JPS61241706A - Production of optical branching and optical coupling circuit - Google Patents

Production of optical branching and optical coupling circuit

Info

Publication number
JPS61241706A
JPS61241706A JP8393685A JP8393685A JPS61241706A JP S61241706 A JPS61241706 A JP S61241706A JP 8393685 A JP8393685 A JP 8393685A JP 8393685 A JP8393685 A JP 8393685A JP S61241706 A JPS61241706 A JP S61241706A
Authority
JP
Japan
Prior art keywords
optical
circuit
optical branching
coupling
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8393685A
Other languages
Japanese (ja)
Other versions
JP2643927B2 (en
Inventor
Yoshiro Komatsu
啓郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60083936A priority Critical patent/JP2643927B2/en
Publication of JPS61241706A publication Critical patent/JPS61241706A/en
Application granted granted Critical
Publication of JP2643927B2 publication Critical patent/JP2643927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Abstract

PURPOSE:To make possible the adjustment of a optical branching ratio and optical coupling ratio with high accuracy and to obviate the exertion of an influence to the operating characteristic of the other optical circuits on the same substrate by executing an ion exchange in part of the optical branching circuit or optical coupling circuit after thermal diffusion of a metal and adjusting the refractive index distribution by ion exchange conditions. CONSTITUTION:The directional coupler type optical branching circuit 22 is first formed on the LiNbO3 substrate 1 by thermal diffusion of Ti. Guided light is thereafter excited by prism or end face coupling to a piece of the incident waveguides 21 of the Ti- diffused LiNbO3 directional coupler type optical branching circuit 22. The exit light to two exit waveguides 23 is prism-coupled and the branching ratio of the light is measured. The ion exchange is executed only in the part of the inter-waveguide space of the directional coupler to change the refractive index distribution of the directional coupler part in the case of the optical branching ratio is different from a prescribed value. The coupling length is adjusted and the optical branching ratio is adjusted by changing the coupling stage of the light wave between the two optical waveguides of the directional coupler in the above-mentioned manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は入射光のエネルギーを一定の比に分岐する光分
岐回路および一定の比に結合する光結合回路の製造方法
に関し、特に金属を強誘電体基板中に熱拡散して光導波
路を形成することによシその光分岐比および光結合比を
高精度に調整できる光分岐・光結合回路の製造方法に関
する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing an optical branching circuit that branches the energy of incident light into a fixed ratio and an optical coupling circuit that couples the energy of incident light at a fixed ratio. The present invention relates to a method of manufacturing an optical branching/coupling circuit in which the optical branching ratio and optical coupling ratio can be adjusted with high precision by forming an optical waveguide by diffusing heat into a dielectric substrate.

近年1元通信システムの実用化が進むにつれ、さらに大
容量・高速・多機能・高精度のシステムが求められてい
る。よシ高速の光信号の発生や光伝送路の切替え等の新
たな機能の付加が要求されているが、基板中く形成し走
光導波路によシ構成した導波型の光変調器や元スイッチ
は、小型自高速・高効率という特長のためにこれらの要
求を満たすことが期待されている。特に、LiNbO3
結晶勢の強結晶体材料を基板として用いてこれにT1を
熱拡散して形成した導波形光素子は、光吸収が小さく低
損失であること、大きな電気光学効果を有しているため
高効率であシ、多素子の集積化が可能である等の特長が
あシ、方向性結合器型光変調器またはスイッチ、分岐干
渉型光スイッチまたは変調器、全反射型光スイッチ等の
種々の方式の光制御素子への応用が報告されている。
As single-source communication systems have come into practical use in recent years, systems with even higher capacity, higher speed, more functionality, and higher accuracy are required. New functions such as the generation of high-speed optical signals and the switching of optical transmission lines are required to be added. Switches are expected to meet these demands due to their features of small size, high speed, and high efficiency. In particular, LiNbO3
A waveguide optical device formed by thermally diffusing T1 onto a strongly crystalline material as a substrate has low light absorption and low loss, and has a large electro-optic effect, making it highly efficient. Various types of optical switches are available, including directional coupler type optical modulators or switches, branching interference type optical switches or modulators, and total internal reflection type optical switches. The application of this to light control devices has been reported.

この上うな導波型光制御素子を実際の光通信システムに
適用する場合、前述のように低損失と同時に高速性が要
求されるが、導波型光制御素子が高速に動作するために
は、素子の動作電圧が低いことおよび電極の特性インピ
ーダンスが電圧駆動用の電気回路系の特性インピーダン
スと整合しやすいことが重要である。前述の種々の方式
の光制御素子の中で分岐干渉減光スイッチまたは変調器
は、駆動電圧が同じ電極長の場合、方向性結合型や全反
射型の光変調器またはスイッチの17J3(58%)の
電圧でよ<、また電極の特性インピーダンス設計の自由
度も大きいため高速化に適しておシ最近注目されている
When applying such a waveguide type optical control element to an actual optical communication system, low loss and high speed are required as mentioned above, but in order for the waveguide type optical control element to operate at high speed, It is important that the operating voltage of the element be low and that the characteristic impedance of the electrode be easily matched to the characteristic impedance of the voltage-driven electric circuit system. Among the various types of optical control elements mentioned above, the branching interference dimmer switch or modulator is 17J3 (58% ), and because there is a large degree of freedom in designing the characteristic impedance of the electrodes, it has recently been attracting attention as it is suitable for increasing speed.

この分岐干渉型光スイッチまたは変調器は3dB光分岐
回路で入射光を2つの光路に分け、2つの光路を伝搬す
る光波に位相差を電気光学効果や熱光学効果を用いて与
え、再び2つの光路を伝搬する光波t−3dB光結合回
路によシ合流されることによシ光のスイッチングや変調
を行なう。このとき3dB光分岐回路と3dB光結合回
路における分岐比結合比が正確に1=1となっていない
と光スイッチングにおけるクロストークの劣化や光変調
における消光比劣化を招く。したがって分岐干渉型光ス
イッチまたは変調器の特性向上のためには3dB光分岐
回路および3dB光結合器の分岐比、結合比を高精度に
調整することが必要となる。
This branching interference type optical switch or modulator uses a 3dB optical branching circuit to split the incident light into two optical paths, applies a phase difference to the light waves propagating in the two optical paths using electro-optic effect or thermo-optic effect, and then splits the incident light into two optical paths using the electro-optic effect or thermo-optic effect. The light waves propagating through the optical path are combined into a t-3 dB optical coupling circuit to perform switching and modulation of the light. At this time, if the branching ratio/coupling ratio between the 3 dB optical branch circuit and the 3 dB optical coupling circuit is not exactly 1=1, crosstalk deterioration in optical switching and extinction ratio deterioration in optical modulation will occur. Therefore, in order to improve the characteristics of a branching interference type optical switch or modulator, it is necessary to adjust the branching ratio and coupling ratio of the 3 dB optical branch circuit and the 3 dB optical coupler with high precision.

