fine pores are formed, the mechanical strength also decreases, so the pores are filled with a synthetic resin to close the pores, thereby increasing the mechanical strength.

前記合成樹脂としては、フェノール樹脂、ジビニルベン
ゼン樹脂、エポキシ樹脂、フラン樹脂、フッ素樹脂、ポ
リエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂
などが用いられる。
As the synthetic resin, phenol resin, divinylbenzene resin, epoxy resin, furan resin, fluororesin, polyethylene resin, polypropylene resin, polyamide resin, etc. are used.

この炭素材料と機械強度増強材との複合材中における炭
素材料の含有率は約50〜95体積%で、炭素材料の含
有率がそれより低いと十分な潤滑性が得られず、一方、
炭素材料の含有率が約95体積%を超すと機械的強度が
低すぎることになる。
The content of the carbon material in this composite material of the carbon material and the mechanical strength enhancing material is about 50 to 95% by volume, and if the content of the carbon material is lower than that, sufficient lubricity cannot be obtained;
If the carbon material content exceeds about 95% by volume, the mechanical strength will be too low.

前述のように支持部材28.30の端面に磁性薄膜27
.29を形成、支持する訳であるが、それらの端面に直
接磁性薄膜27.29を形成することはできない、すな
わち前記カーボン複合材、セラミックス、非磁性フェラ
イトなどからなる支持部材28.30の表面は研磨加工
しても表面に微孔や微細な凹凸があり、その表面に直接
磁性薄膜27.29を形成するのには適していない、そ
のため本発明の磁気ヘッドでは、研磨処理した支持部材
28.30の端面に第3図に示すように有機高分子膜3
2をそれぞれ形成して、表面の平坦度を確保した。
As mentioned above, the magnetic thin film 27 is formed on the end face of the support member 28.30.
.. However, the magnetic thin films 27 and 29 cannot be directly formed on the end faces of the supporting members 28 and 29. In other words, the surfaces of the supporting members 28 and 30 made of carbon composite material, ceramics, non-magnetic ferrite, etc. Even after polishing, there are micropores and fine irregularities on the surface, making it unsuitable for directly forming a magnetic thin film 27. As shown in FIG.
2 was formed respectively to ensure the flatness of the surface.

この有機高分子膜32としては、後工程で磁性薄膜27
.29を形成する際に高温にさらされることから、特に
耐熱性に優れたポリイミド系樹脂が好適であるが、他に
もシリコン系樹脂やポリアミド系樹脂も適用可能である
。有機高分子ll!I32の形成方法としては、支持部
材28.30を高速回転させ、そのときの遠心力を利用
して高分子樹脂の溶液を支持部材28.30の表面で伸
ばして被膜を形成する所謂スピンナー法が好適である。
As this organic polymer film 32, a magnetic thin film 27 is formed in a later process.
.. Since the material 29 is exposed to high temperatures when forming the material 29, a polyimide resin having particularly excellent heat resistance is suitable, but other silicone resins and polyamide resins are also applicable. Organic polymers! A method for forming I32 is the so-called spinner method in which the support member 28.30 is rotated at high speed and the centrifugal force at that time is used to spread a polymer resin solution on the surface of the support member 28.30 to form a film. suitable.

このように支持部材28.30の端面に有機高分子H3
2を形成することにより、面粗度が極めて小さい表面を
得ることができるが問題がない訳ではない、すなわち金
属材料からなる磁性薄膜27゜29に対して有機高分子
膜32の熱膨張係数が極端に大きいことである。すなわ
ち、磁性薄膜27゜29の熱膨張係数が約100〜1l
OX10−’cm/C■/℃であるのに対して、例えば
ポリイミド樹脂の有機高分子膜32の場合は、熱膨張係
数が約400〜800xlO−7cm / am / 
”cで、両者の間にはかなりの差がある。そのため有機
高分子膜32の上に直接磁性薄膜27.29を形成する
と、磁気ヘッドの周囲の温度が低温になったり高温にな
ったりした場合、有機高分子膜32と磁性薄膜27゜2
9との熱膨張係数の差により磁性薄膜27.29に内部
応力が生じ、それの磁気特性が低下する。
In this way, the organic polymer H3 is attached to the end face of the support member 28.30.
2, it is possible to obtain a surface with extremely low surface roughness, but it is not without problems. In other words, the coefficient of thermal expansion of the organic polymer film 32 is This is extremely large. That is, the thermal expansion coefficient of the magnetic thin film 27°29 is about 100 to 1 l.
For example, in the case of the organic polymer film 32 made of polyimide resin, the thermal expansion coefficient is approximately 400 to 800xlO-7cm/am/
``c'', and there is a considerable difference between the two. Therefore, if the magnetic thin film 27.29 is formed directly on the organic polymer film 32, the temperature around the magnetic head will become low or high. In this case, the organic polymer film 32 and the magnetic thin film 27°2
The difference in thermal expansion coefficient between the magnetic thin films 27 and 29 causes internal stress in the magnetic thin films 27 and 29, which deteriorates their magnetic properties.

