JPS62254099A - Controller for quantity of hydrogen injected to nuclear reactor - Google Patents

Controller for quantity of hydrogen injected to nuclear reactor

Info

Publication number
JPS62254099A
JPS62254099A JP61097437A JP9743786A JPS62254099A JP S62254099 A JPS62254099 A JP S62254099A JP 61097437 A JP61097437 A JP 61097437A JP 9743786 A JP9743786 A JP 9743786A JP S62254099 A JPS62254099 A JP S62254099A
Authority
JP
Japan
Prior art keywords
reactor
hydrogen
water
injection amount
hydrogen injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61097437A
Other languages
Japanese (ja)
Other versions
JPH0721554B2 (en
Inventor
純一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61097437A priority Critical patent/JPH0721554B2/en
Publication of JPS62254099A publication Critical patent/JPS62254099A/en
Publication of JPH0721554B2 publication Critical patent/JPH0721554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Flow Control (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [′R,明の目的] (産業上の利用分野〉 本発明は沸騰水型原子炉(以下BWRと略V)における
原子炉−次系への水素注入量制御装置に関する。
[Detailed Description of the Invention] [Purpose of R, Light] (Industrial Field of Application) The present invention relates to a hydrogen injection amount control device for a reactor-subsystem in a boiling water reactor (hereinafter referred to as BWR). Regarding.

(従来の技術) 従来のs W R−次系への水素注入量111]御装置
の系統概要および原子炉水試料採取り法を第2図により
説明する。BWR−次系に(15いては、高純度水が冷
却材として用いられている。原子炉炉心1において発生
する熱により蒸気が発生し、この蒸気は主蒸気管2を粋
で高圧タービン3、低圧タービン4に導かれ、これらの
タービン3.4を駆vJvる。タービン3.4で仕事を
した蒸気は復水器5によって冷却され、凝縮して水に戻
る。この水は復水ポンプ6、復水浄化系7を経て原子炉
給水系に送り込まれ、さらに給水ポンプEうによって背
圧され、原子炉圧力容器9に注入される。
(Prior Art) A system overview of a conventional sWR-order system and a reactor water sample collection method will be explained with reference to FIG. In the BWR secondary system (15), high-purity water is used as a coolant.The heat generated in the reactor core 1 generates steam, and this steam flows through the main steam pipe 2 to the high-pressure turbine 3, The steam is guided to a low pressure turbine 4 and drives these turbines 3.4.The steam that has done work in the turbine 3.4 is cooled by a condenser 5, condensed and returned to water.This water is fed to a condensate pump 6. , is sent to the reactor water supply system via the condensate purification system 7, is further back-pressured by the water supply pump E, and is injected into the reactor pressure vessel 9.

一方、原子炉水は原子炉再循環ポンプ10にJ、ってそ
の一部または全部が炉外を再循環しでいる。
On the other hand, some or all of the reactor water is recirculated outside the reactor by the reactor recirculation pump 10.

これは強制的に炉心流量を大きくし、より多くの熱を炉
心1から除去刃−るためである。
This is to forcibly increase the core flow rate and remove more heat from the core 1.