〔従来技術とその問題点〕[Prior art and its problems]

LiNb0. 等の強誘電体基板にTL等の金属を熱拡
散することにより光分岐・光結合回路を形成する場合は
1例えば方向性結合器型の場合は、拡散する帯状のTi
膜の幅と厚さ、2本の帯状のTi膜の間隔および拡散温
度、拡散時間によシ方向性結合器の結合長が決まシ、こ
れによシある畏さの方向性結合器の光分岐比1元結合比
が決定する。
LiNb0. When forming an optical branching/optical coupling circuit by thermally diffusing metal such as TL onto a ferroelectric substrate such as
The coupling length of the directional coupler is determined by the width and thickness of the film, the distance between the two strip-shaped Ti films, the diffusion temperature, and the diffusion time. The branching ratio and the one-component combination ratio are determined.

したがりて、従来はあらかじめある長さの方向性結合器
の光分岐比、光結合比を拡散するT1膜の幅、厚さ1間
隔や拡散条件によシ計算もしくは実験によシ求めておき
、所望の光分岐比、−yt結合比が得られるようKこれ
らTl膜の幅、厚さ1間隔や拡散条件を設定して、−回
の熱拡散で所望の光分岐比1元結合比を得ようとする製
造方法が用いられていた。しかし、一般KTi拡散導波
路においては拡散温度が900〜1100℃程度、拡散
時間が数〜十数時間におよぶため、拡散灯内の温度分布
の時間変化や不均一性があることや温度上昇の際の温度
勾配を常に一足に保つことが難しいことおよび毎回温度
が設定値に正確に設定されるとは限らないこと勢の理由
によシ、同一のTl膜形状、拡散条件でも拡散後の方向
性結合器の結合長にはばらつきが生じていた。そのため
−回の熱拡散で方向性結合器型光分岐・光結合回路の分
岐比結合比を正確に設定することは困難であった。
Therefore, conventionally, the optical branching ratio and optical coupling ratio of a directional coupler of a certain length are determined in advance by calculation or experiment based on the width, thickness, and diffusion conditions of the T1 film that diffuses. The width, thickness, and diffusion conditions of these Tl films are set so that the desired optical branching ratio and -yt coupling ratio can be obtained, and the desired optical branching ratio and one-component coupling ratio are obtained by - times of thermal diffusion. A manufacturing method was used to obtain the desired result. However, in general KTi diffusion waveguides, the diffusion temperature is about 900 to 1100°C and the diffusion time is several to ten hours, so there are temporal changes and non-uniformity in the temperature distribution inside the diffusion lamp, and there are problems with temperature rise. Due to the difficulty of keeping the temperature gradient constant at all times and the fact that the temperature is not always set exactly to the set value, the direction after diffusion may vary even with the same Tl film shape and diffusion conditions. There was variation in the length of the sexual connective tissue. Therefore, it has been difficult to accurately set the branching ratio and coupling ratio of the directional coupler type optical branching/coupling circuit due to thermal diffusion.

この問題点を回避する製造方法としては、−回の熱拡散
後1.結合長を測定し1分岐比、結合比が所望の値では
ない場合再びTiを900〜1100°C程度で熱拡散
して導波路の屈折率分布を変化させ所望の分岐比、結合
比が得られるまで熱拡散を続けるという方法がある。し
かしながら、この方法では、同一の基板上に方向性結合
型光分岐・光結合回路ばかシではなく他にもいくつかの
光回路を集積化する場合には他の光回路の動作特性が変
化してしまうので問題となる。
As a manufacturing method to avoid this problem, 1. If the coupling length is measured and the branching ratio and coupling ratio are not the desired values, Ti is again thermally diffused at about 900 to 1100°C to change the refractive index distribution of the waveguide to obtain the desired branching ratio and coupling ratio. There is a method of continuing heat diffusion until the However, with this method, when several other optical circuits are integrated on the same substrate, rather than just a directional coupling type optical branching/coupling circuit, the operating characteristics of the other optical circuits change. This is a problem because it causes

例えば、第7図に示すような従来の分岐干渉型光スイッ
チは、LiNbO3基板1上に設けられた方向性結合器
型光分岐回路部41、元位相変vJ4器部42.方向性
結合器型光結合回路部43の3つの部分から構成される
。この光位相変調器部42において、2つの光路を伝搬
する光の位相にルだけの差を付けるための電圧V7c、
は電極下に伝搬光のエネルギが小さく閉じ込められてい
るほど小さくなシ、す女わち伝搬光のエネルギ分布が光
導波路内に強く小さく閉じこめられている程半波長電圧
Vzが小さくなる。しかしながら、前述の再拡散を重ね
るととKよシ所望の分岐比結合比を得る方法では方向性
結合器型光分岐回路部41.光結合回路部43ばかシで
無くこの光位相変調器部420光導波路の屈折率分布ま
で変化してしまう。
For example, a conventional branching interference type optical switch as shown in FIG. The directional coupler type optical coupling circuit section 43 is composed of three parts. In this optical phase modulator section 42, a voltage V7c for adding a difference in phase of light propagating through two optical paths by 1,
The smaller the energy distribution of the propagating light is confined under the electrode, the smaller the half-wave voltage Vz becomes. However, in the method of obtaining the desired branching ratio/coupling ratio by repeating the above-mentioned re-diffusion, the directional coupler type optical branching circuit section 41. Not only the optical coupling circuit section 43 but also the refractive index distribution of the optical waveguide of the optical phase modulator section 420 changes.

