JPS61241693A - Make-up water controller for nuclear reactor of nuclear power plant - Google Patents

Make-up water controller for nuclear reactor of nuclear power plant

Info

Publication number
JPS61241693A
JPS61241693A JP60082209A JP8220985A JPS61241693A JP S61241693 A JPS61241693 A JP S61241693A JP 60082209 A JP60082209 A JP 60082209A JP 8220985 A JP8220985 A JP 8220985A JP S61241693 A JPS61241693 A JP S61241693A
Authority
JP
Japan
Prior art keywords
boric acid
water
flow rate
water flow
setting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60082209A
Other languages
Japanese (ja)
Inventor
久保 節郎
安田 吉弘
柳元 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60082209A priority Critical patent/JPS61241693A/en
Publication of JPS61241693A publication Critical patent/JPS61241693A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は原子力プラントの1次冷却循環系に体積制御タ
ンクを介して純水補給系とほう酸水供給系とを接続した
原子力プラントの原子炉補給水制御装置に関するもので
ある。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a nuclear reactor of a nuclear power plant in which a pure water supply system and a boric acid water supply system are connected to the primary cooling circulation system of the nuclear power plant via a volume control tank. This invention relates to a make-up water control device.

(従来の技術) 原子炉では、所定期間(例えば1年程度)燃料を入れた
ま〜で運転するの゛で、その期間終了時点でも所定の核
反応(反応度)が得られなければならない。ウラン23
5等のように核反応(燃焼)により核分裂性物質でなく
なるものにおいては、期間初期に反応に要するよりも多
い量の分裂性物質が入れられるので、期間初期には核反
応を抑えて1反応度を適正に保つ必要があり、このため
加圧水型原子炉ではほう酸が使用されるが、燃焼は、1
日毎に進むので、これを考慮してほう素を変更しなけれ
ばならない。
(Prior Art) A nuclear reactor is operated with fuel in it for a predetermined period (for example, about one year), and a predetermined nuclear reaction (reactivity) must be obtained even at the end of that period. uranium-23
For materials such as No. 5, which cease to be fissile materials due to nuclear reactions (combustion), a larger amount of fissile material than is required for the reaction is introduced at the beginning of the period, so at the beginning of the period, the nuclear reaction is suppressed and only one reaction Boric acid is used in pressurized water reactors for this reason, but the combustion
As it progresses day by day, the boron must be changed to take this into account.

以上のほう酸水の濃度調整を行う原子炉補給水制御装置
の従来例を第3図により説明すると、 (g)が純水補
給系、(&)がほう酸水供給系、(6)が上記純水補給
系(、)に設けた純水流量制御弁、(d)が上記は5酸
水供給系(b)に設けたほう散水流量制御弁、(#)が
ほう酸混合器、(Aが同ほう酸混合器(1)の下流側に
設けた補給水流量計、(g)が上記ほう散水流量制御弁
(d)の下流側に設けたほう酸水流量計、仏)が原子力
プラントの1次冷却材循環系に接続した配管で、補給水
流量計(1)からの補給水流量検出信号と補給水流量設
定器(図示せず)からの純水流量設定値信号とを補給水
流量制御器(図示せず)へ送り、ここで処理して得られ
た制御信号を純水流量制御弁(1)へ送り、同純水流量
制御弁(c)の開度を制御して、純水タンク(図示せず
)に貯えた純水をほう酸混合器(#)へ送り、またほう
酸水流量計(g)からのほう散水流量検出信号とほう酸
水流量設定器(図示せず)からのほう散水流量設定値信
号とをほう散水流量制御器(図示せず)へ送り、ここで
処理して得られた制御信号をほう散水流量制御弁(d)
へ送り、同ほう散水流量制御弁(d)の開度を制御して
、ほう澄水タンク(図示せず)に貯えた一定濃度のほう
酸水をほう酸混合器(−)へ送り、ここで上記純水と混
合して得られた補給水を配管体)を介し1次冷却材循環
系へ供給して、同1次冷却材循環系のほう素濃度を変更
するようになっている。
A conventional example of a reactor make-up water control system that adjusts the concentration of boric acid water as described above is explained with reference to FIG. 3. (g) is a pure water make-up system, (&) is a boric acid water supply system, and (6) is the pure The pure water flow control valve installed in the water supply system (,), (d) is the boron water flow control valve installed in the penta-acid water supply system (b), (#) is the boric acid mixer, (A is the same) The make-up water flow meter installed downstream of the boric acid mixer (1), (g) the boric acid water flow meter installed downstream of the boric acid water flow control valve (d), and the boric acid water flow meter installed downstream of the boric acid mixer (1); The makeup water flow rate detection signal from the makeup water flow meter (1) and the deionized water flow rate set value signal from the makeup water flow rate setting device (not shown) are connected to the makeup water flow rate controller (not shown) through piping connected to the material circulation system. (not shown), and the control signal processed here is sent to the pure water flow control valve (1), which controls the opening degree of the pure water flow control valve (c). The pure water stored in the boric acid mixer (#) is sent to the boric acid mixer (#), and the boric acid flow rate detection signal from the boric acid water flow meter (g) and the boric acid water flow rate from the boric acid water flow rate setting device (not shown) are sent to the boric acid mixer (#). The set value signal is sent to the hydration flow rate controller (not shown), and the control signal processed here is sent to the hydration flow rate control valve (d).
By controlling the opening of the boric water flow rate control valve (d), the boric acid water of a certain concentration stored in the boric water tank (not shown) is sent to the boric acid mixer (-), where the pure boric acid water is The make-up water obtained by mixing with water is supplied to the primary coolant circulation system via a piping body to change the boron concentration in the primary coolant circulation system.