そのため本発明の磁気ヘッドでは、有機高分子膜32の
表面に磁性薄膜27.29の熱膨張係数に近い中間膜3
3を形成し、その上に磁性薄膜27゜29を設けた。こ
の中間膜33は非磁性材であることが必要で、例えばア
ルミナ、二酸化ケイ素あるいは非磁性金属などが用いら
れ、中間膜33の形成方法としては有機高分子膜32に
よって得られた平坦度を生かすためにスパッタリングや
蒸着が好適である。前述のアルミナからなる中間膜33
の熱膨張係数は約80X10−’c■/C■/℃、二酸
化ケイ素の場合のそれは約4X1G−’c■/C■/℃
で、磁性薄膜27.29の熱膨張係数に近い。
Therefore, in the magnetic head of the present invention, an intermediate film 3 having a thermal expansion coefficient close to that of the magnetic thin film 27.29 is formed on the surface of the organic polymer film 32.
3 was formed, and a magnetic thin film 27°29 was provided thereon. This intermediate film 33 must be made of a non-magnetic material, such as alumina, silicon dioxide, or a non-magnetic metal, and the method for forming the intermediate film 33 takes advantage of the flatness obtained by the organic polymer film 32. Therefore, sputtering and vapor deposition are suitable. Intermediate film 33 made of alumina mentioned above
The coefficient of thermal expansion of is about 80X10-'c/C/℃, and that of silicon dioxide is about 4X1G-'c/C/℃
The coefficient of thermal expansion is close to that of the magnetic thin film 27.29.

中間膜33の表面に形成される磁性薄膜27゜29とし
ては、例えばCo−Zr−NbやCo−Hf−Taなど
のCo系アモルファス、パーマロイまたはセンダストな
どが用いられ、スパッタリングや蒸着などの薄膜形成技
術を用いて所定の厚さに設けられる。
As the magnetic thin film 27, 29 formed on the surface of the intermediate film 33, Co-based amorphous such as Co-Zr-Nb or Co-Hf-Ta, permalloy, or sendust is used, and the thin film can be formed by sputtering or vapor deposition. It is provided to a predetermined thickness using technology.

この記録再生用磁性薄膜27を形成するときに同時に例
えば100ガウス程度の磁場がかけられ、磁化容易軸方
向(E、A、)が所望の方向に揃った磁性薄膜27が形
成される。
When forming the recording/reproducing magnetic thin film 27, a magnetic field of, for example, about 100 Gauss is applied at the same time, and the magnetic thin film 27 whose easy magnetization axes (E, A,) are aligned in a desired direction is formed.

第4図ならびに第5図は、この磁性薄膜27を有する薄
膜支持部材28を量産的に製造する場合の説明図で、両
図とも図面を簡略化するため前述の有機高分子膜32な
らびに中間膜33の図示は省略しである。
4 and 5 are explanatory diagrams for mass-producing the thin film supporting member 28 having the magnetic thin film 27, and in both figures, the above-mentioned organic polymer film 32 and intermediate film are used to simplify the drawings. The illustration of 33 is omitted.

薄膜支持部材28が多数個取りできる広さを有する支持
部材素体28aの上面全体に有機高分子膜ならびに中間
膜を順次形成し、しかるのちその上に薄膜形成技術を用
いて磁性薄膜27の素膜27aを形成する。前述のよう
にこの素膜27aを形成する際に磁場がかけられるから
、第4図に示す如く素膜27aの磁化容易軸方向(E、
A、)が揃う。
An organic polymer film and an intermediate film are sequentially formed on the entire upper surface of a supporting member element body 28a having a size that allows a large number of thin film supporting members 28 to be formed, and then a magnetic thin film 27 element is formed thereon using a thin film forming technique. A film 27a is formed. As described above, since a magnetic field is applied when forming this elementary film 27a, the direction of the easy axis of magnetization (E,
A,) are complete.