T1の熱拡散によ多形成された光導波路においては、拡
散時間が長くなれになる程拡散広がシが大きくなシ、屈
折率分布における最大屈折率は小さくなるので、伝搬光
のエネルギの閉じ込めは弱くなる。したがって、光位相
変調器部42の半波長電圧■ルが大きくなるという問題
がある。
In optical waveguides formed by thermal diffusion of T1, the longer the diffusion time, the larger the diffusion spread, and the smaller the maximum refractive index in the refractive index distribution, so the energy of propagating light is confined. becomes weaker. Therefore, there is a problem that the half-wave voltage of the optical phase modulator section 42 becomes large.

この問題を除去する製造方法としては、方向性結合器型
光分岐・光結合回路に電極を取シ付け。
A manufacturing method that eliminates this problem involves attaching electrodes to a directional coupler-type optical branching/coupling circuit.

電極に印加する電圧によシ、電気光学効果を回して結合
長を制御して光分岐比1元結合比を調整する方法がある
。しかしながら、この方法を用いると光分岐・光結合回
路の製造後に余分な電圧駆動用電気回路とエネルギとが
必要であシ、また長時間電極間に直流電圧を印加するこ
とにより基板表面等に電荷が蓄積し、いわゆるDCドリ
フトの現象を生ずる恐れもあシ問題である。なお、これ
らの問題は、他の構成の光分岐・結合回路、例えば交叉
型党分岐自結合回路郷においても全く同様に生ずる。
There is a method of adjusting the light branching ratio and one-component coupling ratio by controlling the coupling length by controlling the electro-optical effect depending on the voltage applied to the electrode. However, when this method is used, an extra voltage driving electric circuit and energy are required after manufacturing the optical branching/optical coupling circuit, and applying a DC voltage between the electrodes for a long period of time generates charges on the substrate surface, etc. There is also the possibility that the DC drift may accumulate and cause a so-called DC drift phenomenon. It should be noted that these problems occur in exactly the same way in optical branching/coupling circuits of other configurations, such as cross-type branching/coupling circuits.

本発明の目的は、このような従来の製造方法の欠点を除
去し、高精度に光分岐比、光結合比を調整することが可
能で、かつ同一基板上の他の光回路の動作特性に影蕃を
与えないようにした光分岐1党結合回路の製造方法を提
供することにある。
The purpose of the present invention is to eliminate the drawbacks of such conventional manufacturing methods, to be able to adjust the optical branching ratio and optical coupling ratio with high precision, and to be able to adjust the operating characteristics of other optical circuits on the same substrate. It is an object of the present invention to provide a method for manufacturing an optical branching one-party coupling circuit that does not cause any interference.

〔発明の構成〕[Structure of the invention]

本発明の第1の構成は1強誘電体基板に金属を熱拡散す
ることにより形成され、入射光導波路。
A first configuration of the present invention is formed by thermally diffusing metal onto a ferroelectric substrate, and an incident optical waveguide.

出射光導波路の少なくとも一方が複数本の光導波路を有
する光分岐回路もしくは光結合回路の製造方法において
、前記金属を熱拡散した後に光分岐回路もしくは光結合
回路の一部分にイオン交換を施こし、前記光分岐回路も
しくは光結合回路の屈折率分布をイオン交換条件によっ
て調整することによ〕、前記光分岐回路もしくは光結合
回路の光分岐比もしくは光結合比を調整することを特徴
とする。
In a method of manufacturing an optical branching circuit or optical coupling circuit in which at least one of the output optical waveguides has a plurality of optical waveguides, after thermally diffusing the metal, a part of the optical branching circuit or optical coupling circuit is subjected to ion exchange, and the The optical branching ratio or the optical coupling ratio of the optical branching circuit or the optical coupling circuit is adjusted by adjusting the refractive index distribution of the optical branching circuit or the optical coupling circuit according to ion exchange conditions.

本発明の第2の構成は、同じく光分岐回路もしくは光結
合回路の製造方法において、金属を熱拡散した後に光分
岐回路もしくは光結合回路の一部分にイオン交換を施こ
し、その後に再び前記金属の熱拡散温度よシも低い温度
で前記イオン交換部分のみを熱拡散し、前記光分岐回路
もしくは光結合回路の屈折率分布を前記イオン交換部分
の熱拡散時間によって調整することを特徴とする。
In a second configuration of the present invention, in the same method for manufacturing an optical branching circuit or optical coupling circuit, after thermally diffusing the metal, ion exchange is performed on a part of the optical branching circuit or optical coupling circuit, and then the metal is heated again. It is characterized in that only the ion exchange portion is thermally diffused at a temperature lower than the thermal diffusion temperature, and the refractive index distribution of the optical branch circuit or the optical coupling circuit is adjusted by the thermal diffusion time of the ion exchange portion.

〔発明の原理・作用〕[Principle and operation of the invention]

本発明によれば、tずL i N b Oa等の強誘電
体基板にT1等の金属を熱拡散することにょシ光分岐回
路、光結合回路を形成し、この光分岐回路。
According to the present invention, an optical branching circuit and an optical coupling circuit are formed by thermally diffusing a metal such as T1 on a ferroelectric substrate such as tzL i N b Oa, and the optical branching circuit.

漫給回路の光分岐比1允結合比が所望の値と異なる場合
には1元分岐回路、光結合回路の一部にイオン交換を施
こし、所望の値が得られるまでイオン交換を行なうか、
もしくはある特定の時間イオン交換を施こした後、T1
等の金属の熱拡散時間よシも十分低い温度でイオン交換
部のみを所望の光分岐比1允結合比が得られるまで熱拡
散することによシ高精度に光岐比、光結合比が訴・整さ
れた光分岐・光結合回路を製造する方法が得られる。
If the optical branching ratio 1-coupling ratio of the optical coupling circuit is different from the desired value, perform ion exchange on a part of the single branch circuit and optical coupling circuit until the desired value is obtained. ,
Or after performing ion exchange for a certain period of time, T1
The optical splitting ratio and the optical coupling ratio can be adjusted with high precision by thermally diffusing only the ion exchange part at a sufficiently low temperature until the desired optical branching ratio of 1 and the optical coupling ratio are obtained. A method for manufacturing a well-organized optical branching/coupling circuit can be obtained.