(発明が解決しようとする問題点) 加圧水型原子炉では、すでに述べたように1日毎に進む
燃焼を考慮して、ほう素濃度を変更する必要があるが、
従来は、運転負目からか1次冷却材循環系を流れる1次
冷却材をサンプリングして、混合比を算出し、その結果
得られたー出値に基づいて補給水流量設定器及びほう酸
水流量設定器の□設定値を変更するようにしており、運
転員にかなりの負担をかけていた。
(Problems to be Solved by the Invention) In pressurized water reactors, as already mentioned, it is necessary to change the boron concentration in consideration of the daily progress of combustion.
Conventionally, the primary coolant flowing through the primary coolant circulation system was sampled from the negative point of operation, the mixing ratio was calculated, and the make-up water flow rate setting device and boric acid water were adjusted based on the resulting output value. The operator had to change the □ set value of the flow rate setting device, which placed a considerable burden on the operator.

本発明は前記の問題点に対処するもので、原子力プラン
トの1次冷却材循環系に体積制御タンクを介して純水補
給系とほう酸水供給系とを接続した原子力プラントにお
いて、設定値が燃焼の進行及び運転状況により決まるほ
う素濃度設定器と。
The present invention addresses the above-mentioned problems, and is intended to solve the problem in a nuclear power plant in which a pure water replenishment system and a boric acid water supply system are connected to the primary coolant circulation system of the nuclear power plant via a volume control tank. Boron concentration setting device determined by the progress and operating conditions.

前記1次冷却材循環系のほう酸濃度を検出するほう酸濃
度検出器と、前記体積制御タンクの水位を検出する水位
検出器と、上記ほう素濃度設定器と上記ほう酸濃度検出
器と上記水位検出器との出力を処理して得られた制御信
号を前記純水補給系に設けた純水流量制御弁と前記ほう
酸水供給系に設けたほう散水流量制御弁とに送って純水
及びほう酸水の流量を制御する制御器とを具えているこ
とを特徴とした原子力プラントの原子炉補給水制御装置
に係り、その目的とする処は、ほう素濃度の変更を自動
的に行5ことができて、運転員の負担を軽減できる原子
力プラントの原子炉補給水制御装置を供する点にある。
a boric acid concentration detector for detecting the boric acid concentration in the primary coolant circulation system; a water level detector for detecting the water level in the volume control tank; the boron concentration setting device; the boric acid concentration detector; and the water level detector. A control signal obtained by processing the output of A reactor make-up water control device for a nuclear power plant characterized by comprising a controller for controlling flow rate, the purpose of which is to be able to automatically change boron concentration. The object of the present invention is to provide a reactor make-up water control system for a nuclear power plant that can reduce the burden on operators.

(問題点を解決するための手段) 本発明は前記のように原子プラントの1次冷却材循環系
に体積制御タンクを介して純水補給系とほう酸水供給系
とを接続した原子プラン)において、設定値が燃焼の進
行及び運転状況により決まるほう素濃度設定器と、前記
1次冷却材循環系のほう酸濃度を検出するは5散漫度検
出器と、前記体積制御タンクの水位を検出する水位検出
器と、上記ほう素濃度設定器と上記ほう酸濃度検出器と
上記水位検出器との出力を処理して得られた制御信号を
前記純水補給系に設けた純水流量制御弁と前記ほう酸水
供給系に設けたほう散水流量制御弁とに送って純水及び
ほう酸水の流量を制御する制御器とを具えており、ほう
素濃度の変更が自動的に行われ【、運転員の負担が軽減
される。
(Means for Solving the Problems) The present invention is directed to an atomic plan in which a pure water supply system and a boric acid water supply system are connected to the primary coolant circulation system of an atomic plant via a volume control tank as described above. , a boron concentration setting device whose set value is determined depending on the progress of combustion and operating conditions; a diffuseness detector that detects the boric acid concentration in the primary coolant circulation system; and a water level that detects the water level of the volume control tank. A pure water flow rate control valve provided in the pure water supply system and a control signal obtained by processing the outputs of the detector, the boron concentration setting device, the boric acid concentration detector, and the water level detector, and the boric acid It is equipped with a boron water flow rate control valve installed in the water supply system and a controller that controls the flow rate of pure water and boric acid water sent to the water supply system, and changes in boron concentration are performed automatically. is reduced.