次に第5図に示すように素膜27aをストライプ状にエ
ツチングして細帯部27bを形成し、しかるのちこの細
帯部27bや支持部材素体28aなどを一緒に一点鎖A
lICに沿って順次裁断する。
Next, as shown in FIG. 5, the element film 27a is etched in a stripe shape to form a narrow band part 27b, and then this narrow band part 27b and the supporting member element body 28a are combined together with a single chain A.
Cut sequentially along the IC.

このようにすることにより、磁化困難軸方向ストライプ
状磁性薄膜27の長手方向で、磁化容易軸方向がそれと
直角の方向を向いた磁性薄膜27を有する所定の大きさ
の薄膜支持部材28が多数個取りできる。
By doing so, there are a large number of thin film supporting members 28 of a predetermined size, each having a magnetic thin film 27 whose easy magnetization axis is perpendicular to the longitudinal direction of the striped magnetic thin film 27 in the direction of the hard axis of magnetization. You can take it.

磁性薄膜27.29を形成した表面に、前記中間膜33
と同じようにアルミナ、二酸化ケイ素あるいは非磁性金
属などからなる非磁性で硬質の第1保護膜34と、ポリ
イミド系樹脂、シリコン系樹脂あるいはポリアミド系樹
脂などの有機高分子からなる第2保護膜35とが順次積
層状態に形成される。磁性薄膜27.29を比較的硬質
の中間膜33と第1保護膜34でサンドイッチ状で挟ん
だ構造にすれば、これら中間膜33と第1保護膜34が
磁性薄膜27.29の補強体として役立ち、磁気記録媒
体との摺接による磁性薄膜27.29の端部のだれが防
止できる。
The intermediate film 33 is placed on the surface on which the magnetic thin films 27 and 29 are formed.
Similarly, a nonmagnetic and hard first protective film 34 made of alumina, silicon dioxide, or nonmagnetic metal, and a second protective film 35 made of an organic polymer such as polyimide resin, silicone resin, or polyamide resin. are sequentially formed in a laminated state. If the magnetic thin film 27.29 is sandwiched between a relatively hard intermediate film 33 and the first protective film 34, the intermediate film 33 and the first protective film 34 can serve as reinforcement for the magnetic thin film 27.29. This is useful and can prevent the edges of the magnetic thin films 27 and 29 from sagging due to sliding contact with the magnetic recording medium.

しかるのち、記録再生用薄膜支持部材28の第2保護膜
35上ならびに消去用薄膜支持部材30の第2保護膜3
5上に接着剤層36をそれぞれ形成し、中間体31を間
にして記録再生用薄膜支持部材28と消去用薄膜支持部
材30を圧着して三者を一体に接合することにより、薄
膜支持部材25が構成される。
After that, the second protective film 35 of the thin film supporting member 28 for recording and reproduction and the second protective film 3 of the thin film supporting member 30 for erasing are applied.
5, and the recording/reproducing thin film supporting member 28 and the erasing thin film supporting member 30 are bonded together with the intermediate body 31 in between to bond them together, thereby forming a thin film supporting member. 25 are configured.

次にコア集合体26の構成ならびにそれの製法について
説明する。コア集合体26は第1図および第6図に示す
ように、記録再生用コイル37を巻装した記録再生用コ
ア38と、消去用コイル39を巻装した消去用コア40
と、前記記録再生用コア3日と消去用コア40との間に
介在された非磁性材よりなるセパレータ41とから構成
されている。
Next, the structure of the core assembly 26 and its manufacturing method will be explained. As shown in FIGS. 1 and 6, the core assembly 26 includes a recording/reproducing core 38 around which a recording/reproducing coil 37 is wound, and an erasing core 40 around which an erasing coil 39 is wound.
and a separator 41 made of a non-magnetic material interposed between the recording/reproducing core 3 and the erasing core 40.