本製造方法を用いれば、 LtNbo3  等の強誘電
体基板中へのイオン交換がT1郷の金属の熱拡散温度に
比べて十分低い温度で可能であシ、また交換されたイオ
ンの拡散もTi等の金属の熱拡散に比べて十分低い温度
で可能であるので、同一基板上に光分岐・光結合回路以
外の光回路が集積されていても他の光回路の動作特性に
は影響を与えずに光分岐・光結合回路の光分岐比、光結
合比のみを高精度に調整することが可能な光分岐・光結
合回路を得ることができる。
By using this manufacturing method, ion exchange into a ferroelectric substrate such as LtNbo3 is possible at a temperature sufficiently lower than the thermal diffusion temperature of the T1 metal, and the exchanged ions can also be diffused into a ferroelectric substrate such as Ti. This is possible at a sufficiently low temperature compared to the thermal diffusion of metals, so even if optical circuits other than optical branching and optical coupling circuits are integrated on the same substrate, the operating characteristics of other optical circuits will not be affected. In this way, it is possible to obtain an optical branching/coupling circuit in which only the optical branching ratio and optical coupling ratio of the optical branching/coupling circuit can be adjusted with high precision.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

〔実施例1〕 第1図(a)〜(jJは本発明による光分岐書党結合回
路の灸遣方法の一実施例を工程順に説明する断面図であ
る。図において、まず第1図(a)に示すようにLiN
bO3基板1上へ7オトレジスト2を塗布し、このフォ
トレジスト2ヘフオトマスクを用いて導波路パターンと
同一形状の溝を通常の7オトリングラフイ技術を用いて
形成する(第1図(b))。
[Example 1] Figures 1(a) to (jJ are cross-sectional views explaining step-by-step an embodiment of a method for applying a moxibustion method for an optical bifurcation coupling circuit according to the present invention. As shown in a), LiN
A 7-photoresist 2 is applied onto the bO3 substrate 1, and a groove having the same shape as the waveguide pattern is formed on the photoresist 2 using a photomask using a conventional 7-photoresist technique (FIG. 1(b)).

この上からTi膜3を300〜tzooA  程度全面
に蒸着またはスパッタ法によ多形成しく第1図(C17
゜フォトレジストを溶解すると、第1図(d)に示すよ
りなT1の光導波路パターンが形成される。
From above, a Ti film 3 of about 300~tzooA is deposited over the entire surface by vapor deposition or sputtering, as shown in Fig. 1 (C17
When the photoresist is dissolved, an optical waveguide pattern of T1 as shown in FIG. 1(d) is formed.

第2図は方向性結合器復元分岐回路のT1 の光導波路
パターン11〜13をLiNbO3基板1上に形成した
ときの基板の斜視図である。このTiの光導波路パター
ン11〜13を形成した後、基板1を900’−110
0℃、5〜10時間程時間数炉中で加熱することによ、
a、第1図(elに示すようなTl拡散党導波路4が形
成される。このTi拡散元導波路4を形成後、第1図(
f)のように基板1全mAt膜5を形成する。その後そ
の上にフォトレジスト膜6を形成しく第1図(g)) 
、 7オ) IJソゲ、7フイ技術を用いて第1図Cb
)に示すように7オトレジスト膜6の方向性結合器の導
波路間隙の部分のみを溶解し、その部分のみAt膜5を
エツチングすると◆とによシ、第1図(i)に示すよう
なイオン交換用のAtマスク(2つを形成する。
FIG. 2 is a perspective view of a LiNbO3 substrate 1 on which T1 optical waveguide patterns 11 to 13 of a directional coupler restoration branch circuit are formed. After forming the Ti optical waveguide patterns 11 to 13, the substrate 1 is
By heating in a furnace at 0°C for about 5 to 10 hours,
A, Tl diffusion source waveguide 4 as shown in FIG. 1 (el) is formed. After forming this Ti diffusion source waveguide 4, as shown in FIG.
A mAt film 5 is formed on the entire substrate 1 as shown in f). After that, a photoresist film 6 is formed thereon (Fig. 1(g)).
, 7o) Figure 1 Cb using IJ Soge, 7F technique
), if only the part of the directional coupler waveguide gap of the photoresist film 6 is dissolved and the At film 5 is etched only in that part, ◆ it is better, as shown in Fig. 1(i). Atm masks for ion exchange (two are formed.

第3図はこの時の基板1の斜視図である。すなわち、基
板1全面KAtマスク24が形成され。
FIG. 3 is a perspective view of the substrate 1 at this time. That is, a KAt mask 24 is formed over the entire surface of the substrate 1.

方向性結合器(2)〜23)の光分岐回路22の導波路
間隙の部分にのみイオン交換用窓25が開けられている
。その後基板全体を125〜250℃の安息香配爵融液
中に浸しAtマスクのイオン交換用窓を通してプロトン
(H+)とLl+のイオン交換7を行なう(第1図(j
))。
Ion exchange windows 25 are opened only in the waveguide gaps of the optical branch circuits 22 of the directional couplers (2) to 23). Thereafter, the entire substrate is immersed in benzoin melt at 125 to 250°C, and ion exchange 7 of protons (H+) and Ll+ is performed through the ion exchange window of the At mask (Fig. 1(j)
)).

本発明においては、まずTiの熱拡散によシLiNbO
3基板l上に方向性結合器型光分岐回路22を形成する
。その後このTi拡散LiNbO3が羽藷合器型党分岐
回路の入射導波路2)の1本にプリズムもしくは端面結
合によシ導波光を励起しs 2本の出射導波路23への
出射光をプリズム結合して元の分岐比を測定する。この
光分岐比が所望の値と異なる場合は、前述の方法にょシ
方向性結合器の導波路間隙の部分にのみイオン交換を施
し、方向性結合器部の屈折率分布を変化させることによ
シ方同性結合器の2本の光導波路間の光波の結合状態を
変化させ結合長を調整し、光分岐比を調整する。
In the present invention, first, by thermal diffusion of Ti, LiNbO
A directional coupler type optical branching circuit 22 is formed on the third substrate l. After that, this Ti-diffused LiNbO3 excites the guided light to one of the input waveguides 2) of the combinatorial branch circuit by prism or end face coupling, and the output light to the two output waveguides 23 is transmitted to the prism. Combine and measure the original branching ratio. If this optical branching ratio is different from the desired value, use the method described above to perform ion exchange only on the waveguide gap portion of the directional coupler to change the refractive index distribution of the directional coupler. The coupling state of the light waves between the two optical waveguides of the isotropic coupler is changed to adjust the coupling length and the optical branching ratio.