(実施例) 次に本発明の原子力プラントの原子炉補給水制御装置を
第1.2図に示す一実施例により説明すると、第1図の
(1)が純水を貯えている純水タンク、(2)が純水ポ
ンプ、(3)が純水流量制御弁、(4)が一定濃度のほ
う酸水を貯えているほう酸水タンク、(5)がほう酸水
ポンプ、(6)がほう酸水流量計、(7)がほう散水流
量制御弁、(8)がほう酸混合器、(9)が補給水流量
計、(IQが補給水を貯える体積制御タンク、(Iυが
同体積制御タンク四から1次冷却材循環系へ延びた配管
、 Q3が1次冷却材循環系の戻りライン、aりが同体
積制御タンク四の水位検出器、(12’)が同体積制御
タンクCIQの水位制御器、α力が1次冷却材循環系の
戻りライン(13に設けたポット、a段がほう酸濃度検
出器で、同ほう酸濃度検出器α1は、上記ボッ)QJに
滞留している1次冷却材に中性子を照射し、そのときの
吸収量により1次冷却材中のほう酸濃度を検出して、そ
の結果を計器板に表示するようになっている。また←e
が上記体積制御タンクQOの水位制御弁、0ηが冷却材
貯蔵タンク(図示せず)で、上記体積制御タンクQl内
の補給水の水位が水位検出器α渇により検出され、その
とき得られた水位検出信号が水位制御器(12’)へ送
られ、体積制御タンクQlの水位が低下すれば、制御信
号が同水位制御器(12’)から後記制御器(20)を
介し純水流量制御弁(3)及びほう酸水流量制御器(力
へ送られ、同各流量制御弁(3)(力の開度が制御され
て、現時点の1次冷却材循環系のほう酸濃度にする補給
水が体積制御タンク叫べ送られる。また体積制御タンク
QOIが高くなれば、制御信号が上記水位制御器(12
’)から水位制御弁(leへ送られ、同水位制御弁(I
Qが開かれて1体積制御タンク(101内の補給水が冷
却材貯蔵タンクQηへ送られるようになっている。
(Embodiment) Next, the reactor make-up water control system for a nuclear power plant according to the present invention will be explained using an embodiment shown in Fig. 1.2.(1) in Fig. 1 is a pure water tank storing pure water. , (2) is a pure water pump, (3) is a pure water flow control valve, (4) is a boric acid water tank that stores boric acid water at a certain concentration, (5) is a boric acid water pump, and (6) is a boric acid water Flowmeter, (7) is the boric acid mixer, (9) is the make-up water flow meter, (IQ is the volume control tank that stores make-up water, (Iυ is the same volume control tank 4) Piping extending to the primary coolant circulation system, Q3 is the return line of the primary coolant circulation system, a is the water level detector of the same volume control tank 4, (12') is the water level controller of the same volume control tank CIQ , the α force is the return line of the primary coolant circulation system (the pot installed in 13, the a stage is the boric acid concentration detector, and the boric acid concentration detector α1 is the above-mentioned hole). The boric acid concentration in the primary coolant is detected based on the amount of neutrons absorbed at that time, and the results are displayed on the instrument panel.
is the water level control valve of the volume control tank QO, 0η is the coolant storage tank (not shown), and the water level of the make-up water in the volume control tank Ql is detected by the water level detector α, which is obtained at that time. A water level detection signal is sent to the water level controller (12'), and when the water level of the volume control tank Ql decreases, a control signal is sent from the water level controller (12') to the controller (20) described later to control the pure water flow rate. The valve (3) and the boric acid water flow rate controller (force) are sent to each flow rate control valve (3) (force opening degree is controlled to supply make-up water to the current concentration of boric acid in the primary coolant circulation system. A control signal is sent to the volume control tank. Also, if the volume control tank QOI becomes high, a control signal is sent to the water level controller (12).
) is sent from the water level control valve (le) to the water level control valve (I
Q is opened so that make-up water in one volume control tank (101) is sent to the coolant storage tank Qη.

