JPS58122089A - Controlling system for air quantity in aeration tank - Google Patents

Controlling system for air quantity in aeration tank

Info

Publication number
JPS58122089A
JPS58122089A JP57004958A JP495882A JPS58122089A JP S58122089 A JPS58122089 A JP S58122089A JP 57004958 A JP57004958 A JP 57004958A JP 495882 A JP495882 A JP 495882A JP S58122089 A JPS58122089 A JP S58122089A
Authority
JP
Japan
Prior art keywords
air
aeration tank
control
value
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57004958A
Other languages
Japanese (ja)
Other versions
JPS6316998B2 (en
Inventor
Makoto Aoki
誠 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP57004958A priority Critical patent/JPS58122089A/en
Publication of JPS58122089A publication Critical patent/JPS58122089A/en
Publication of JPS6316998B2 publication Critical patent/JPS6316998B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To supply optimum quantity of oxygen by providing a control loop for concn. of dissolved oxygen in an aeration tank and a control loop of the air quantity to be supplied into the aeration tank, and a selecting means which selects the smaller control output of either of said two control outputs. CONSTITUTION:The measured value D of a DO meter installed in an aeration tank 1 is subjected to PID operation so as to be made coincident with the set value S4 of DO given from the outside and an operated value M of air quantity is outputted. An upper and lower limit limiter 6 for air quantity limits an operated value K of air quantity within the range determined by an upper limit set value LL for air quantity and a lower limit set value LD for air quantity given from the outside and outputs the same as a set value S5 of air quantity. The value M outputted from a DO loop controller 5 is limited within the prescribed range consisting of an upper limit limiter 11 for air magnification constituted of a multiplier 9 and an upper limit limiter 10 for air quantity and the limiter 6.

Description

【発明の詳細な説明】 この発明は、下水処理場等においていわゆる活性汚泥法
によシ下水を浄化する際に使用されるばつ気槽(エアレ
ーションタンクをも云う。)の空気量制御装置に関する
。この種の制御は、一般に、ばつ気槽中の活性汚泥に必
要な酸素を供給するだけてなく、省エネルギーの観点か
ら空気量を必要最小限に抑えるよう制御できること、か
つ頻繁な設定変更操作をしないで済む制御であることが
望ましい。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air amount control device for an aeration tank (also referred to as an aeration tank) used when purifying sewage by the so-called activated sludge method in a sewage treatment plant or the like. In general, this type of control not only supplies the necessary oxygen to the activated sludge in the aeration tank, but also controls the amount of air to the minimum required from the perspective of energy conservation, and does not require frequent setting changes. It is desirable that the control be such that only

ところで活性汚泥プロセスにおけるばり気槽の目的は、
流入する有機物を活性汚泥が生物的に分解する際に必要
な量の酸素を供給することKある・すなわち、ばつ気槽
に圧縮空気を送って攪拌することによシ空気中の酸素を
溶かし込むものである。
By the way, the purpose of the flash tank in the activated sludge process is
Activated sludge supplies the amount of oxygen necessary to biologically decompose the organic matter that flows in. In other words, by sending compressed air to the aeration tank and stirring it, oxygen in the air is dissolved. It is something that

しかるに、活性汚泥に必要な!1!累i−は、流入下水
の水質、水jlL−または水温、さらには活性汚泥OS
度あるいは状態(活性度)によって大きく変化すること
が知られている0そこで、活性汚泥に必要な酸素または
空気が充分に供給されているか否かを測る念めの簡便て
、かつ連続計1114が可能な指標としてばつ気槽中の
溶存酸*C以下、単KDOと略称する。)#度がある。
However, it is necessary for activated sludge! 1! The cumulative i- is the water quality of the inflowing sewage, the water jlL- or the water temperature, and the activated sludge OS.
Therefore, as a simple and continuous measurement method to measure whether or not the oxygen or air required for activated sludge is being sufficiently supplied, the continuous meter 1114 is A possible indicator is the dissolved acid *C in the aeration tank, hereinafter abbreviated as simple KDO. ) #There is a degree.

すなわち、一般的に、酸素量または空気量の過不足−f
iDO#に度の変化として現われるので、DO濃度が低
いときは空気量が不足して$P夛、Do濃度が高いとき
は空気量が過剰であると考えることができる。
That is, in general, excess or deficiency of the amount of oxygen or air - f
Since it appears as a change in iDO#, it can be considered that when the DO concentration is low, the air amount is insufficient and the amount of air is insufficient, and when the Do concentration is high, the air amount is excessive.