安息香酸の溶融液中にLiNbO3基板を浸してH+と
L1+のイオン交換を行なう場合は、イオン交換時間お
よびイオン交換温度にょ)導波路の深さを調整すること
が可能であシ、また安息香酸中に添加するL1+イオン
の量にょシ最大屈折率変化量を調整することができる。
When performing ion exchange of H+ and L1+ by immersing a LiNbO3 substrate in a melt of benzoic acid, it is possible to adjust the ion exchange time, ion exchange temperature, and depth of the waveguide. The maximum amount of refractive index change can be adjusted depending on the amount of L1+ ions added therein.

すなわち、安息香酸を用いるイオン交換においては、厚
さ方向の屈折率分布は基板の厚さ方向でステップ状とな
るが、その表面屈折率変化量は安息香酸中に添加するL
i9オンの量で制御可能であり、Li+cD添加量を多
くする程表面屈折率変化1−は直線的に小さくすること
が可能であり%またその導波路深さはイオン交換温度、
イオン交換時間によシ制伽可能である。
In other words, in ion exchange using benzoic acid, the refractive index distribution in the thickness direction becomes step-like in the thickness direction of the substrate, but the amount of change in the surface refractive index depends on the L added to the benzoic acid.
It can be controlled by the amount of i9on, and as the amount of Li+cD added increases, the surface refractive index change 1- can be linearly reduced.
It can be controlled by the ion exchange time.

したがって、Ti拡散方向性結合器型光分岐回路22の
光分岐比が所望の値と異なる場合には。
Therefore, if the optical branching ratio of the Ti diffusion directional coupler type optical branching circuit 22 is different from the desired value.

まず方向性結合器の2本の光導波路間隙に、安息香酸中
のLi+ イオンの添加量を多くした状態で短時間イオ
ン交換を行ない、すなわち光導波路間隙部の屈折率増加
量を小さく、屈折率変化領域を浅く形成して再び光分岐
比を測定する。光分岐比がまだ所望の値でない場合は前
述のイオン交換を繰シ返し所望の光分岐比が得られるま
でイオン交換時間を増や゛していく。
First, ion exchange is performed for a short period of time in the gap between the two optical waveguides of the directional coupler with a large amount of Li+ ions added in benzoic acid. A shallow change region is formed and the optical branching ratio is measured again. If the optical branching ratio is still not at the desired value, the ion exchange described above is repeated and the ion exchange time is increased until the desired optical branching ratio is obtained.

なお、結合長の変化量が少ない場合には安息香酸中のL
i+4オンの添加量を少なくシ、方向性結合器光導波路
間隙部の屈折率増加量を大きくすることにより結合長の
変化量を多くすることができる。ただし、この際屈折率
変化領域があまり深くなり、導波路間隙部分の屈折率変
化1が大きくなシすぎると、方向性結合器部の屈折率分
布が、第4図(aJの特性図に示すようにイオン交換部
で太きくなり、導波路間隙部で光波の伝搬モードが立っ
てしまい基板中に散乱する恐れがあるが、導波路間隙部
分の屈折率増加量を大きくする場合には。
In addition, when the amount of change in bond length is small, L in benzoic acid
By reducing the amount of i+4 added and increasing the amount of increase in the refractive index of the directional coupler optical waveguide gap, the amount of change in the coupling length can be increased. However, at this time, if the refractive index change region becomes too deep and the refractive index change 1 in the waveguide gap portion becomes too large, the refractive index distribution in the directional coupler section will change as shown in the characteristic diagram of Fig. 4 (aJ). This increases the thickness at the ion exchange part, and there is a risk that the propagation mode of the light wave will be set up at the waveguide gap and be scattered into the substrate, but if the amount of increase in the refractive index at the waveguide gap is increased.

Li+イオンの添加量およびイオン交換時間を詭節し、
基板表面近傍のみを高屈折率頒域とし方向性結合器部の
屈折率分布が、実効的に第4図(b)の特性図に示すよ
うに、イオン交換部で少くなるようにして導波路間隙部
分に伝搬モードが立たないようにすることが可能である
The amount of Li+ ions added and the ion exchange time were determined,
The waveguide is designed so that only the vicinity of the substrate surface is a high refractive index distribution region, and the refractive index distribution in the directional coupler part is effectively reduced in the ion exchange part, as shown in the characteristic diagram of FIG. 4(b). It is possible to prevent propagation modes from forming in the gap.

本実施例においては、まずLiNbO3結晶にT1を熱
拡散することによシ方向性結合@型元分岐回路を形成し
、+分岐比が所望の光分岐比が得られない場合は方向性
結合器の導波路間隙部にイオン交換を施こして、方向性
結合器の屈折率分布を変化させ、方向性結合器の結合長
を変化させることによシ1元分岐回路の光分岐比を訓・
整する。このイオン交換はLiNbO3基板を安息香酸
中に浸しH+イオンとLth+イオンを交換することに
よシ行なうが、安息香酸の融点は12)℃、沸点は大気
圧で250℃であシ、この温度範囲内でプロトン交換f
iうことができるので%TI の熱拡散温度900〜1
100℃に比べると十分低温であシ、同−基板上に光分
岐回路以外に他の元素子が集積化されていたとしても他
の光回路の動作特性には影響は与えない。
In this example, first, a directional coupling@type branch circuit is formed by thermally diffusing T1 into the LiNbO3 crystal, and if the desired optical branching ratio cannot be obtained, a directional coupler By performing ion exchange in the waveguide gap, changing the refractive index distribution of the directional coupler, and changing the coupling length of the directional coupler, the optical branching ratio of the one-element branch circuit can be adjusted.
Arrange. This ion exchange is performed by immersing the LiNbO3 substrate in benzoic acid to exchange H+ ions and Lth+ ions, but the melting point of benzoic acid is 12) °C and the boiling point is 250 °C at atmospheric pressure, so this temperature range proton exchange within f
Since the thermal diffusion temperature of %TI can be 900~1
The temperature is sufficiently low compared to 100 DEG C., and even if other elements other than the optical branch circuit are integrated on the same substrate, the operating characteristics of the other optical circuits will not be affected.