また第1.2図のa印がほう素濃度設定器(設定値が燃
焼の進行及び運転状況により決まるほう素濃度設定器)
、←1が切、自動、人の押釦スイッチを具えた補給許可
スイッチ、■が上記ほう素濃度設定器Uと上記ほう酸濃
度検出器(151と上記水位検出器α渇との出力を処理
して得られた制御信号を前記純水補給系に設けた純水流
量制御弁(3)と前記ほう散水供給系に設けたほう酸水
流量制御器(7)とに送って純水及びほう酸水の流量を
制御する制御器で、同制御器翰は、積算器(2υと演算
器G!21(251と比較器(2階(財)と補給水流量
設定器(25’)とを具え、上記積算器(21)では、
ほう酸水流量計(6)からのほう酸水流量検出信号と補
給水流量計(9)からの補給水流量検出信号とによりほ
う化量(A1)及び純水量(A2)のそれぞれを別四に
積算するようになっている。また上記演算器(221で
は、ほう酸濃度検出器(15)からのほう酸濃度検出器
信号(現時点の1次冷却材循環系のほう酸濃度検出信号
)とほう素濃度設定器α印からのほう素濃度設定信号と
の偏差を求めて、その結果からほう酸添加量(B1)及
び純水添加量(B2)を演算するようになっている。v
l−た上記比較器(ハ)では、上記積算器Qυからのほ
う酸量(A1)信号と上記演算器(社)からのほう酸添
加量(B1)信号とを比較して、AI=B1  であれ
ば、ほう酸水流量制御器(7)へ弁閉の制御許可信号を
送り、 Al(B1であれば、ほう酸水流量制御器(7
)へ弁開の制御許可信号を送るようになっている。また
上記比較器C2荀では、上記積算器Cυからの純水量信
号(A2)と上記演算器(24からの純水添加量(B2
)信号とを比較してs A2−B2であれば、純水流量
制御弁(3)へ弁閉の制御許可信号を送り% A2<B
2であれば、純水流量制御弁(3)へ弁開の制御許可信
号を送るようになっている。また上記演算器(2国では
、補給水流量設定器(25’ )からの補給水流量設定
値信号とほう素濃度設定器α樽からのほう素濃度設定信
号とにより1次冷却材の希釈量、濃縮量を演算し、その
結果をほう散水流量設定値信号として送出するようにな
っている。また上記制御器翰外の翰は補給水流量設定器
、@はほう散水量設定器、(ハ)は純水流量制御器、翰
はほう酸水流量制御器で、補給水流量設定器−と補給水
流量設定器(25’ )とのいづれか一方を純水流量制
御器(ハ)に選択的に接続する接点、及びほう酸水流量
設定器(ハ)と演算器c!菊とのいづれか一方をほう散
水流量制御器翰に選択的に接続する接点が図示位置にあ
るときには、補給水流量計(9)からの補給水流量検出
信号と補給水流量設定器(ハ)からの補給水流量設定値
信号とを純水流量制御器(ハ)へ送り、ここで処理して
得られた制御信号を純水流量制御弁(3)へ送り、同純
水流量制御弁(3)の開度を制御して、純水タンク(図
示せず)に貯えた純水をほう酸混合器(8)へ送り、ま
たほう酸水流量計(6)からのほう酸水流量検出信号と
ほう酸水流量設定器(5)からのほう散水流量設定値信
号とをほう酸水流量制御器(ハ)へ送り、ここで処理し
て得られた制御信号をは5酸水流量制御弁(7)へ送り
、同ほう酸水流量制御器(7)の開度を制御して、ほう
酸水タンク(4)に貯えた一定濃度のほう酸水をほう酸
混合器(8)へ送り、ここで上記純水と混合して得られ
た補給水を体積制御タンク翰を経て1次冷却材循環系へ
送るようKなっている。なお上記各接点は、体積制御タ
ンクQQの水位制御器(12’)から水位低の制御信号
が送出されるとき、及び補給許可スイッチ四が自動に切
換えられているときkは。
Also, the symbol a in Figure 1.2 is the boron concentration setting device (the set value is determined by the progress of combustion and the operating conditions).
, ← 1 is off, automatic, a replenishment permission switch equipped with a human push button, ■ is processing the outputs of the boron concentration setting device U, the boric acid concentration detector (151, and the water level detector α). The obtained control signal is sent to a pure water flow rate control valve (3) provided in the pure water supply system and a boric acid water flow rate controller (7) provided in the boric acid water supply system to control the flow rates of pure water and boric acid water. The controller is equipped with an integrator (2υ), an arithmetic unit G!21 (251), a comparator (2F), and a make-up water flow rate setting device (25'), In the container (21),
The boric acid water flow rate detection signal from the boric acid water flow meter (6) and the make-up water flow rate detection signal from the make-up water flow meter (9) are used to separately integrate the amount of boric acid (A1) and the amount of pure water (A2). It is supposed to be done. In addition, the arithmetic unit (221) uses the boric acid concentration detector signal (current boric acid concentration detection signal of the primary coolant circulation system) from the boric acid concentration detector (15) and the boron concentration from the boron concentration setting device α mark. The deviation from the set signal is determined, and the amount of boric acid added (B1) and the amount of pure water added (B2) are calculated from the results.v
The comparator (c) compares the boric acid amount (A1) signal from the integrator Qυ with the boric acid addition amount (B1) signal from the computer (company) and determines whether AI=B1. For example, send a control permission signal to close the valve to the boric acid water flow rate controller (7), and if Al (B1), send the control permission signal to the boric acid water flow rate controller (7).
) to send a control permission signal to open the valve. Further, the comparator C2 uses the pure water amount signal (A2) from the integrator Cυ and the pure water addition amount (B2) from the arithmetic unit (24).
) signal and if it is s A2-B2, sends a control permission signal to close the valve to the pure water flow rate control valve (3) %A2<B
If it is 2, a control permission signal for opening the valve is sent to the pure water flow rate control valve (3). In addition, the amount of dilution of the primary coolant is determined by the make-up water flow rate set value signal from the make-up water flow rate setting device (25' in two countries) and the boron concentration setting signal from the boron concentration setting device α barrel. , calculates the concentration amount, and sends the result as a water sprinkler flow rate set value signal. Also, the wire outside the above controller wire is the make-up water flow rate setting device, @ is the water spray amount setting device, (H) ) is a pure water flow rate controller, 翺 is a boric acid water flow rate controller, and either one of the make-up water flow rate setting device - and the make-up water flow rate setting device (25') can be selectively used as the pure water flow rate controller (c). When the contacts to connect and the contacts to selectively connect either the boric acid water flow rate setting device (c) or the calculator c!kiku to the boric acid water flow rate controller are in the positions shown, ) and the make-up water flow rate setting value signal from the make-up water flow rate setting device (c) are sent to the pure water flow rate controller (c), where the control signal obtained by processing is purified. Send the pure water stored in the pure water tank (not shown) to the boric acid mixer (8) by controlling the opening degree of the pure water flow control valve (3), In addition, the boric acid water flow rate detection signal from the boric acid water flow meter (6) and the boric acid water flow rate set value signal from the boric acid water flow rate setting device (5) are sent to the boric acid water flow rate controller (c), where they are processed. The obtained control signal is sent to the penta-acid water flow rate control valve (7), and the opening degree of the boric acid water flow rate controller (7) is controlled to control the boric acid water at a constant concentration stored in the boric acid water tank (4). is sent to the boric acid mixer (8), where the make-up water obtained by mixing with the pure water is sent to the primary coolant circulation system via the volume control tank holder.The above-mentioned contacts are , when a low water level control signal is sent from the water level controller (12') of the volume control tank QQ, and when the replenishment permission switch 4 is switched to automatic.