さらに、この再循環水の一部は原子炉冷却材浄化系12
に導かれ、原子炉冷ム1祠浄化系再循環ポンプ11、原
子炉冷却材浄化系12を介して浄化されだ後、原子か治
水C,:送【)込ン1[イ1.イ)1−3従来のBWR
プランl〜におい“(は、通常、原子炉水の試料採取を
以ドの五うic t−■っている。−7fなわら、原子
炉冷却材浄化系12の人11 i、: i、Q (、J
られた試料採取点にJ。す1ツク/シリングライン13
によって原子炉水は試料分析−5ノック14i、::導
かれる1゜この場合、原子炉水は原J′:炉<′7′i
、!if]祠浄化系熱交換器15によって熱交換され7
いるので、試料採取後に減?L’+、減圧Hi、する必
要はない1.たた゛じ、原子−炉冷却材浄化系の系統’
diE ’JAは少4fり、流速もぎいため、原子炉水
が原子か圧力容器9を出てから試料採取点に到達−4−
るまてi、: L↓′かなりの時間を要する。
Furthermore, a portion of this recirculated water is transferred to the reactor coolant purification system 12.
After being purified through the reactor coolant purification system recirculation pump 11 and the reactor coolant purification system 12, the atomic or flood control system C. b) 1-3 Conventional BWR
Plan 1 ~ Smell'' (usually involves collecting samples of reactor water in five steps. -7f) However, the reactor coolant purification system 12 person 11 i,: i, Q (, J
J at the sample collection point. Su1 Tsuku/Shilling Line 13
The reactor water is sample analysis −5 knock 14i, :: guided by 1°. In this case, the reactor water is the source J′: reactor
,! if] Heat exchanged by the shrine purification system heat exchanger 15 7
Is there a decrease after sample collection? L'+, reduced pressure Hi, no need to do 1. The nuclear reactor coolant purification system
diE'JA is a little higher than 4f and the flow velocity is too fast, so the reactor water reaches the sampling point after leaving the pressure vessel 9 -4-
Rumatei,: L↓'It takes a considerable amount of time.

また、原子炉冷却vJ浄化系隔離時には、原子炉再循環
系ポンflOの出L−1」に設けられた試料採取点より
原子炉水を採取し、分析ラック14に2斤く。
Furthermore, when the reactor cooling VJ purification system is isolated, reactor water is sampled from a sampling point provided at the reactor recirculation system pump flO outlet L-1, and two loaves are placed in the analysis rack 14.

この場合、原子炉水は高温、高汀なのて゛、試料は分析
ラック自前で冷却器16.減圧機構17に、Lす、減温
、減圧される。試料分析ラック14においては、溶存酸
素濃度、導電率、腐食生成物溌し、シリカ濃度等の測定
が行われる。
In this case, because the reactor water is high temperature and stagnant, the sample must be placed in the analysis rack's own cooler 16. The temperature and pressure are reduced by the pressure reduction mechanism 17. In the sample analysis rack 14, dissolved oxygen concentration, electrical conductivity, corrosion products, silica concentration, etc. are measured.

なJj、図中符’i−52”’l Iよ原子炉+8納容
器4示す1゜このように、通常のBWRにおいて(ま原
子か水の水7;1を原子炉冷却材浄化系入[1、あるい
)よ原1炉再循環系ボンゾ出[]に(15ける水質て代
表ざ1!でいる。
Jj, figure center mark 'i-52'''l I, reactor + 8 storage vessel 4 1゜ In this way, in a normal BWR, (1) water is added to the reactor coolant purification system. [1, or) The water quality of the recirculation system of the raw material 1 reactor [] is representative of the water quality of 15%.

さC,原子炉を構成している金属材料の腐食という43
2点からは、炉水溶i’fi′l!素i:に度が最−し
重′堤な因子の−っである=BWRの運(1η、におい
で1はこの溶存酸素濃度が給水系(こd3いて厳しく二
1ン1〜目−ルされてd′3す、原子炉給水て°30p
p+)前後となっている1、シかしながら、炉心1(こ
おいては、中性子13よびガンン線1乙よる放IJ’l
線吊キが非出゛に高いため、水の敢剣線分解が牛じる3
、 )−b 02 、)−102・・・・・・・・・・・・
・・・・・・(1)のよう%、z反応が起こり、最終的
にはf−12,02,1−bo2のような化学的に安定
な化学杆が9成する。このため、原子炉水の溶(F酸木
濶度は200ppb前後となっており1、給水温風まり
高い。
C, Corrosion of the metal materials that make up the nuclear reactor 43
From the second point, reactor water melt i'fi'l! Prime i: The most important factor is the luck of BWR (1η, smell). d'3, reactor water supply °30p
1, which is around p+).
Because the line suspension is extremely high, the water resistance line decomposition is difficult 3
, )-b 02 , )-102・・・・・・・・・・・・
. . . A z reaction occurs as shown in (1), and finally 9 chemically stable chemical rods such as f-12,02,1-bo2 are formed. As a result, the level of dissolved F acid in the reactor water is around 200 ppb1, and the temperature of the feed water is high.