第7図および第8図は、コア集合体26の製法の一例を
示す斜視図である。この例の場合、記録再生用コア38
と消去用コア40はフェライトなどからなる1つのブロ
ック状のコア素体42から作り出される。すなわち第7
図に示すように、コア素体42の記録再生用コア形成部
分43と消去用コ、ア形成部分44との間、すなわちセ
パレータ形成部分45に凹溝46が一方の端面から他方
の端面に向けて貫通するように所定の深さをもって形成
される。凹溝46が形成されても、それの溝底部47を
介して記録再生用コア形成部分43と消去用コア形成部
分44とは一体に連結されている0次にこの凹溝46内
に溶融状態の低融点ガラス、合成樹脂あるいは非磁性金
属などのような結着性を有する非磁性材が流し込まれ、
冷却・固化されてセパレータ41が形成される。
7 and 8 are perspective views showing an example of a method for manufacturing the core assembly 26. FIG. In this example, the recording/reproducing core 38
The erasing core 40 is produced from one block-shaped core body 42 made of ferrite or the like. That is, the seventh
As shown in the figure, a concave groove 46 is formed between the recording/reproducing core forming part 43 and the erasing core forming part 44 of the core body 42, that is, in the separator forming part 45, from one end surface to the other end surface. It is formed to have a predetermined depth so as to penetrate through it. Even if the groove 46 is formed, the recording/reproducing core forming part 43 and the erasing core forming part 44 are integrally connected through the groove bottom 47. A non-magnetic material with binding properties such as low melting point glass, synthetic resin or non-magnetic metal is poured into the
The separator 41 is formed by cooling and solidifying.

しかるのち第8図に示す如く、このコア素体42の前記
溝底部47側からセパレータ41側に向けて、セパレー
タ41の長手方向とほぼ平行な第1溝48、第2溝49
ならびに第3溝50と、これらの溝と直交する第4溝5
1と第5溝52とが切削加工により形成される。同図に
示すように第1溝48は記録再生用コア形成部分43上
に、第2溝49はセパレータ41上に、第3溝50は消
去用コア形成部分44上に、それぞれ一方の端面から他
方の端面に向けて貫通するように形成される。
Then, as shown in FIG. 8, a first groove 48 and a second groove 49 are formed in the core body 42 from the groove bottom 47 side toward the separator 41 side, which are substantially parallel to the longitudinal direction of the separator 41.
and a third groove 50 and a fourth groove 5 perpendicular to these grooves.
1 and the fifth groove 52 are formed by cutting. As shown in the figure, the first groove 48 is formed on the recording/reproducing core forming part 43, the second groove 49 is formed on the separator 41, and the third groove 50 is formed on the erasing core forming part 44, from one end surface. It is formed so as to penetrate toward the other end surface.

また、第4溝51ならびに第5溝52は、記録再生用コ
ア形成部分43からセパレータ41ならびに消去用コア
形成部分40にかけて、一方の端面から他方の端面に向
けて貫通するように形成される。
Further, the fourth groove 51 and the fifth groove 52 are formed so as to penetrate from one end surface to the other end surface from the recording/reproducing core forming portion 43 to the separator 41 and the erasing core forming portion 40.

第1溝48と第2溝49の溝深さjl(第8図参照)は
第2図に示すように記録再生用コイル37の高さとほぼ
等しく、第3溝50、第4溝51ならびに第5溝52の
溝深さ43(第8図参照)゛は、記録再生用コイル37
の高さと消去用コイル39の高さの総和にほぼ等しくな
るように設計されている。
The groove depth jl (see FIG. 8) of the first groove 48 and the second groove 49 is approximately equal to the height of the recording/reproducing coil 37 as shown in FIG. The groove depth 43 (see FIG. 8) of the five grooves 52 is the recording/reproducing coil 37.
It is designed to be approximately equal to the sum of the height of the erasing coil 39 and the height of the erasing coil 39.

また、第7図に示す溝底部47の厚さ12は前述の第2
溝49の溝深さ11よりも若干小さく設計されており、
第2溝49を形成することによりそれがセパレータ41
に確実に達するようになっている。このような寸法設計
にすることにより、第2溝49の形成で記録再生用コア
38と消去用コア40とを磁気的に確実に分けることが
できる。
Furthermore, the thickness 12 of the groove bottom portion 47 shown in FIG.
It is designed to be slightly smaller than the groove depth 11 of the groove 49,
By forming the second groove 49, the separator 41
is certain to be reached. With such dimensional design, the recording/reproducing core 38 and the erasing core 40 can be magnetically separated reliably by forming the second groove 49.

なお、記録再生用コア38と消去用コア40はセパレ・
−夕41を介して結着されているから、第2溝49をセ
パレータ41上に形成してもこれらが別々になるような
ことはない。
Note that the recording/reproducing core 38 and the erasing core 40 are separate.
- Since they are connected via the separator 41, even if the second groove 49 is formed on the separator 41, they will not be separated.