第1図はかかる一般的なり〇一定制御方式を示す構成図
である。
FIG. 1 is a block diagram showing such a general constant control method.

同図において、1はばつ気槽、2はばり気槽lに流入す
る汚水の流量を測定する流量計、3は制御弁、4は空気
量針、5はPID@節器からなるDOループコン)E!
 −?、sは空気量設定値の上。
In the figure, 1 is an aeration tank, 2 is a flow meter that measures the flow rate of sewage flowing into the aeration tank, 3 is a control valve, 4 is an air flow needle, and 5 is a DO loop controller consisting of a PID @ moderator) E!
−? , s is above the air volume setting value.

下限をきめる空気量上下限すiツタ、7はPID調節器
からなる空気量ループコントローラ、8はDO計である
。すなわち、ばつ気槽中にDO計8を設置し、その計測
値が設定値80と一致するように、コン)c2−75に
よj9PID演算を行なって空気量設定値S1を求め、
それが空気量上下限りjツタ6を経由して空気量制御ル
ープの設定値S2 となる。空気量制御ループコントロ
ーラ7では、空気量計測値Fが設定値S2と一致するよ
うにPID演算を行ない、制御弁3t−#a閉する。空
気量上限リミッタ(LU)は、過ばつ気によル活性汚泥
フロックが崩壊するのを防ぎ、一方下限リミッタ(LD
) Idばつ気mlが最低の攪拌力を維持するために設
けられている。
The upper and lower air volume limits are determined by the air volume controller, 7 is an air volume loop controller consisting of a PID controller, and 8 is a DO meter. That is, the DO meter 8 is installed in the aeration tank, and the air amount set value S1 is determined by performing j9PID calculation using the controller c2-75 so that the measured value matches the set value 80.
This becomes the set value S2 of the air amount control loop via the air amount upper and lower limit j ivy 6. The air amount control loop controller 7 performs PID calculation so that the air amount measurement value F matches the set value S2, and closes the control valves 3t-#a. The air volume upper limiter (LU) prevents activated sludge flocs from collapsing due to excessive air flow, while the lower air volume limiter (LD
) Id ml is provided to maintain minimum stirring power.

しかし、この従来方式には次の欠点がある。However, this conventional method has the following drawbacks.

(1)  エネルギー損失が大きい。(1) Energy loss is large.

理由は明らかではないが流入下水の水質と水量がともに
減少した時や、DO計測妨害物′Xが流入した時などに
、DO計測値が設定値を大きく下まわシ、空気量を増加
させても設定値に到達しないことがよくある(成る下水
処理場では、はぼ毎日夜半から朝方までこの状態となる
。)。この場合、従来方式の制#装置ではDO計測値と
設定値との間に正の偏差がある次め、空気量は空気量上
限リミッタ(第1図の6参照)の上限設定値(同図のL
U参照)tで増大し、その値が維持される。しかし、こ
の空気量のうち、ある値以上の空気量は過剰空気であシ
、したがって空気を供給する送風機で無駄な電力を消費
していることになる・下水処理場において消費される電
力量のうち約40−が送風機で消費されること、そして
、この過剰空気によpエネルギーが無駄に消費されるこ
とを考えると、省エネルギーが大きな社会的l!霧とも
なっている昨今では大きな欠点である。
The reason is not clear, but when both the quality and quantity of inflowing sewage decrease, or when a DO measurement obstruction 'X' flows in, the DO measurement value drops significantly below the set value, causing the air volume to increase. (At the sewage treatment plant, this condition occurs almost every day from midnight until early morning.) In this case, with the conventional control device, if there is a positive deviation between the DO measurement value and the set value, the air amount will be adjusted to the upper limit setting value of the air amount upper limiter (see 6 in Figure 1). L of
(see U) increases at t and maintains its value. However, of this amount of air, the amount of air above a certain value is excess air, and therefore the blower that supplies the air wastes electricity. Considering that approximately 40% of this energy is consumed by the blower, and that this excess air wastes p energy, saving energy is a huge social benefit! This is a big drawback in these days when it is almost foggy.

f2)Do針保守時に特別な対策が必要である。f2) Special measures are required when maintaining the Do needle.