補給水流量設定器(イ)及びほう散水流量設定器(5)
が切離される。
Makeup water flow rate setting device (a) and irrigation water flow rate setting device (5)
is separated.

(作用) 次に前記原子力プラントの原子炉補給水制御装置の作用
を説明する。本制御装置は、純水タンク(1)から純水
ポンプ(2)を通って送られる純水と約2QOOOII
In(一定濃度)のほう酸水を貯えたほう酸水タンク(
4)からほう酸水ポンプ(5)を通って送られる高濃度
のほう酸水とほう酸混合器(8)へ供給して、混合し、
ここで得られた補給水を体積制御タンクa〔から配管0
1)を介し1次冷却材循環系へ一定流量で添加すること
により、1次冷却材循環系のほう酸濃度を所望の値に制
御する作用をもっている。また1次冷却材循環系は閉ル
ープを構成しており、1次冷却材の温度が変化すると、
その体積が増減して、体積制御タンクOQの水位が変化
するが、この体積制御タンク叫の水位を一定範囲に維持
するために、水位が上昇すれば、余剰分を水位制御弁(
三方弁)(1G)を介し冷却材貯蔵タンク(17)へ移
送し、水位が低下すれば、不足分を本制御装置の制御器
より、体積制御タンクQOIへ補給する作用をもってい
る。
(Function) Next, the function of the reactor make-up water control system for the nuclear power plant will be explained. This control device handles approximately 2QOOOII of pure water sent from the pure water tank (1) through the pure water pump (2).
A boric acid water tank (which stores In (constant concentration) boric acid water)
4) through the boric acid water pump (5) and fed to the boric acid mixer (8) and mixed,
The make-up water obtained here is transferred from volume control tank a [to pipe 0
By adding boric acid at a constant flow rate to the primary coolant circulation system via 1), it has the effect of controlling the concentration of boric acid in the primary coolant circulation system to a desired value. In addition, the primary coolant circulation system constitutes a closed loop, and when the temperature of the primary coolant changes,
As the volume increases or decreases, the water level in the volume control tank OQ changes, but in order to maintain the water level in the volume control tank within a certain range, if the water level rises, the excess water is transferred to the water level control valve (
The coolant is transferred to the coolant storage tank (17) via the three-way valve (1G), and when the water level drops, the controller of this controller replenishes the shortage to the volume control tank QOI.