前記3本の第1溝48、第2溝49、第3溝50と、2
本の第4溝51、第5溝52とをクロスして形成するこ
とにより、次のような各部分を同時に作ることができる
The three first grooves 48, the second grooves 49, the third grooves 50, and the two
By forming the fourth groove 51 and the fifth groove 52 of the book so as to cross each other, the following sections can be made at the same time.

すなわち、コア集合体26のほぼ中央に記録再生用中央
脚部53と消去用中央脚部54とがセパレータ41の厚
さに相当する間隔をもって立設される。この記録再生用
中央脚部53と消去用中央脚部54の周囲には、ともに
コイル37.39が挿入されるコイル収納凹部が形成さ
れる。さらに記録再生用中央脚部53の両側には記録再
生用側端脚部55が、消去用中央脚部54の両側には消
去用側端脚部56がそれぞれ形成される。また、コア集
合体26の四隅には、比較的面積の広い支持脚部57が
それぞれ設けられる。
That is, a recording/reproducing central leg 53 and an erasing central leg 54 are erected approximately at the center of the core assembly 26 with an interval corresponding to the thickness of the separator 41 . Coil storage recesses into which coils 37 and 39 are inserted are formed around the recording/reproducing central leg 53 and the erasing central leg 54. Further, side end leg parts 55 for recording and reproducing are formed on both sides of the central leg part 53 for recording and reproducing, and side end leg parts 56 for erasing are formed on both sides of the central leg part 54 for erasing. Furthermore, support legs 57 having a relatively large area are provided at each of the four corners of the core assembly 26.

記録再生用コイル37ならびに消去用コイル39は、セ
ルフボンディングワイヤーによって筒状に形成されてい
る。第2図に示すように先に消去用コイル39が消去用
中央脚部54に外嵌され、次に記録再生用コイル37が
記録再生用中央脚部53に外嵌される。従ってセパレー
タ41上において記録再生用コイル37と消去用コイル
39とが一部重なり、これによって記録再生用中央脚部
53と消去用中央脚部54との間隔、換言すれば記録再
生用磁性薄膜27と消去用コイル1l129との間隔を
可及的に小さくすることができる。記録再生用コイル3
7ならびに消去用コイル39の端部は、コア集合体26
の第1溝48〜第5溝52のいずれから溝を通してコア
集合体26の外周に引き出され、必要に応じて溝内に接
着剤を流し込んで記録再生用コイル37、消去用コイル
39あるいはこれらのコイル端部を固定して、断線を未
然に防止する。
The recording/reproducing coil 37 and the erasing coil 39 are formed into a cylindrical shape using self-bonding wire. As shown in FIG. 2, the erasing coil 39 is first fitted onto the erasing central leg 54, and then the recording/reproducing coil 37 is fitted onto the recording/reproducing central leg 53. Therefore, the recording/reproducing coil 37 and the erasing coil 39 partially overlap on the separator 41, and this results in the distance between the recording/reproducing central leg 53 and the erasing central leg 54, in other words, the recording/reproducing magnetic thin film 27 The distance between the erasing coil 1l129 and the erasing coil 1l129 can be made as small as possible. Recording/reproducing coil 3
7 and the end of the erasing coil 39 are connected to the core assembly 26
The recording/reproducing coil 37, the erasing coil 39, or these are pulled out from any one of the first groove 48 to the fifth groove 52 to the outer periphery of the core assembly 26 through the groove, and if necessary, an adhesive is poured into the groove. Fix the ends of the coil to prevent wire breakage.

このようにしてコア集合体26が構成され、この上に前
述の薄膜支持部材25が載置され、第2図に示すように
記録再生用磁性薄膜27ならびに消去用磁性薄膜29の
下端部、すなわち摺接端部と反・対何の端部が記録再生
用中央脚部53ならびに消去用中央脚部54の上面に当
接して、それぞれ磁気的に接続される。従って消去用中
央脚部54(記録再生用中央脚部53)の横幅は、2つ
の消去用磁性薄膜29がともに完全に接触できる大きさ
に設計されている。
In this way, the core assembly 26 is constructed, on which the thin film supporting member 25 described above is placed, and as shown in FIG. The sliding contact end and the opposite end come into contact with the upper surfaces of the recording/reproducing central leg 53 and the erasing central leg 54, and are magnetically connected to each other. Therefore, the width of the erasing central leg 54 (recording/reproducing central leg 53) is designed to be such that the two erasing magnetic thin films 29 can come into complete contact with each other.