)舟外のBWRゾラントに、bいては、この溶存酸素濃
度をざらに低くして材料の健全性を・より確実にするた
め(こ、近イト、ブ゛ンントへの水素注入技術が開発さ
れ。実施されている1、こね、)、上、給水系から水素
を注入し7τ炉内の状態を還元Hの雰囲気に保ち、炉心
部における酸素の発生を抑制しようという方法である。
) Hydrogen injection technology has recently been developed for the outboard BWR Zorant in order to significantly lower this dissolved oxygen concentration and further ensure the integrity of the material. This is a method that is currently being implemented (1), in which hydrogen is injected from the water supply system to maintain the inside of the 7τ reactor in a reducing H atmosphere, thereby suppressing the generation of oxygen in the reactor core.

らイ宋みに、末口]プラントにJ引づる溶存配索低減の
一例を第3図に承り一0図に、j5いC縦4IIf+ 
f、j、炉水溶存酸素淵庶(ppb)、横側目、i給水
溶存水素詣1宴(o p m >で゛あり、◇印は原子
炉出力が81%、◆印は95%の場合である。
Figure 3 shows an example of reducing dissolved wiring in a plant, and Figure 10 shows an example of how to reduce the amount of dissolved wiring in a plant.
f, j, reactor water dissolved oxygen level (ppb), side view, i feed water dissolved hydrogen pilgrimage (op m >), ◇ indicates reactor output is 81%, ◆ indicates 95% This is the case.

これから分るように給水中の水素i閃)良を^くしてい
くと、炉内の溶存酸素が低減される。
As can be seen from this, as the hydrogen concentration in the feed water is increased, dissolved oxygen in the furnace is reduced.

これらのり14行ブーシン1−に3bりる水素注入試験
(こおい’Ct、t 、水素1人による溶i′?酸素低
減効宋の指標を、原子炉水溶存酸木溢陰]、1.li蒸
気中酸素溢磨としている。、1’:iに前者は炉心に、
13ける水質状態を直接的に示唆するものとして重要7
・(νされて、13す、水素注入量を制御する+τ゛重
要なパラメータとなっている。ずなわら、vJおIの健
全性を高温水中で維持りるためには、その値を20pp
b以下に制御する必要があるとされている。
These lines 14 rows 1-3B hydrogen injection test (Koi'Ct, t, hydrogen dissolved by one person i'? Oxygen reduction effect Song indicator, reactor water dissolved acid wood overflow shade), 1. The former is assumed to be flooded with oxygen in the li steam., 1': i is the former in the core,
13 Important as a direct indicator of water quality7
・(ν) is an important parameter that controls the amount of hydrogen injection.In order to maintain the health of vJ and I in high temperature water, the value must be set to 20pp.
It is said that it is necessary to control the temperature to below b.

(発明が解決しようとする問題点) M−来の原r炉水試料採取方法は前述の通りであるが、
これによると、原子炉水は高放q1線場である原子炉圧
力容器9を流出したのら、原子炉冷却材浄化系熱交換器
15、あるいは原子炉再循環系サンプリングライン冷却
器16に到達するまてに、かなりの時間(数分間)を要
する。そして、この間(は高温;1人感が維持されてい
る。
(Problems to be Solved by the Invention) The method for collecting raw reactor water samples is as described above.
According to this, reactor water flows out of the reactor pressure vessel 9, which is a high-emission Q1 radiation field, and then reaches the reactor coolant purification system heat exchanger 15 or the reactor recirculation system sampling line cooler 16. It takes a considerable amount of time (several minutes). During this time, the temperature is high; the feeling of being alone is maintained.