一般に、水質針は定期的な保守が不可欠である・従来方
式において、DO計の保守(数日に1回)が行なわれて
いる間、信号は「0」とな〕、見かけ上のDO計測値が
設定値を大きく下まわるため、(1)に述べたと同様の
制御動作となシ、無駄な電力を消費することになる。こ
れを避ける九めには、例えば、DO計保守中は現状維持
となるようにするための特別な工夫を制御系に付加する
必g!が生じる。これKは何等かのロジック回路を必要
とするが、その回路は必ずしも単純ではない。
In general, regular maintenance is essential for the water quality needle.In the conventional method, while the DO meter is being maintained (once every few days), the signal is "0"] and the apparent DO measurement. Since the value is significantly lower than the set value, the control operation similar to that described in (1) will be performed, and power will be wasted. To avoid this, for example, special measures must be added to the control system to maintain the status quo during DO meter maintenance! occurs. This K requires some kind of logic circuit, but that circuit is not necessarily simple.

(3)Do針異常時のバックアップが困難であるODO
針が異常となった場合、その値を用いたDO制御ができ
なくなるため、このような場合、通常はDO計の電源を
切断して点検・修理が行なわれる。この間、信号は矢張
シ「0」となル、現象的には(2)と同様となる。しか
し、この場合のバックアップ方法は(2)とは異なる。
(3) ODO where it is difficult to back up when the Do needle is abnormal
If the needle becomes abnormal, DO control using that value becomes impossible, so in such a case, the power to the DO meter is usually cut off and inspection and repair are performed. During this time, the signal remains at "0", and the phenomenon is similar to (2). However, the backup method in this case is different from (2).

その理由は、DO計保守による欠測は、短時間ではある
がm度が多いのに対し、DO針異常による欠測は、頻度
は少ないが長時間に及ぶためであって、欠測に対するバ
ックアップ方法もおのずと異ならせる必要があるためで
ある。
The reason for this is that missing measurements due to DO meter maintenance are short-lived but often occur for a long time, while missing measurements due to abnormal DO needles are less frequent but last for a long time. This is because the methods naturally need to be different.

なお、DO計異常の場合のバックアップ方法として(a
)Do計を複数用意する、咎)別にバックアップループ
を設ける、(C)異常の場合は操作員が手動で空気量を
調節する、などの方法が考えられるが、いずれも費用ま
たは入子などの面で問題がある・一方、他の方法として
、ばつ気槽に供Illれる空気量Aとばり気槽に流入す
る汚水流入量Qとの比R1すなわちA/Qを所定の値に
すべく制御する制御方式もある。
In addition, as a backup method in case of DO meter abnormality, (a
Possible methods include preparing multiple Do meters, (C) providing separate backup loops, and (C) having the operator manually adjust the air volume in the event of an abnormality. On the other hand, as another method, the ratio R1 of the amount of air supplied to the aeration tank and the amount of sewage flowing into the aeration tank Q, that is, the ratio R1, that is, A/Q, is controlled to a predetermined value. There is also a control method that does this.

第2図はかかる制御方式を示すブロック図である。同図
において、1〜4および7は第1Eに示されるものと同
様であ)、9は掛算器である。該掛算器9には上述の如
き比率Rが設定される七ともに、流量計2から流入汚水
置針爾1[Qが与えられるので、掛算器9で昧これらの
乗算(RXQ )が行なわれ、この結果が空気量コント
ロー27の設定値8ラ として与えられる。したがって
該コントローラ7は、空気置針4にて計51−gれる空
気計量aが設定値S5と一致するように制御弁3を制御
することによ)、ばつ気槽1に供11−gれる空気量を
コントロールする。この制御方式は、活性汚泥が必要と
する酸素量は汚水流入量に比例するものであるという観
点に基づくもので、突気倍率一定制御方式とも呼ばれる
FIG. 2 is a block diagram showing such a control method. In the figure, 1 to 4 and 7 are similar to those shown in 1E), and 9 is a multiplier. The ratio R as described above is set in the multiplier 9. In addition, since the inflow sewage pressure 1[Q is given from the flow meter 2, the multiplier 9 multiplies these (RXQ), and this The result is given as a set value of the air amount controller 27. Therefore, the controller 7 controls the control valve 3 so that a total of 51-g of air measured by the air indicator 4 matches the set value S5). Control quantity. This control method is based on the viewpoint that the amount of oxygen required by activated sludge is proportional to the amount of sewage inflow, and is also called the constant blast magnification control method.