I膜支持部材25をコア集合体26の上に載置して位置
せしめたのち、第2図に示すように両者の側面にわたっ
て接着剤58を塗布することにより、薄膜支持部材25
とコア集合体26とを一体に接合する。なお、この接着
M58はコア集合体26における第1溝48〜第5溝5
2の適当な溝に流し込んで、薄膜支持部材25との接着
を図っても構わない。
After placing and positioning the I membrane support member 25 on the core assembly 26, as shown in FIG.
and the core assembly 26 are joined together. Note that this adhesive M58 is attached to the first groove 48 to the fifth groove 5 in the core assembly 26.
It is also possible to pour it into the appropriate groove of No. 2 and try to adhere it to the thin film support member 25.

前述の補助磁極ブロック22(第1図、第2図参照)は
、記録再生および消去効率を高めるために用いられる。
The aforementioned auxiliary magnetic pole block 22 (see FIGS. 1 and 2) is used to improve recording/reproducing and erasing efficiency.

この補助磁極ブロック22は、コア集合体26とほぼ同
じ大きさをしたフェライトあるいはセンダストなどから
なるコアブロック59と、それの磁気記録媒体23と摺
接する側に設けられた耐摩耗層60とから構成されてい
る。この耐摩耗層60は薄膜支持部材25と同じように
カーボン複合体、セラミックス、ガラスあるいは非磁性
フェライトなどからなり、特にカーボン複合材が貰用で
きる。
The auxiliary magnetic pole block 22 is composed of a core block 59 made of ferrite, sendust, or the like and having approximately the same size as the core assembly 26, and a wear-resistant layer 60 provided on the side of the core block 59 that is in sliding contact with the magnetic recording medium 23. has been done. Like the thin film support member 25, this wear-resistant layer 60 is made of a carbon composite, ceramics, glass, or non-magnetic ferrite, and in particular, a carbon composite can be used.

この補助磁極ブロック22と主磁極ブロック21との間
に挟持された状態で走行するディスク状あるいはテープ
状の磁気記録媒体23は、第2図に示すようにベースフ
ィルム61と、軟磁性層62と、垂直磁気異方性を有す
る記録層63とが積層状態に形成されたものから構成さ
れている。
A disk-shaped or tape-shaped magnetic recording medium 23 running while being sandwiched between the auxiliary magnetic pole block 22 and the main magnetic pole block 21 has a base film 61 and a soft magnetic layer 62 as shown in FIG. , and a recording layer 63 having perpendicular magnetic anisotropy are formed in a laminated state.

第2図に示すように、補助磁極ブロック22は、主磁極
ブロック21の記録再生用磁性薄膜27、消去用磁性l
ll1l129、記録再生用側端脚部55、消去用側端
脚部56などと対向して、記録再生あるいは消去時に閉
磁路を構成する。
As shown in FIG. 2, the auxiliary magnetic pole block 22 includes a recording/reproducing magnetic thin film 27 of the main magnetic pole block 21 and an erasing magnetic thin film 27.
ll1l129, the recording/reproducing side end leg 55, the erasing side end leg 56, etc., forming a closed magnetic path during recording/reproducing or erasing.

第9図は、両面に記録層63を有する磁気記録媒体23
を用いるのに適した磁気ヘッドの例を示す縦断面図であ
る。
FIG. 9 shows a magnetic recording medium 23 having recording layers 63 on both sides.
FIG. 2 is a longitudinal cross-sectional view showing an example of a magnetic head suitable for use in the present invention.