〔実施例2〕 第5図は本発明の第2の実施例を設問するための肩造装
置の構成図を示す。図においては、ホットプレート等の
ヒータ38の上に基板ホルダ35が置かれ、その上に第
1の実施例と同様の製造方法によ!5.Ti拡散方向性
結合器型光分岐回路が形成され方向性結合器の2本の光
等波路の間隙にプロトンイオン交換が施こされたLiN
bO3基板1が乗せられている。方向性結合器復元分岐
回路の入射光導波路端面には、半導体レーザ31の出射
光が結合された光ファイバ32が端面結合され方向性結
合型光分岐回路の2本の出射導波路伝搬光はプリズム3
3によ、9LiNb03 基板13の外に出射され、2
つの7オトデイテクタ34へと導かれる。なお、基板ホ
ルダ35には熱電対等の温度センサ36が取シ付けられ
ておシ、温度計37によシ加熱温度がモニタできるよう
になっている。
[Embodiment 2] FIG. 5 shows a configuration diagram of a shoulder structuring device for questioning a second embodiment of the present invention. In the figure, a substrate holder 35 is placed on a heater 38 such as a hot plate, and a substrate holder 35 is placed on top of the heater 38 using the same manufacturing method as in the first embodiment. 5. A Ti-diffusion directional coupler type optical branching circuit is formed, and the LiN is subjected to proton ion exchange in the gap between two equal optical wave paths of the directional coupler.
A bO3 substrate 1 is mounted. The optical fiber 32 to which the output light of the semiconductor laser 31 is coupled is end face-coupled to the input optical waveguide end face of the directional coupler restoration branch circuit, and the two output waveguide propagating lights of the directional coupling type optical branch circuit are connected to the prism. 3
3, the 9LiNb03 is emitted to the outside of the substrate 13, and 2
It is guided to one of the seven detectors 34. A temperature sensor 36 such as a thermocouple is attached to the substrate holder 35 so that the heating temperature can be monitored using a thermometer 37.

本実施例においては、第1図に示した製造方法を用いて
Ti拡散方向性結合器型元分岐回路を形成し1元分岐比
が所望の値と異なる場合にはその後第1因に示した製造
方法と同様の方法で方向性結合器の2本の光導波路の間
隙にプロトンイオン交換を行なう。その徒イオン交換の
マスク用に形成した金属膜をエツチングによシ除去し、
第5図に示した装置によシ方向性結合器型光分岐回路の
分岐比をモニタしながらLiNbO3基板1を400℃
程度の温度でイオン交換部のみを熱拡散する。
In this example, a Ti diffused directional coupler type original branching circuit was formed using the manufacturing method shown in FIG. Proton ion exchange is performed in the gap between the two optical waveguides of the directional coupler using a method similar to the manufacturing method. The metal film formed for the ion exchange mask was removed by etching.
The LiNbO3 substrate 1 was heated to 400°C while monitoring the branching ratio of the directional coupler type optical branching circuit using the apparatus shown in Fig. 5.
Only the ion exchange part is thermally diffused at a temperature of

これによシイオン交換部の虻イオンがLiNbO3基板
1に拡散して行くため方向性結合器部の屈折率分布が時
間と共に変化する。このため方向性結合器の結合長が基
板加熱時間と共に変化し光分岐比が変化する。したがっ
て1元分岐比をフォトディテクタ34でモニタしながら
基板lを加熱し。
As a result, the ions in the ion exchange section diffuse into the LiNbO3 substrate 1, so that the refractive index distribution of the directional coupler section changes with time. Therefore, the coupling length of the directional coupler changes with the substrate heating time, and the optical branching ratio changes. Therefore, the substrate l is heated while monitoring the one-element branching ratio with the photodetector 34.

所望の光分岐比が得られた時点で加熱を止めれば所望の
光分岐比を有する方向性結合型光分岐回路得られる。な
お、プロトンイオン交換による光導波路の屈折率分布は
、イオン交換直後には第6図の4性図のAに示すように
基板の深さ方向でステップ状となるが、基板を加熱する
とH+イオンは容易に基板中へ拡散し、5fL6図のB
に示すように最大屈折率がイオン交換直後よシ減少し深
さ方向へ広がった屈折率分布となる。さらに加熱を続け
ると最大屈折率はさらに減少し、深さ方向へさらに広が
った屈折率分布となシガウス分布となることが知られて
いる。したがって、イオン交換後に基板1を加熱すると
、前記屈折率分布の変化によシ元分岐比が刻々と変化す
るので所望の光分岐比となったところで加熱を止めれば
J望の光分岐比を有する方向性結合型光分岐回路が得ら
れる。
If the heating is stopped when the desired optical branching ratio is obtained, a directional coupling type optical branching circuit having the desired optical branching ratio can be obtained. Immediately after ion exchange, the refractive index distribution of the optical waveguide due to proton ion exchange becomes step-like in the depth direction of the substrate, as shown in A of the 4-character diagram in Figure 6, but when the substrate is heated, H+ ions easily diffuses into the substrate, and B in Figure 5fL6
As shown in Figure 2, the maximum refractive index decreases immediately after ion exchange, resulting in a refractive index distribution that spreads in the depth direction. It is known that when heating is continued, the maximum refractive index further decreases, resulting in a Sigauss distribution, which is a refractive index distribution that spreads further in the depth direction. Therefore, when the substrate 1 is heated after ion exchange, the elemental branching ratio changes moment by moment due to the change in the refractive index distribution, and if heating is stopped when the desired optical branching ratio is reached, the desired optical branching ratio is obtained. A directional coupling type optical branching circuit is obtained.

また、プロトン交換によって結晶中に入ったH+イオン
は400℃ 程度の温度で容易に基板中へ拡散するので
、T1の熱拡散温度に比べて十分低い温度で良い。
Further, since the H+ ions that have entered the crystal through proton exchange easily diffuse into the substrate at a temperature of about 400°C, the temperature may be sufficiently lower than the thermal diffusion temperature of T1.