1次冷却拐循環系のほう索漠度を低下させる場合には、
純水流量制御弁(3)を開き、純水タンク(1)から純
水を一定量添加することにより1次冷却材循環系のほう
索漠度を低下させる。また1次冷却材循環系のほう索漠
度を上昇させる場合には、ほう散水流量制御弁(7)を
開き、ほう酸水タンク(3)から高い一定濃度のほう酸
水を一定量添加することにより、1次冷却材循環系のほ
う索漠度を上昇させる。なお体積制御タンク(101の
水位低下時には、1次冷却材循環系と同じほう索漠度の
ほう酸水を添加するために各流量制御弁(3)(力を開
き、純水とほう酸水とを混合したのち、一定流量で1次
冷却材循環系へ添加する。また1次冷却材循環系のほう
索漠度は、1次冷却材循環系の戻りライン側のボッ)(
14)内に滞留した冷却材またはサンプリングした冷却
材を測定して得たほう索漠度を1次冷却材は5索漠度調
整の基準にする。本発明は、以上の原子炉補給水制御系
において、ほう索漠度調整を自動化している。即ち、第
2図の1次冷却材ほう索漠度ダイレクト制御ブロック図
において、一点鎖線内のデジタル部は、ダイレクト・デ
ジタル・コントロール(コンピュータ制御)による計算
機部分を示し、その他の部分は、従来のアナログ計器、
スイッチ等を示している。1次冷却材循環系のほう索漠
度を低下させたり、上昇させたりする場合、低下または
上昇後の1次冷却材循環系のほう索漠度をほう索漠度設
定器a8)に設定すると、演算器0りにより目標のほう
散水添加量及び純水添加量が演算される。また補給許可
スイッチ0を囚とする叛と、積算器Cυがリセットされ
るため、比較器(ハ)または(財)が作動し、補給水流
量設定器(ハ)とほう散水量設定器(財)の設定値によ
り流量制御弁(3)(7)が制御される。またほう散水
流量計(6)及び補給水流量計の)かうね検出値を積算
器0υが積算し、純水量及びほう酸量を出し、演算器(
221が目標値を自動的に演算し、1次冷却材ほう索漠
度が目標値に到達すれば、比較器(ハ)(財)の条件が
不成立となり、流量制御弁(3)(7)が閉じて、ほう
索漠度の調整操作が完了する。
When reducing the degree of desertification of the primary cooling circulation system,
By opening the pure water flow control valve (3) and adding a certain amount of pure water from the pure water tank (1), the degree of desertification of the primary coolant circulation system is reduced. In addition, when increasing the degree of desertification of the primary coolant circulation system, open the boric acid flow control valve (7) and add a certain amount of high concentration boric acid water from the boric acid water tank (3). , increasing the degree of desertification of the primary coolant circulation system. In addition, when the water level in the volume control tank (101) drops, each flow control valve (3) is opened to add boric acid water of the same degree as the primary coolant circulation system, and the pure water and boric acid water are After mixing, it is added to the primary coolant circulation system at a constant flow rate.Also, the degree of indistinctness of the primary coolant circulation system is determined by adding the bottle on the return line side of the primary coolant circulation system.
14) The degree of desertion obtained by measuring the coolant retained in the coolant or the sampled coolant is used as the standard for adjusting the degree of desertity of the primary coolant. The present invention automates the headway desert degree adjustment in the above-mentioned reactor make-up water control system. That is, in the block diagram of the primary coolant desert direct control shown in FIG. 2, the digital part within the dashed line indicates the computer part by direct digital control (computer control), and the other parts are the conventional ones. analog instrument,
Shows switches, etc. When lowering or increasing the degree of desertification of the primary coolant circulation system, set the degree of desertity of the primary coolant circulation system after the decrease or increase in the degree of desertity setting device a8). , the target amount of water to be added and the amount of pure water to be added are calculated by the calculator. In addition, since the replenishment permission switch 0 is taken prisoner and the integrator Cυ is reset, the comparator (C) or (F) is activated, and the make-up water flow rate setting device (C) and the water spray amount setting device (F) are activated. ) The flow rate control valves (3) and (7) are controlled by the set values. In addition, the integrator 0υ integrates the flow detection values of the boron sprinkler flowmeter (6) and makeup water flowmeter, calculates the amount of pure water and the amount of boric acid, and calculates the amount of pure water and boric acid.
221 automatically calculates the target value, and if the primary coolant desert degree reaches the target value, the conditions of the comparator (c) are not satisfied, and the flow control valves (3) and (7) closes, and the distance adjustment operation is completed.