一方、炉心部の高放身・j線傷において敢q4線分解を
起こした原子炉水tご(よ酸素、水素および過酸化水素
が含まれlいると考えられる。このうち、酸素および水
素は原子炉温度(約280°C)程度で゛は安定である
が、過酸化水素t、−1速やかに熱分解することが知ら
れている1、そして、炉水中に水素か存在しない場合(
、よ単純に水と酸素に分解するが、系に酸素と水素とが
共存する場合は反応が複雑に7より、過酸化水素と水素
との再結合反応、過酸化水素が触媒的に作用覆る酸素と
水素との再結合反応が並行しで進行する。1なわも、次
の3つの反応によって、原子炉水中の酸素、水素、過酸
化水素の組成比が人ぎく変化することになる。
On the other hand, reactor water that has undergone Q4-ray decomposition due to high-release J-ray damage in the reactor core is thought to contain oxygen, hydrogen, and hydrogen peroxide. Among these, oxygen and hydrogen are Although hydrogen peroxide is stable at around the reactor temperature (approximately 280°C), it is known that hydrogen peroxide t,-1 rapidly thermally decomposes1, and when there is no hydrogen in the reactor water (
, it simply decomposes into water and oxygen, but if oxygen and hydrogen coexist in the system, the reaction becomes complicated.7 From the recombination reaction between hydrogen peroxide and hydrogen, hydrogen peroxide acts catalytically. Recombination reactions between oxygen and hydrogen proceed in parallel. The following three reactions will cause the composition ratios of oxygen, hydrogen, and hydrogen peroxide in the reactor water to change dramatically.

2+−1202→2H20+02・・・・・・・・・・
・・(2)トー1202+)[2→2H20・・・・・
・・・・・・・・・・ (3)2112+02→2H2
0・・・・・・・・・・・・・・・・・・(4)この様
子を定性的に示すと第4図のようになる。
2+-1202→2H20+02・・・・・・・・・・
...(2) To1202+) [2→2H20...
・・・・・・・・・・・・ (3) 2112+02→2H2
0・・・・・・・・・・・・・・・・・・・・・(4) This situation is shown qualitatively as shown in FIG.

同図は活性種を含む10種類以Fの化学秤に対して、4
0個以十の相互の化学反応を仮定して、実際の化学変化
を模擬した計篇による評価であるが、縦軸は02、H2
、]−1202の小♀)藺磨(任意単位)、横軸は高温
状態(28()’C)での保持時間である。これより分
るように、原子炉圧力容器9を出た原子炉水は最初、過
酸化水素を含んでいるものの、この過酸化水素は熱分解
により速やかに消失し、かつ酸素、水素の組成も変化し
ている。そして、過酸化水素は分解によって単に酸素に
変換されるのではなく、酸素と水素の水への再結合反応
を促進する効宋を持つこと(注意すべきである。
The figure shows 4.5% for a chemical balance of 10 types or more containing active species.
The evaluation is based on a plan that simulates actual chemical changes by assuming 0 or more mutual chemical reactions, and the vertical axis is 02 and H2.
, ]-1202 small ♀) (arbitrary unit), the horizontal axis is the holding time at a high temperature (28()'C). As can be seen, although the reactor water that exits the reactor pressure vessel 9 initially contains hydrogen peroxide, this hydrogen peroxide quickly disappears due to thermal decomposition, and the composition of oxygen and hydrogen also changes. It's changing. It should be noted that hydrogen peroxide is not simply converted to oxygen by decomposition, but has the effect of promoting the recombination reaction of oxygen and hydrogen into water.

従って、現状のサンプリング方法では炉心における原r
炉水の水v1を必り”しら代表していないと一イえられ
る。ここに、従来技術の問題点か存在乃る。
Therefore, with the current sampling method, the raw material r in the reactor core is
It can be said that it does not necessarily represent the reactor water v1. Herein lies a problem with the prior art.