したがって本製造方法によれば1元分岐比を実時間で簡
便に制御できかつ同一基板中に他の光回路が集積化され
ていても他の光回路の動作特性には影魯を与えずに光分
岐回路の分岐比のみを調整する製造方法が得られる。
Therefore, according to this manufacturing method, the single branching ratio can be easily controlled in real time, and even if other optical circuits are integrated on the same substrate, the operating characteristics of the other optical circuits will not be affected. A manufacturing method is obtained in which only the branching ratio of the optical branching circuit is adjusted.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、高精度に光分岐比
1光結合比を調整することが可能で、かつイオン交換も
交換されたイオンの熱拡散もT1の熱拡散に比べて十分
低温であることから、同一基板上に光分岐、−yt、結
合回路以外の光回路が集積化されていても他の光回路の
動作特性には影響を与えず、光分岐・光結合回路の光分
岐比、光結合比のみを高精度に調整することが可能な光
分岐・光結合回路の製造方法が得られる。
As described above, according to the present invention, it is possible to adjust the optical branching ratio 1 optical coupling ratio with high precision, and the ion exchange and thermal diffusion of the exchanged ions are also sufficient compared to the thermal diffusion of T1. Because the temperature is low, even if optical circuits other than optical branching, -yt, and coupling circuits are integrated on the same substrate, the operating characteristics of other optical circuits are not affected, and the optical branching and coupling circuits are A method for manufacturing an optical branching/coupling circuit is obtained in which only the optical branching ratio and the optical coupling ratio can be adjusted with high precision.

なお1本発明によシ得られる光分岐、結合回路は本実施
例に示したように方向性結合器型に限定されるものでは
なく、交叉型光分岐・結合回路。
Note that the optical branching/coupling circuit obtained by the present invention is not limited to the directional coupler type as shown in this embodiment, but may also be a cross-type optical branching/coupling circuit.

Y字型分岐回路、Y字型結合回路等でも良く、それら光
分岐・光結合回路の一部分にイオン交換を施こし、イオ
ン交換時間もしくは交換されたイオンの熱拡散時間を本
実施例と同様に制御して光分岐・光結合回路の光分岐1
允結合比を調整することができる。また、光分岐・結合
回路を形成する基板はLiNbO3に限られるものでは
なくLiTaO3等でも良く、イオン交換も安息香酸溶
液中でのプロトン交換のみに限られるものではな(Ag
N0g 酢液中でのAg+イオン、TtNO3溶液中で
のTt+イオン等の交換でも良い。このイオン交換を行
なう際のマスクとなる金属もAtに限られるものではな
く%Tt、o−等でも良い。また1本実施例においては
光分岐回路の製造方法についてのみ述べたが光結合回路
の場合も、光分岐回路の場合と全く同一の製造方法を用
いて製作することができる。
A Y-shaped branch circuit, a Y-shaped coupling circuit, etc. may be used, and ion exchange is performed on a part of these optical branching/optical coupling circuits, and the ion exchange time or the thermal diffusion time of the exchanged ions is set as in this example. Controlled optical branching/optical coupling circuit optical branching 1
The binding ratio can be adjusted. Furthermore, the substrate forming the optical branching/coupling circuit is not limited to LiNbO3, but may also be LiTaO3, etc., and ion exchange is not limited to only proton exchange in a benzoic acid solution (Ag
Exchange of Ag+ ions in N0g vinegar solution, Tt+ ions in TtNO3 solution, etc. may also be used. The metal used as a mask when performing this ion exchange is not limited to At, but may also be %Tt, o-, etc. Further, in this embodiment, only the method for manufacturing an optical branch circuit has been described, but an optical coupling circuit can also be manufactured using the same manufacturing method as that for an optical branch circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(j)は本発明による光分岐・光結合回
路の製造方法の実施例を工程順に示した断面図。 第2図は第1図によフ得られるTi拡散LiNbO3方
向性結合器型光分岐回路のTiパターンの斜視図、第3
図はTi拡散後方向性結合器部の導波路間隙へのみイオ
ン交換をするためのAtマスクを示す斜視−,第4図(
Kl 、 (b)は第1図のイオン交換によシ得られる
基板水平方向の屈折率分布を示す特性図、第5図は本発
明の実施例の製造途中の測定系の構成図、第6図はイオ
ン交換部の熱拡散前と熱拡散後の基板方向の屈折率分布
の変化を示す特性図、第7図は従来技術による分岐干渉
型光スイッチの構成を示す斜視図である。図において1
・・・・・・LINb03基板、2.6・・・・・・7
オトレジスト、3・・・・・・T1膜、4・・・・・・
T1拡散導波路% 5・・・・・・At膜、7・・・・
・・W°イオン、11・・・・・・入射光導波路Tiパ
ターン、12・・・・・・方向性結合器型光分岐回路T
iパターン、13・・・・・・出射光導波路T1パター
ン、2)・・・・・・入射光導波路、22・・・・・・
方向性結合器型光分岐回路、23・・・・・・出射光導
波路。 24・・・・・・Atマスク、25・・・・・・イオン
交換出窓。 31・・・・・・半導体レーザーレーザモジュール、3
2・・・・・・光ファイバs 33・・・・・・プリズ
ム、34・・・・・・フォトディテクタ、35・・・・
・・基板ホルダ、36・・・・・・温度センサ、37・
・・・・・温度計、38・・・・・・ヒータ。 41・・・・・・方向性結合器型光分岐回路部、42・
・・・・・光位相変調器部、43・・・・・・方向性結
合器型元結合芽 2 図 $6I!I 茅7 回
FIGS. 1(a) to 1(j) are cross-sectional views showing an embodiment of the method for manufacturing an optical branching/optical coupling circuit according to the present invention in the order of steps. 2 is a perspective view of the Ti pattern of the Ti-diffused LiNbO3 directional coupler type optical branch circuit obtained from FIG. 1;
The figure is a perspective view showing an At mask for ion exchange only into the waveguide gap of the directional coupler section after Ti diffusion.
Kl, (b) is a characteristic diagram showing the refractive index distribution in the horizontal direction of the substrate obtained by ion exchange in FIG. 1, FIG. The figure is a characteristic diagram showing changes in the refractive index distribution in the direction of the substrate before and after thermal diffusion in the ion exchange section, and FIG. 7 is a perspective view showing the configuration of a branching interference type optical switch according to the prior art. In the figure 1
...LINb03 board, 2.6...7
Otoresist, 3...T1 film, 4...
T1 diffusion waveguide% 5...At film, 7...
...W° ion, 11...Incoming optical waveguide Ti pattern, 12...Directional coupler type optical branch circuit T
i pattern, 13...output optical waveguide T1 pattern, 2)...input optical waveguide, 22...
Directional coupler type optical branch circuit, 23... output optical waveguide. 24...At mask, 25...Ion exchange bay window. 31... Semiconductor laser module, 3
2... Optical fiber s 33... Prism, 34... Photodetector, 35...
...Substrate holder, 36...Temperature sensor, 37.
...Thermometer, 38...Heater. 41... Directional coupler type optical branch circuit section, 42...
...Optical phase modulator section, 43... Directional coupler type original coupling bud 2 Figure $6I! I Kaya 7 times