また補給許可スイッチ員が「自動」にあり、体積制御タ
ンク(101の水位設定水位以下になれば、体積制御タ
ンク(101の水位制御器(12’)が動作して、流量
制御弁(3)(7)が制御可能の状態になる。このとき
、流量制御弁(3)は補給水流量設定器(25’ )の
設定値により制御され、流量制御弁(7)は演算器(ハ
)により演算された設定値により制御されて、体積制御
タンクQ(1の水位が復帰するまでほう酸水の補給が自
動的に行なわれる。
In addition, if the replenishment permission switch is set to "auto" and the water level of the volume control tank (101) falls below the set water level, the water level controller (12') of the volume control tank (101) will operate, and the flow rate control valve (3) will operate. (7) becomes controllable. At this time, the flow rate control valve (3) is controlled by the set value of the make-up water flow rate setting device (25'), and the flow rate control valve (7) is controlled by the calculator (c). Controlled by the calculated set value, boric acid water is automatically replenished until the water level in the volume control tank Q (1) returns.

(発明の効果) 本発明は前記のように原子方プラントの1次冷却材循環
系に体積制御タンクを介して純水補給系とほう散水供給
系とを接続した原子力プラントにおいて、設定値が燃焼
の進行及び運転状況により決まるほう索漠度設定器と、
前記1次冷却材循環系のほう酸濃度を検出するほう酸濃
度検出器と、前記体積制御タンクの水位を検出する水位
検出器と、上記ほう索漠度設定器と上記ほう酸濃度検出
器と上記水位検出器との出力を処理して得られた制御信
号を前記純水補給系に設けた純水流量制御弁と前記ほう
散水供給系に設けたほう散水流量制御弁とに送って純水
及びほう散水の流量を制御する制御器とを具えており、
ほう索漠度の変更を自動的に行うことができて、運転員
の負担を軽減できる効果がある。
(Effects of the Invention) The present invention is applicable to a nuclear power plant in which a pure water supply system and a borax supply system are connected to the primary coolant circulation system of the nuclear power plant via a volume control tank as described above. a distance setting device determined by the progress of the vehicle and driving conditions;
a boric acid concentration detector for detecting the boric acid concentration in the primary coolant circulation system; a water level detector for detecting the water level in the volume control tank; A control signal obtained by processing the output from the device is sent to a pure water flow control valve provided in the pure water supply system and a water spray flow control valve provided in the water supply system to supply pure water and water. It is equipped with a controller that controls the flow rate of
The degree of visibility can be changed automatically, which has the effect of reducing the burden on the operator.

以上本発明を実施例について説明したが、勿論本発明は
このような実施例にだけ局限されるものではなく、本発
明の精神を逸脱しない範囲内で種々の設計の改変を施し
うるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る原子力プラントの原子炉補給水制
御装置の一芙施例を示す系統図、第2図はその制御ブロ
ック図、第3図は従来の原子力プラントの原子炉補給水
制御装置の系統図である。 (3)・・・純水流量制御弁、(力・・・ほう散水流量
制御弁、(1つ・・・水位検出器、aω・・・ほう酸濃
度検出器、(IEfl・・・ほう索漠度設定器、翰・・
・制御器。 復代理人 弁理士開本重文 外2名
Fig. 1 is a system diagram showing one embodiment of the reactor make-up water control system for a nuclear power plant according to the present invention, Fig. 2 is its control block diagram, and Fig. 3 is a conventional reactor make-up water control system for a nuclear power plant. It is a system diagram of a device. (3)...Pure water flow rate control valve, (Power...Sprinkling flow rate control valve, (1...Water level detector, aω...Boric acid concentration detector, (IEfl...Boric acid concentration detector) Degree setting device, wire...
・Controller. Sub-agents: 2 patent attorneys and non-Kaimoto important literary figures