しかしながら現状では、4ノンブリングによって17ら
れたデータから炉内の状態を粘度良く評価ηる手法(よ
確立されておらず、第4図のように削口で予測するとい
った間接的な手法があるにすざない。
However, at present, there is no well-established method for evaluating the condition inside the furnace with good viscosity from the data obtained by 4 non-bringing, and there are indirect methods such as predicting by cutting as shown in Figure 4. I don't know.

一方、水素注入技術においては、水素注入による炉内溶
存酸素低減効果を正確に把握する必要があり、具体的に
は正確な炉内溶存酸素濃度によって、水素注入量をia
l tD ”J−る必要が生じる。また、酸素のみなら
ず、過酸化水素の存在の把握も材利叶全・11評1曲の
−にから重要である。
On the other hand, in hydrogen injection technology, it is necessary to accurately understand the effect of hydrogen injection on reducing dissolved oxygen in the furnace.
It is necessary to understand the presence of hydrogen peroxide as well as oxygen.It is also important to understand the presence of hydrogen peroxide.

以上により、本発明においては、原子炉水をより原子炉
圧力容器内の条件に近い状態で採取、分析し、かつその
結果により水素注入運転下での水素注入量制御を行うた
めの装置を1:?供覆ることを目的どする。
As described above, the present invention provides an apparatus for collecting and analyzing reactor water under conditions closer to those in the reactor pressure vessel, and controlling the amount of hydrogen injection during hydrogen injection operation based on the results. :? The purpose is to provide information.

[発明の構成] (問題点を解決するための手段) 本発明では前述した問題点を解決するため、次の構成要
素から成り立っている。1なわら、本発明は、原子炉圧
力容器内の炉水を9ンブリングして冷五〇し原子炉格納
容器内に3堪ブられだ冷却器および減圧機構と、この減
圧機構の下流側に設置され前記原子炉格納容器タトに設
けられた試料分析ラックと、この試料分析ラックからの
溶存酸素を入力信号とし適量な水素注入量を出力信号と
する水素注入量調節装置と、この水素注入量調節装置の
出力信8を入力しかつ給水系配管に水素を注入する水素
ガス注入量調節ラックとを具備したことを特徴とする原
子炉への水素注入量制御l装置である。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention includes the following components. 1. However, the present invention includes a cooler and a depressurization mechanism that pumps and cools the reactor water in the reactor pressure vessel and cools it for 30 minutes in the reactor containment vessel, and a depressurization mechanism downstream of this depressurization mechanism. A sample analysis rack installed in the reactor containment vessel, a hydrogen injection amount adjustment device that uses dissolved oxygen from the sample analysis rack as an input signal and outputs an appropriate amount of hydrogen injection, and this hydrogen injection amount. This is a hydrogen injection amount control device for a nuclear reactor, characterized in that it is equipped with a hydrogen gas injection amount adjustment rack that inputs the output signal 8 of the adjustment device and injects hydrogen into the water supply system piping.

(作用) 原子炉水が原子炉圧力容器内の高敢Q1線場を流出した
後、10秒間を経過しない時点で試おlが冷却される位
置に冷却器を設置する。この10秒間という時間は、第
4図の針筒評価において酸素および水素濃度の変化が1
0%以内となる時間として決定している。試料は40°
C以下に冷却されるものとする。
(Function) A cooler will be installed at a position where the trial tank will be cooled less than 10 seconds after the reactor water flows out of the Q1 line field in the reactor pressure vessel. This time of 10 seconds means that the change in oxygen and hydrogen concentration is 1 in the needle tube evaluation shown in Figure 4.
This is determined as the time within 0%. The sample is 40°
It shall be cooled to below C.

冷却きれた試料は試わ[採収用配管により分析ラックに
導かれ、水質の測定が行われる。
The cooled sample is then taken to an analysis rack via collection piping and the water quality is measured.