活性汚泥に必要な酸素量が活性汚泥のS度、活性度によ
って大きく変化することは前述のと訃シであるにも拘ら
ず、この方式は単に汚水流入量だけにもとづいて制御を
行なうものであるため、活性汚泥の11度が低い時、を
次雨水の混入により流入下水が希釈されている時など1
本来ならそれ程の空気を必要としない場合でも、流入量
にもとづいて必要以上の空気を供給することとなり、そ
のため無駄にエネルギーを消費するという欠点があった
◇ この発明は上記に鑑みなされたもので、その目的を列記
すれば次のAt)である@ げ)ばつ気槽のDO濃度を設定値に維持するように空気
量を制御し、ばつ気槽中の活性汚泥に適切な量の酸嵩を
供給する。
Although it is unfortunate as mentioned above that the amount of oxygen required for activated sludge varies greatly depending on the S degree and activity of activated sludge, this method performs control simply based on the amount of sewage inflow. Therefore, when the activated sludge temperature is low, or when the inflowing sewage is diluted by the mixing of rainwater, etc.
Even if this amount of air is not normally required, more air than necessary is supplied based on the amount of inflow, which has the disadvantage of wasting energy. This invention was made in view of the above. , the purpose is as follows: @ Ge) Control the amount of air to maintain the DO concentration in the aeration tank at the set value, and add an appropriate amount of acid volume to the activated sludge in the aeration tank. supply.

(ロ)簡便な方法で過剰空気の供給を抑制し、省エネル
ギー効果を高める。
(b) Suppress the supply of excess air using a simple method and increase the energy saving effect.

□Do計保守時とDo計異常時には、簡便な方法で適切
なバックアップを自動的に行なうことができるようにす
る。
□ At the time of Do meter maintenance and when the Do meter is abnormal, it is possible to automatically perform appropriate backup using a simple method.

に)Do一定制拐方式、空気倍率一定m御方式のいずれ
か、またはその組み合わせ制御方式をその時のプラント
の状況に応じて、自由に選択できるようにしてプラント
運用の融通性を高める。
(2) The flexibility of plant operation is increased by allowing the user to freely select either the Do constant control method, the constant air magnification control method, or a combination control method depending on the plant situation at that time.

この発明のa!#微は、ばり気槽のDOIa度を一定に
するDo一定制御ループと、ばり気槽へ流入する汚水の
計測量に所定の倍率を乗じた値をばつ気槽の空気量設定
値としてその供給空気量を制御する空気倍率一定制御ル
ープとを設け、これらループの制御出力のうちのいずれ
か小さい方を下位の空気量一定制御ループの設定値とし
てその空気量を制御するようにした点にある。なお、こ
のようにして供給空気量を抑えても、処理効率には何ん
ら影響を与えないことが実証されている・以下、この発
明の実Jlflを図面を参照して説明する◎ aIa図はこの発明の実施例を示すブロック図である。
A of this invention! #Fine is a Do constant control loop that keeps the DOIa degree of the atomization tank constant, and a value obtained by multiplying the measured amount of wastewater flowing into the atomization tank by a predetermined multiplier, which is used as the air volume setting value for the aeration tank. A constant air magnification control loop is provided to control the air volume, and the smaller of the control outputs of these loops is used as a set value for the lower constant air volume control loop to control the air volume. . In addition, it has been proven that even if the amount of supplied air is reduced in this way, it does not affect the processing efficiency in any way.The actual Jlfl of this invention will be explained below with reference to the drawings. ◎ Figure aIa 1 is a block diagram showing an embodiment of the present invention. FIG.

同図からも明らかなように、この発明による制御方式は
、第1図および第2図に示される制御方式が結合され良
形式となっている。なお、10は空気量上限9iツタで
あ〕、11は空気倍率上限リミッタである@ すなわ?l、DoループコントローツSは、ばつ気槽l
に設置されたDo計の計測値りを外部から与えられるD
O設定値811に一致させるようにPID演算を行な込
、空気量設定値舅を出力する。
As is clear from the same figure, the control method according to the present invention is a good format in which the control methods shown in FIGS. 1 and 2 are combined. In addition, 10 is the air amount upper limit 9i], and 11 is the air magnification upper limiter. l, Do loop control S, air tank l
The measured value of the Do meter installed at D is given from the outside.
A PID calculation is performed so as to match the O set value 811, and the air amount set value is output.