Claims (2)

【特許請求の範囲】[Claims] (1)強誘電体基板に金属を熱拡散することにより形成
され、入射光導波路、出射光導波路の少なくとも一方が
複数本の光導波路を有する光分岐回路もしくは光結合回
路の製造方法において、前記金属を熱拡散した後に光分
岐回路もしくは光結合回路の一部分にイオン交換を施こ
し、前記光分岐回路もしくは光結合回路の屈折率分布を
イオン交換条件によって調整することにより前記光分岐
回路もしくは光結合回路の光分岐比もしくは光結合比を
調整することを特徴とする光分岐・光結合回路の製造方
法。
(1) In a method for manufacturing an optical branching circuit or an optical coupling circuit formed by thermally diffusing metal onto a ferroelectric substrate, at least one of an input optical waveguide and an output optical waveguide has a plurality of optical waveguides, After thermally diffusing the optical branching circuit or optical coupling circuit, a part of the optical branching circuit or optical coupling circuit is subjected to ion exchange, and the refractive index distribution of the optical branching circuit or optical coupling circuit is adjusted according to the ion exchange conditions. A method for manufacturing an optical branching/coupling circuit, which comprises adjusting the optical branching ratio or optical coupling ratio of the optical branching/coupling circuit.
(2)強誘電体基板に金属を熱拡散することにより形成
され、入射光導波路、出射光導波路の少なくとも一方が
複数本の光導波路を有する光分岐回路もしくは光結合回
路の製造方法において、前記金属を熱拡散した後に光分
岐回路もしくは光結合回路の一部分にイオン交換を施こ
し、その後に再び前記金属の熱拡散温度よりも低い温度
で前記イオン交換部分のみを熱拡散し、前記光分岐回路
もしくは光結合回路の屈折率分布を前記イオン交換部分
の熱拡散時間によって調整することにより、前記光分岐
回路の光分岐比もしくは光結合回路の光結合比を調整す
ることを特徴とする光分岐・光結合回路の製造方法。
(2) In a method for manufacturing an optical branching circuit or an optical coupling circuit formed by thermally diffusing metal onto a ferroelectric substrate, at least one of an input optical waveguide and an output optical waveguide has a plurality of optical waveguides, After thermally diffusing a part of the optical branching circuit or optical coupling circuit, ion exchange is performed on a part of the optical branching circuit or optical coupling circuit, and then only the ion exchange part is thermally diffused again at a temperature lower than the thermal diffusion temperature of the metal, and the optical branching circuit or optical coupling circuit is heated. Optical branching/light, characterized in that the optical branching ratio of the optical branching circuit or the optical coupling ratio of the optical coupling circuit is adjusted by adjusting the refractive index distribution of the optical coupling circuit by the thermal diffusion time of the ion exchange part. A method of manufacturing a coupling circuit.
JP60083936A 1985-04-19 1985-04-19 Manufacturing method of optical branching / optical coupling circuit Expired - Lifetime JP2643927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083936A JP2643927B2 (en) 1985-04-19 1985-04-19 Manufacturing method of optical branching / optical coupling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083936A JP2643927B2 (en) 1985-04-19 1985-04-19 Manufacturing method of optical branching / optical coupling circuit

Publications (2)

Publication Number Publication Date
JPS61241706A true JPS61241706A (en) 1986-10-28
JP2643927B2 JP2643927B2 (en) 1997-08-25

Family

ID=13816475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083936A Expired - Lifetime JP2643927B2 (en) 1985-04-19 1985-04-19 Manufacturing method of optical branching / optical coupling circuit

Country Status (1)

Country Link
JP (1) JP2643927B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981630A (en) * 1982-09-28 1984-05-11 トムソン−セ−エスエフ Non-linear integrated optical connector and parametric oscillator incorporating such a connector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5981630A (en) * 1982-09-28 1984-05-11 トムソン−セ−エスエフ Non-linear integrated optical connector and parametric oscillator incorporating such a connector

Also Published As

Publication number Publication date
JP2643927B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US5267336A (en) Electro-optical sensor for detecting electric fields
JP5313198B2 (en) Waveguide polarizer
WO1986003016A1 (en) Optical waveguiding technique in bulk materials
JPH05313109A (en) Waveguide type polarization controller
JP3573180B2 (en) Polling method for Mach-Zehnder interferometer arm
JPH07120631A (en) Optical waveguide type part
JPS61241706A (en) Production of optical branching and optical coupling circuit
Eldada et al. Rapid direct fabrication of active electro-optic modulators in GaAs
JP2877125B2 (en) Waveguide type optical arrester
JP2739405B2 (en) Electric field sensor
JPS6396626A (en) Waveguide type light control element
CN115291322B (en) Mode insensitive variable optical attenuator based on MMI structure
JPH02114243A (en) Optical control device and its manufacture
JP2003075788A (en) Optical device
JPH10307225A (en) Waveguide type optical element and its manufacture
JPH10213821A (en) Waveguide type light limiter
JPH04258918A (en) Light control circuit
JP2004333949A (en) Optical waveguide element
JPH0697286B2 (en) Optical circuit and manufacturing method thereof
JP2720654B2 (en) Light control device
Garmire Integrated Optics Technology
CN117908281A (en) Optical switch based on non-parallel thin film waveguide and control method thereof
Ji et al. High-extinction ratio TE-pass polarizer fabricated in LiNbO3 by proton exchange and titanium indiffusion
JPH0795173B2 (en) Light control device
JPS60182425A (en) Manufacture of optical control system