さらに、このようにして求められた水質データのうり、
溶存酸素濃度にも目し、ぞの値が目標値を下回るように
制御して給水系に水素を注入する装置を設置づる。
Furthermore, the water quality data obtained in this way,
We will also monitor the dissolved oxygen concentration and install a device that injects hydrogen into the water supply system to control the concentration so that it is below the target value.

このように構成された装置においては、原子炉水tよそ
の化学成分の組成が変化しないうちに冷却、固定され、
原子炉圧力容器内の水質を正確に把握できる。その結果
、水素注入運転において適正な水素注入量を1制御する
ことが可能となる。
In a device configured in this way, the reactor water and other chemical components are cooled and fixed before their composition changes.
The water quality inside the reactor pressure vessel can be accurately determined. As a result, it becomes possible to control the appropriate amount of hydrogen injection in the hydrogen injection operation.

〈実施例) 以下、第1図を参照しながら本発明に係る原子炉への水
素注入量調節装置の一実施例を説明する。
<Embodiment> Hereinafter, an embodiment of the hydrogen injection amount adjusting device into a nuclear reactor according to the present invention will be described with reference to FIG.

第1図において、炉心1を内蔵した原子炉圧力容器9の
上部側面には主蒸気管2が接続され、主蒸気管2の下流
側には高圧タービン3および低圧タービン4が接続され
ている。低圧タービン4の下流側には復水器5が接続さ
れており、復水器5は復水ポンプ(3を介じ′(−復水
浄化系“/″に接続されている。復水浄化系7(,1給
水系配管B+、hよっ(−復水ポンプ8aを介し−(1
3i−了炉月力゛ドriW9の側面1こ接続されている
In FIG. 1, a main steam pipe 2 is connected to the upper side of a reactor pressure vessel 9 containing a reactor core 1, and a high pressure turbine 3 and a low pressure turbine 4 are connected to the downstream side of the main steam pipe 2. A condenser 5 is connected to the downstream side of the low-pressure turbine 4, and the condenser 5 is connected to the condensate purification system "/" through the condensate pump (3). System 7 (, 1 water supply system piping B+, h (- via condensate pump 8a - (1
3i - One side of the riW9 is connected.

原子炉汁力容器9の底部A点から再循環ポンプ10をイ
jリーる原子カリ1−力容器9)の側面(、−至る再循
環系配管11が設けられ、再循環系配管1′1を分岐し
て熱交換器1【)をわり〜る原j″−炉冷ム1](イ浄
化系12の配管12ah稲堪)られ、この配管12 a
 IJ給水系配管8に接続され(いる、。
A recirculation system piping 11 is provided from the bottom point A of the reactor power vessel 9 to the side surface of the nuclear potash 1-power vessel 9) leading to the recirculation pump 10, and a recirculation system piping 1'1 is provided. The pipe 12a of the purification system 12 is branched to the heat exchanger 1 [) - furnace cooling system 1], and this pipe 12a
Connected to IJ water supply system piping 8.

再循環系配管11から分岐して冷JiD器1 (’lが
接続され、この冷J1[1器1(う0)T・流側に減I
F機構′17か接続され′Cいる。この減坪VJ、構′
17は原子炉格納容器外に設(]」られた試料分析[−
7ツク′14に接続している。
Branched from the recirculation system piping 11, the cold JID device 1 ('l) is connected, and this cold J1 [1 device 1 (U0)
The F mechanism '17 is connected. This reduced tsubo VJ, structure
17 is a sample analysis [-] installed outside the reactor containment vessel.
It is connected to 7tsuku'14.

この試料分析ラック14の出り信号は水累汗人は調節装
置’i’i 1εうへjスられ、(Tの水素注入量調節
装置18の出力1,11遣ま水素ガ刈1入艶調節ラック
19へ入力される。3(:1mの調節ソック10は水素
ガス供給装置2 C) +1’、3よび水為カス1f力
調節フック21に接続されている。水素ガス注入量調節
ラック19トエ復水)子供系7の下流側配管に接続され
でいる。
The output signal from the sample analysis rack 14 is output from the hydrogen injection amount adjustment device 18 and outputs 1 and 11 are sent to the hydrogen injection amount adjustment device 18. It is input to the adjustment rack 19. 3 (The 1 m adjustment sock 10 is connected to the hydrogen gas supply device 2C) +1', 3 and the force adjustment hook 21 of the water slug 1f.Hydrogen gas injection amount adjustment rack 19 condensate) is connected to the downstream piping of the child system 7.