掛算器9Fi、ばつ気槽1への汚水流入量計測値Qと、
外部から与えられる空気倍率上限設定fiRtrとの掛
算を行ない、空気量上限演算値QXRυとして出力する
。空気量上限リミッタ10は、空気量演算値Mと空気量
上限演算値QXRUとのうちいずれか小宴い方を空気量
演算値にとして空気量上下限リミッタ6へ出力する。空
気量上下限リミッタ6は、該空気量演算値Kを外部から
与えられる空気量上限設定値LUと空気量下限設定11
 LDとで決まる範囲内に制限し、空気量設定値(演算
値)S5として出力する。空気量ループコントロー27
Vi、空気配管に設置され九空気置針4の計測値Fを空
気量設定@ 85に一致させるよ5PID演算を行ない
、空気配管に設置された空気量制御弁3を開閉操作する
。つま、p、Doループコントロー25から出力される
空気量演算値Mは、掛算器9と空気量上限リミッタ10
から構成される空気倍率上限リミッタ11と、空気量上
下限リミッタ6とによ構成る所定のS囲に制限されるこ
とになるO jg4図はこの発明による制御動作範囲を説明するため
の特性図である。同図は空気量設定値(演算値) 85
のとp得る値の範囲を汚水流入量計測値Qとの関係にお
いて図示したもので、同図の斜MtJIL念範囲内でD
O一定制御が行なわれ、直@Xの境界では空気倍率一定
制御が行なわれ、直線Y、Zの境界では空気量一定制御
が行なわれる・第5図はこの発明の他の実施例を示すブ
ロック図である。この実施例ではローセレクタ12が設
けられ、DOループコン)H−45の出力である空気量
演算値Mと、掛算器9の出力である空気量演算@[QX
Rとのいずれか小さい方を該ローセレクタ12によって
選択し、その値を空気量上下限リミッタ6で制限し穴上
でこれを空気を演算値s5として出力するようにした点
が%徴であるが、基本的には第3図に示されるものと同
様であ夛、その制御動作範囲も第4図に示てれる如く行
なわれるので、詳細は省略する。
Multiplier 9Fi, measured value Q of the amount of sewage flowing into the aeration tank 1,
It is multiplied by the air magnification upper limit setting fiRtr given from the outside and output as the air amount upper limit calculation value QXRυ. The air amount upper limiter 10 outputs the smaller one of the air amount calculation value M and the air amount upper limit calculation value QXRU to the air amount upper and lower limit limiter 6 as the air amount calculation value. The air amount upper/lower limit limiter 6 converts the air amount calculation value K into an air amount upper limit set value LU given from the outside and an air amount lower limit setting 11.
LD and output as an air amount setting value (calculated value) S5. Air volume loop control 27
Vi, 5PID calculation is performed so that the measured value F of the 9 air indicator 4 installed in the air piping matches the air amount setting @ 85, and the air amount control valve 3 installed in the air piping is opened/closed. The air amount calculation value M output from the Tsuma, p, Do loop controller 25 is calculated by the multiplier 9 and the air amount upper limiter 10.
Figure 4 is a characteristic diagram for explaining the control operation range according to the present invention. It is. The figure shows the air volume setting value (calculated value) 85
This diagram shows the range of values obtained for and p in relation to the measured value Q of sewage inflow.
O constant control is performed, air magnification constant control is performed at the boundary of straight @ It is a diagram. In this embodiment, a low selector 12 is provided, and the air amount calculation value M, which is the output of the DO loop controller) H-45, and the air amount calculation @[QX
The % feature is that the smaller one of R and R is selected by the low selector 12, the selected value is limited by the air amount upper and lower limiter 6, and this is output on the hole as the calculated air value s5. However, since it is basically the same as that shown in FIG. 3, and the control operation range is also performed as shown in FIG. 4, the details will be omitted.