この例の場合補助磁極ブロック22は不要で、その代わ
りに磁気記録媒体23を介して対向する相手側磁気ヘッ
ドのコア部分が補助磁極(イメージコア)の機能を果た
す、すなわち同図に示すように、記録再生用磁性薄膜2
7 (消去用磁性薄膜29)、記録再生用中央脚部53
 (消去用中央脚部54)ならびに記録再生用コイル3
7 (消去用コイル39)などが、磁気記録媒体23に
おけるトラックの並び方向(磁気記録媒体23の走行方
向と直交する方向)に沿って所定の間隔など互いに反対
の位置にずれている。従って記録再生用磁性薄膜27 
(消去用磁性薄膜29)は相手側磁気ヘッドの記録再生
用側端脚部55(消去用側脚部56)と対向し、記録再
生用側端脚部55(消去用側端脚部56)がイメージコ
アとして役立つ。
In this example, the auxiliary magnetic pole block 22 is unnecessary, and instead, the core portion of the other magnetic head that faces the magnetic recording medium 23 functions as the auxiliary magnetic pole (image core), as shown in the figure. , magnetic thin film for recording and reproduction 2
7 (erasing magnetic thin film 29), recording/reproducing central leg portion 53
(erasing center leg 54) and recording/reproducing coil 3
7 (erasing coil 39) and the like are shifted to opposite positions at a predetermined interval along the track arrangement direction in the magnetic recording medium 23 (direction perpendicular to the running direction of the magnetic recording medium 23). Therefore, the magnetic thin film 27 for recording and reproduction
(The erasing magnetic thin film 29) faces the recording/reproducing side end leg 55 (erasing side leg 56) of the counterpart magnetic head, and the recording/reproducing side end leg 55 (erasing side end leg 56) serves as an image core.

なお、磁気ヘッドの製法は前述と同様であるので、その
説明は省略する。
Incidentally, since the manufacturing method of the magnetic head is the same as described above, the explanation thereof will be omitted.

前記実施例では記録用磁性薄膜を形成する際に磁場をか
けて、磁化容易軸方向、磁化困難軸方向が所定の方向に
向くようにしたが、本発明はこれに限定されるものでは
なく、記録用磁性薄膜を形成したのち、それを磁場中で
熱処理することにより、磁化容易軸方向、磁化困難軸方
向を所定の方向に向かせることもできる。
In the above embodiment, a magnetic field was applied when forming the recording magnetic thin film so that the easy axis of magnetization and the axis of hard magnetization were oriented in predetermined directions, but the present invention is not limited to this. After forming a magnetic thin film for recording, it can be heat-treated in a magnetic field to direct the easy axis of magnetization and the axis of hard magnetization to predetermined directions.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のような構成になっており、記録用主磁極
膜を支持した薄膜支持部材と、磁性材料からなるコア部
とが別個に作られるから、前記記録用主磁極膜の磁化容
易軸方向を揃える処理の際に磁性材料の存在による磁気
的な影響がなく、磁化容易軸方向をきれいに揃えること
ができる。また、主磁極膜の磁化容易軸方向を磁気記録
媒体における磁性膜の面内方向に向けるということは、
換言すれば主磁極膜の磁化困難軸方向を磁気ヘッドの作
動方向に向けるということであり、このようにすれば第
1θ図の特性図から明らかなように高周波特性を高める
ことができる。
The present invention has the above-described structure, and since the thin film supporting member supporting the recording main pole film and the core portion made of a magnetic material are made separately, the axis of easy magnetization of the recording main pole film There is no magnetic influence due to the presence of a magnetic material during the process of aligning the directions, and the directions of the easy magnetization axes can be neatly aligned. In addition, directing the easy axis of magnetization of the main pole film in the in-plane direction of the magnetic film in the magnetic recording medium means that
In other words, the direction of the hard magnetization axis of the main pole film is directed toward the operating direction of the magnetic head, and by doing so, the high frequency characteristics can be improved as is clear from the characteristic diagram in FIG. 1θ.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第9図は本発明の実施例に係る磁気ヘッド
を説明するためのもので、第1図は磁気ヘッドの分解斜
視図、第2図はその磁気ヘッドの使用、状態を示す縦断
面図、第3図はこの磁気ヘッドにおける薄膜支持部材の
拡大横断面図、第4図ならびに第5図は記録再生用磁性
薄膜を有する薄膜支持部材を製造するときの説明図、第
6図はこの磁気ヘッドにおけるコア集合体の平面図、第
7図および第8図はコア集合体の製法の一例を示す斜視
図、第9図は本発明の他の実施例に係る磁気ヘッドの縦
断面図、第10図は磁化困難軸方向ならびに磁化容易軸
方向における透磁率と周波数との関係を示す特性図、第
11図は従来の磁気ヘッドに用いていた主磁極の斜視図
である。 21・・・・主磁極ブロック、23・・・・磁気記録媒
体、25・・・・薄膜支持部材、26・・・・コア集合
体、27・・・・記録再生用磁性薄膜、28・・・・記
録再生用薄膜支持部材、53・・・・記録再生用中央脚
部。 第4図 第6図     26
1 to 9 are for explaining a magnetic head according to an embodiment of the present invention. FIG. 1 is an exploded perspective view of the magnetic head, and FIG. 2 is a vertical cross-section showing the use and state of the magnetic head. 3 is an enlarged cross-sectional view of a thin film support member in this magnetic head, FIGS. 4 and 5 are explanatory diagrams for manufacturing a thin film support member having a magnetic thin film for recording and reproduction, and FIG. 6 is an enlarged cross-sectional view of a thin film support member in this magnetic head. A plan view of the core assembly in this magnetic head, FIGS. 7 and 8 are perspective views showing an example of a method for manufacturing the core assembly, and FIG. 9 is a longitudinal sectional view of a magnetic head according to another embodiment of the present invention. , FIG. 10 is a characteristic diagram showing the relationship between magnetic permeability and frequency in the direction of the hard axis of magnetization and the direction of the easy axis of magnetization, and FIG. 11 is a perspective view of the main pole used in a conventional magnetic head. 21... Main magnetic pole block, 23... Magnetic recording medium, 25... Thin film support member, 26... Core assembly, 27... Magnetic thin film for recording and reproduction, 28... . . . thin film support member for recording and reproduction, 53 . . . central leg for recording and reproduction. Figure 4 Figure 6 26