Claims (1)

【特許請求の範囲】[Claims] 原子力プラントの1次冷却材循環系に体積制御タンクを
介して純水補給系とほう酸水供給系とを接続した原子力
プラントにおいて、設定値が燃焼の進行及び運転状況に
より決まるほう素濃度設定器と、前記1次冷却材循環系
のほう素濃度を検出するほう酸濃度検出器と、前記体積
制御タンクの水位を検出する水位検出器と、上記ほう素
濃度設定器と上記ほう素濃度検出器と上記水位検出器と
の出力を処理して得られた制御信号を前記純水補給系に
設けた純水流量制御弁と前記ほう酸水供給系に設けたほ
う酸水流量制御弁とに送つて純水及びほう酸水の流量を
制御する制御器とを具えていることを特徴とした原子力
プラントの原子炉補給水制御装置。
In a nuclear power plant where a pure water supply system and a boric acid water supply system are connected to the primary coolant circulation system of the nuclear power plant via a volume control tank, a boron concentration setting device and a boron concentration setting device whose set value is determined depending on the progress of combustion and operating conditions are used. , a boric acid concentration detector for detecting the boron concentration in the primary coolant circulation system, a water level detector for detecting the water level in the volume control tank, the boron concentration setting device, the boron concentration detector, and the boron concentration detector. A control signal obtained by processing the output from the water level detector is sent to a pure water flow control valve provided in the pure water supply system and a boric acid water flow control valve provided in the boric acid water supply system. A reactor make-up water control device for a nuclear power plant, comprising: a controller for controlling the flow rate of boric acid water.
JP60082209A 1985-04-19 1985-04-19 Make-up water controller for nuclear reactor of nuclear power plant Pending JPS61241693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60082209A JPS61241693A (en) 1985-04-19 1985-04-19 Make-up water controller for nuclear reactor of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60082209A JPS61241693A (en) 1985-04-19 1985-04-19 Make-up water controller for nuclear reactor of nuclear power plant

Publications (1)

Publication Number Publication Date
JPS61241693A true JPS61241693A (en) 1986-10-27

Family

ID=13768031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60082209A Pending JPS61241693A (en) 1985-04-19 1985-04-19 Make-up water controller for nuclear reactor of nuclear power plant

Country Status (1)

Country Link
JP (1) JPS61241693A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507877A (en) * 2016-03-10 2019-03-22 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Reactor cooling system piping temperature distribution measurement system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045814U (en) * 1973-08-25 1975-05-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045814U (en) * 1973-08-25 1975-05-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507877A (en) * 2016-03-10 2019-03-22 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Reactor cooling system piping temperature distribution measurement system

Similar Documents

Publication Publication Date Title
JPS61241693A (en) Make-up water controller for nuclear reactor of nuclear power plant
JPS63236530A (en) Apparatus for injecting low vapor pressure substance in low pressure or vacuum system
US5271052A (en) Enriched boron-10 boric acid control system for a nuclear reactor plant
CN208847634U (en) Control the corrosion of oxygen liquid lead bismuth and ion irradiation cooperating research experimental provision
DE69015825T2 (en) CASTING SYSTEM TO CONNECT A BATTERY PLATE TO THE BATTERY POLE.
TW217462B (en) Adjustment method of image forming liquid
US7321650B2 (en) Apparatus for transferring an article between fluid-filled vessels
RU32143U1 (en) Accounting and regulatory complex of heat consumption
ES2092649T3 (en) PRE-PAYMENT WATER SUPPLY SYSTEMS.
CN217323853U (en) Automatic hydrogen production system
CN215677771U (en) Sample retention and distribution device
KR840008920A (en) Metallurgy containers
JPS6479519A (en) Hot water feeder
JPS6129468Y2 (en)
JPS58122089A (en) Controlling system for air quantity in aeration tank
JPH027840Y2 (en)
JPS53149089A (en) Dissolved oxygen controlling system
JP3354299B2 (en) Automatic high-pressure and high-pressure sample water supply system
JPS62254099A (en) Controller for quantity of hydrogen injected to nuclear reactor
JP2517959B2 (en) Water treatment system
JPS61220009A (en) Pressure controller for metal hydride tank
JPS5858189A (en) Adjusting means for ph
JPS60171540U (en) Ammonia automatic melting equipment with automatic temperature compensation device
Smith et al. Porocell- controlling cadmium discharge
JPS5584530A (en) Adjusting liquid concentration