なお、第3図または第5図において、空気倍率設定値R
U 、 Hに充分大きな値を設定することにより、Do
一定制御可能領域は第6図の斜線の如くなって空気倍率
一定制御ループの機能は実質的に意味がなくなシ、し念
がって第1図と同様なり〇一定制御が可能となる。な訃
、第6図は空気倍率設定値を充分に大きくした場合の空
気量の設定値のとシ得る範囲を説明する九めの、第4図
と同様な特性図である。一方、DO設定値54KDO計
測値りよりも充分大きい値を設定することにより、DO
一定制御ループの機能が実質的に意味がなくなカ、第7
図の如く空気倍率一定制御が可能となる。なお、第79
はDO設定値を充分に大きぐした場合の空気量設定値の
と力得る範囲を説明する九めの、第6図と同様の特性図
である。これらのことから、この発明では、単一のDO
一定温@または単一の空気倍率一定制御と、これらの組
み合わせ制御が可能であることがわかる。すなわち、実
際の下水処理プロセスの運転111111においては、
DO一定制御、空気倍本一定制御およびこれらの組み合
わせ制御をプラントの状態、流入下水の状態または天候
などの禎々の条件に応じて使い分けることが要求される
ので、この発明のように、設定値の選び万によって制御
方式の便い分けが自由にできることは非常に大きな利点
であるということができる。したがって、この発明は、
DO一定制御方式と空気倍率一定制御方式とを単に結合
し省エネルギー効果を高めたに止どまらない秀れ九効果
を奏するものである。
In addition, in Fig. 3 or Fig. 5, the air magnification setting value R
By setting sufficiently large values for U and H, Do
The area where constant control is possible becomes as shown by the diagonal line in Figure 6, and the function of the constant air magnification control loop becomes virtually meaningless.As a result, it becomes the same as in Figure 1, and constant control becomes possible. . Furthermore, FIG. 6 is a ninth characteristic diagram similar to FIG. 4, which explains the range of the set value of the air amount when the set value of the air magnification is made sufficiently large. On the other hand, by setting a value sufficiently larger than the DO set value 54KDO measurement value, the DO
The function of the constant control loop becomes virtually meaningless.
As shown in the figure, constant air magnification control is possible. In addition, the 79th
FIG. 6 is a ninth characteristic diagram similar to FIG. 6, illustrating the range in which the air amount setting value can be adjusted when the DO setting value is sufficiently increased. For these reasons, in this invention, a single DO
It can be seen that constant temperature@ or single constant air magnification control and combination control of these are possible. That is, in the actual operation 111111 of the sewage treatment process,
Since it is required to use constant DO control, constant air doubling control, and combination control of these depending on various conditions such as the state of the plant, the state of inflowing sewage, or the weather, it is necessary to use the set value as in this invention. It can be said that it is a very big advantage that the control method can be freely selected depending on the selection of the control method. Therefore, this invention
By simply combining the constant DO control method and the constant air magnification control method, the present invention achieves superior effects that go beyond simply increasing the energy saving effect.

また、第3図において、空気量上限リミッタlOの選択
動作によって空気倍率一定制御が行なわれている間は、
同図の点線で示される如く該IJ fiミッタ1から上
位PIDコントロー25へ指令を送り、該コントローラ
5ではこの指令を受は友ときは、PID演算の積分項を
初期状態に維持しておくようにすれば、DO制御への復
帰をすみやかに行なうことができる。
In addition, in FIG. 3, while the air magnification constant control is being performed by the selection operation of the air amount upper limiter lO,
As shown by the dotted line in the same figure, a command is sent from the IJ fimitter 1 to the upper PID controller 25, and when the controller 5 receives this command, the integral term of the PID calculation is maintained at its initial state. By doing so, it is possible to quickly return to DO control.

同様に第5図に2いてもローセレクタエ2の選択動作に
よって空気倍率一定制御が行なわれている間は、同図の
点線で示される如くローセレクタ12から上位PIDコ
ントローラ5へ指令を送り、該コントローラ5ではこの
指令t−受けたときは、PID演算の積分項目初期状態
に維持しておくようにすれば、DOffijlNへの復
帰をすみやかに行なうことができる。
Similarly, while the air magnification constant control is being performed by the selection operation of the low selector 2 at 2 in FIG. 5, when this command t- is received, if the integral item of the PID calculation is maintained in the initial state, the return to DOffijlN can be carried out promptly.

以上のように、この発明によれば、リミッタ6゜11等
により制限されない範囲でばつ気槽の計測009度を設
定値に維持しつ\、ばつ気槽内の活性汚泥に適切な量の
酸素を供給することができるが、これはDO濃度のフィ
ードバック制御ループ(クローズドルーズ)が構成され
ているためである。し念がって、流入下水の水質と水量
とがともに減少した時や、Do計測妨害物質が流入した
時にはDoループコン)−c2−1から出力される空気
量演算値が増大するが、この発明では空気倍率上限リミ
ッタ11またはセレクタ12により自動的に空気倍率一
定制御へ移行し、それ以後は再びDO計測値が設定値に
達する迄流入下水量に応じた空気量が供給され、過剰空
気の供給は抑制される0この九め、上記(1)〜(3)
項で述べた如きエネルギーの損失が防止されるとともに
、DO計保守時に特別な対策が不要となカ、DO計異常
時には/<ツクアップ制御への移行が容易となる利点を
有するものである。
As described above, according to the present invention, the measured value of 009 degrees in the aeration tank is maintained at the set value within a range not limited by the limiter 6°11, etc., and an appropriate amount of oxygen is supplied to the activated sludge in the aeration tank. This is because a feedback control loop (closed loop) for the DO concentration is configured. As a precaution, when both the quality and quantity of inflowing sewage decrease, or when substances interfering with Do measurement flow in, the air amount calculation value output from Do loop controller)-c2-1 increases. Then, the air magnification upper limiter 11 or selector 12 automatically shifts to air magnification constant control, and after that, the amount of air corresponding to the amount of inflowing sewage is supplied until the DO measurement value reaches the set value again, and the excess air is supplied. is suppressed 0 This ninth, above (1) to (3)
This method has the advantage of preventing the energy loss as described in section 2, does not require any special measures during maintenance of the DO meter, and makes it easy to shift to /< pull-up control when the DO meter is abnormal.