Claims (1)

【特許請求の範囲】[Claims] 非磁性材よりなる薄膜支持部材に支持された記録用主磁
極膜の磁化容易軸方向が、磁気記録媒体における磁性膜
の面内方向とほぼ平行でかつトラック幅方向ともほぼ平
行になるように構成され、コイルを巻装した記録用コア
部を前記記録用主磁極膜付きの薄膜支持部材とは別個に
作製して、前記記録用主磁極膜の一端と記録用コア部の
一端とを一体に接合することを特徴とする垂直磁気記録
用磁気ヘッドの製法。
The easy magnetization axis direction of the recording main pole film supported by a thin film support member made of a non-magnetic material is configured to be substantially parallel to the in-plane direction of the magnetic film in the magnetic recording medium and also substantially parallel to the track width direction. A recording core portion around which a coil is wound is manufactured separately from the thin film support member with the main recording magnetic pole film, and one end of the main recording magnetic pole film and one end of the recording core portion are integrated. A method for manufacturing a magnetic head for perpendicular magnetic recording characterized by bonding.
JP8266685A 1985-04-19 1985-04-19 Production of vertical magnetic recording magnetic head Pending JPS61242308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8266685A JPS61242308A (en) 1985-04-19 1985-04-19 Production of vertical magnetic recording magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8266685A JPS61242308A (en) 1985-04-19 1985-04-19 Production of vertical magnetic recording magnetic head

Publications (1)

Publication Number Publication Date
JPS61242308A true JPS61242308A (en) 1986-10-28

Family

ID=13780752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8266685A Pending JPS61242308A (en) 1985-04-19 1985-04-19 Production of vertical magnetic recording magnetic head

Country Status (1)

Country Link
JP (1) JPS61242308A (en)

Similar Documents

Publication Publication Date Title
JPS6237446B2 (en)
US4695512A (en) Magnetic head for perpendicular magnetic recording
JPS61242308A (en) Production of vertical magnetic recording magnetic head
KR930000067B1 (en) Magnetic head
US4731299A (en) Composite magnetic material
KR0152601B1 (en) Core of composite magnetic head and the manufacturing method
JPS61129712A (en) Production of magnetic head for vertical magnetic recording
JPS61129711A (en) Production of magnetic head for vertical magnetic recording
JP2883825B2 (en) Magnetic head
JPS60201508A (en) Manufacture of magnetic head for vertical recording and reproduction
JPS62222412A (en) Magnetic head and its manufacture
KR100200853B1 (en) Magnetic head for recording and reproducing and the manufacturing method
JP2942156B2 (en) Magnetic head
KR100200861B1 (en) Recording and reproducing magnetic head and the manufacturing method
JPS62162208A (en) Magnetic head
JPS59218615A (en) Magnetic head and its manufacture
JPH0793706A (en) Magnetic head
JPS59116918A (en) Magnetic head and production of magnetic head
JPH0386905A (en) Magnetic head and production of magnetic head
JPH0345443B2 (en)
JPH0585962B2 (en)
CN1100224A (en) Method for fabricating a magnetic head
JPH03144907A (en) Thin-film magnetic head and production thereof
JPH03130913A (en) Composite floating magnetic head
JPH01140405A (en) Magnetic head and its manufacture