【図面の簡単な説明】[Brief explanation of the drawing]

第11はばつ気槽における空気量制御方式の従来例を示
すブロック図、第2因は別の従来例を示すブロック図、
第3図はこの発明の実施例を示すブロック図、第4図は
この発明による制御動作を説明するための特性図、落5
図はこの発明の他の冥J1fllを示すブロック図であ
る。第6図および第7図は第4図において各種の設定値
を変更した場合を示す特性図である。 符号説明 1・・・ばつ気槽、2・・・流量計、3・・・空気量制
御弁、4・・・空気置針、5・・・DOループコントロ
ーラ、6・・・空気量上下限IJミッタ、7・・・空気
量ループコントローラ、8・・・DO針、9・・・掛算
器、10・・・空気量上限リミッタ、11−・空気倍率
上限リミッタ、12・・・ローセレクタ 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎   清 1 の 3゜ 第′2 図 第35!!I −1 JIEJ  図 5ち水涜き1計Gl jl (Q ) 第5 図 #! 6 図 第 7 図 渇水〉丸へ)i↑涜j頌(Q)
The eleventh factor is a block diagram showing a conventional example of an air amount control method in an aeration tank, and the second factor is a block diagram showing another conventional example.
FIG. 3 is a block diagram showing an embodiment of the present invention, and FIG. 4 is a characteristic diagram for explaining the control operation according to the present invention.
The figure is a block diagram showing another Mei J1flll of the present invention. FIGS. 6 and 7 are characteristic diagrams showing the case where various setting values in FIG. 4 are changed. Symbol explanation 1... Aeration tank, 2... Flow meter, 3... Air amount control valve, 4... Air position needle, 5... DO loop controller, 6... Air amount upper and lower limits IJ Mitter, 7... Air amount loop controller, 8... DO needle, 9... Multiplier, 10... Air amount upper limiter, 11-- Air magnification upper limiter, 12... Low selector agent Patent Attorney Akio Namiki Agent Patent Attorney Kiyoshi Matsuzaki 1's 3°'2 Figure 35! ! I-1 JIEJ Figure 5 Water pollution 1 total Gl jl (Q) Figure 5 #! 6 Figure 7 Figure 7 Drought〉To the circle)i↑Sacrilegejode (Q)

Claims (1)

【特許請求の範囲】[Claims] 流入する汚水を空気の供給を受けて活性汚泥法によ多処
理するばつ気槽の該空気量を所定の値となるように制御
する空気量一定制御ループを備えてなるばつ気槽め空気
量制御方式において、該ばつ気槽内に溶存する酸素濃度
を計測し核溶存酸素磯度t−所定の値とすべく制御する
第1の制御ループと、該ばつ気槽へ流入する汚水量を計
測するとともに該汚水計測量に所定の倍率を乗じた値を
ばつ気槽に必要な空気量設定値としてその供給空気量を
制御する第2の制御ループと、該第1.第2制御ループ
の制御出力のうちいずれか小さい万を選択する選択手段
とを設け、該選択手段からの出力を前記空気量一定制御
ループの設定値としてばつ気槽の空気量を制御するよう
にし之ことを特徴とするばつ気槽の空気量制御方式。
An aeration tank that is equipped with an air volume constant control loop that controls the air volume of the aeration tank to a predetermined value so that the air volume of the aeration tank that receives air supply and processes the inflowing sewage using the activated sludge method. In the control system, a first control loop measures the oxygen concentration dissolved in the aeration tank and controls it to a nuclear dissolved oxygen degree t-predetermined value, and measures the amount of sewage flowing into the aeration tank. and a second control loop that controls the amount of air supplied to the aeration tank by setting a value obtained by multiplying the measured amount of sewage by a predetermined multiplier as an air amount setting value necessary for the aeration tank; A selection means is provided for selecting one of the smaller control outputs of the second control loop, and the output from the selection means is used as a set value for the constant air amount control loop to control the air amount in the aeration tank. This is the air volume control method for the aeration tank.
JP57004958A 1982-01-18 1982-01-18 Controlling system for air quantity in aeration tank Granted JPS58122089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57004958A JPS58122089A (en) 1982-01-18 1982-01-18 Controlling system for air quantity in aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57004958A JPS58122089A (en) 1982-01-18 1982-01-18 Controlling system for air quantity in aeration tank

Publications (2)

Publication Number Publication Date
JPS58122089A true JPS58122089A (en) 1983-07-20
JPS6316998B2 JPS6316998B2 (en) 1988-04-12

Family

ID=11598084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57004958A Granted JPS58122089A (en) 1982-01-18 1982-01-18 Controlling system for air quantity in aeration tank

Country Status (1)

Country Link
JP (1) JPS58122089A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111598U (en) * 1984-12-21 1986-07-15
CN102902199A (en) * 2012-10-12 2013-01-30 常州大学 Intelligent control method of mixed mechanical oxygenation
WO2016009650A1 (en) * 2014-07-18 2016-01-21 川崎重工業株式会社 Aeration calculation device and water treatment system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923947A (en) * 1972-07-01 1974-03-02
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS5319677A (en) * 1977-08-26 1978-02-23 Hitachi Ltd Constant dissolved oxygen concentration controller
JPS55119497A (en) * 1979-03-07 1980-09-13 Toshiba Corp Controller for volume of air fed to aeration vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923947A (en) * 1972-07-01 1974-03-02
JPS4933465A (en) * 1972-07-28 1974-03-27
JPS5319677A (en) * 1977-08-26 1978-02-23 Hitachi Ltd Constant dissolved oxygen concentration controller
JPS55119497A (en) * 1979-03-07 1980-09-13 Toshiba Corp Controller for volume of air fed to aeration vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111598U (en) * 1984-12-21 1986-07-15
CN102902199A (en) * 2012-10-12 2013-01-30 常州大学 Intelligent control method of mixed mechanical oxygenation
WO2016009650A1 (en) * 2014-07-18 2016-01-21 川崎重工業株式会社 Aeration calculation device and water treatment system
JP2016022424A (en) * 2014-07-18 2016-02-08 川崎重工業株式会社 Aeration air volume calculation device and water treatment system
CN106573807A (en) * 2014-07-18 2017-04-19 川崎重工业株式会社 Aeration calculation device and water treatment system
CN106573807B (en) * 2014-07-18 2019-12-31 川崎重工业株式会社 Aeration air volume calculating device and water treatment system

Also Published As

Publication number Publication date
JPS6316998B2 (en) 1988-04-12

Similar Documents

Publication Publication Date Title
KR102388793B1 (en) Ballast Water Measuring Device, Vessels Equipped with Ballast Water Measuring Device and Ballast Water Measuring Method
CN106277383A (en) A kind of aeration control system based on oxygen consumption rate analyzer and method
CN106277299A (en) A kind of aeration control system based on oxygen consumption rate analyzer and method
CN210381902U (en) Fertilizer applicator
CN114920358A (en) RBS intelligent control method for sewage plant
JPS58122089A (en) Controlling system for air quantity in aeration tank
CN110436609A (en) A kind of Intellectualized sewage water processing aeration control method with self-learning function
JP6168545B1 (en) Sewage discharge method and sewage purification system
JP2017054272A (en) Blower control device
JP2841409B2 (en) DO control device
CN221701238U (en) Automatic control system for sodium hypochlorite addition in water works
JPH10286585A (en) Aeration air volume controlling apparatus
JPH0679273A (en) Ultra-pure water producing device
JP2018187620A (en) Operation support apparatus and operation support method for sewage treatment plant using activated sludge method
CN210438515U (en) Fully-automatic control paper-making industrial wastewater deep treatment system
CN206532125U (en) control system of sewage treatment plant
Robinson Operating Experiences of Instrumentation, Control and Automation at Holdenhurst Sewage‐Treatment Works, Bournemouth
JPS60237511A (en) Automatic operation controller of dam type hydraulic power plant
JPS58199097A (en) Method for controlling feed rate of gas for aeration
JPS58216787A (en) Method for controlling inflow rate of gas for aeration in sewage treatment
Polat SELECTIVE NON-CATALYTIC REDUCTION SYSTEM
JPH03145582A (en) Control device for intake pump and distributing reservoir water level
CN117516251A (en) Automatic water supplementing proportion adjusting device for IGCC unit IG circulating cooling water tower
JPH0683834B2 (en) Dissolved oxygen concentration controller
JP2867637B2 (en) Intake pump control device