ここ−(炉心に43いて、蒸気が介りトし、この蒸気は
]]蒸気筐′2を経て高しトタービン3、低ツー■ター
ビン4に;々かれる。イ1事をした蒸気は復水器5によ
・〕で凝縮され、復水ポンプ6、復水浄化系7によつ−
(原子炉給水系に送り込まれ、ざらに給水ボン、7′B
によって!j?圧され、原子炉ハこカ容器9に注入され
る、。
Here, steam enters the reactor core, and this steam passes through the steam casing '2 to the high turbine 3 and the low turbine 4.The steam that has done this is condensed It is condensed in the vessel 5 and sent to the condensate pump 6 and the condensate purification system 7.
(It is sent to the reactor water supply system, and the water supply bong, 7'B
By! j? The reactor is pressurized and injected into the reactor container 9.

また、原子炉水は再循環ボン110によって強制循環さ
Uられており、イの−・部は原子炉冷却材再循環ポンプ
11、原子炉冷1,1材浄化系12を介し・で浄化され
た後、原子炉給水に戻る。
In addition, the reactor water is forcibly circulated by a recirculation bong 110, and the part (a) is purified by a reactor coolant recirculation pump 11 and a reactor cold 1, 1 material purification system 12. After that, return to reactor water supply.

上記実施例に43いては、原子炉水試料採取点を原子炉
再精1)系の再循環ポンプ−1−流(−゛斤力容器出1
゛」に近い位置に定める。モしで、冷却器1(3を、図
中A点から8点まての試J”I水)1i)右時間が10
秒を越えないイ装置に52定しハ試料を40°C以下に
冷却する。その後、減斤機描17によって減JFされた
試1′:1は、試料分析ラック1/′lに導かれる。こ
の分析ラック171に11プいては、白動溶存酸累訓も
5”よっで溶存酸素濃j良か連続監視される。、溶存酸
索溌磨の他に溶存水素)43度、過酸化水累瀧度J3よ
びその他の水質データの測′;Jlも必要tこ応じて行
われる、。
In Example 43 above, the reactor water sampling point is set to the recirculation pump 1 flow (-1) of the reactor repurification system (1).
Set it at a position close to ゛. 1i) Right time is 10
A. Cool the sample to below 40°C. Thereafter, sample 1':1 reduced by JF reduction machine 17 is guided to sample analysis rack 1/'l. In this analysis rack 171, the dissolved acid concentration is continuously monitored by 5". In addition to the dissolved acid detection, dissolved hydrogen (43 degrees), peroxide water Measurement of water depth J3 and other water quality data is also carried out as necessary.

続いて、この溶存酸素)開面は電気(んJに変換されて
、水素注入量調節装置1B(J”1人達され、同装置は
水素ガス汀人量調節少ツク′19に流量制御弁の開度を
指示復る電気信号を伝達りる。ぞして、このバルジ間葭
(こ従・)て、水素ガス供給装置20および水素ガス1
]1.−力調節シック2″1(こよ・−ンて所定圧力に
調節された水43カスか給水系に連続し7て供給される
Subsequently, this dissolved oxygen) surface is converted into electricity (J) and supplied to the hydrogen injection amount control device 1B (J"1), which then controls the flow rate control valve '19 to adjust the amount of hydrogen gas. An electric signal indicating the opening degree is transmitted.Thus, between this bulge, the hydrogen gas supply device 20 and the hydrogen gas 1
]1. - 43 pieces of water adjusted to a predetermined pressure are continuously supplied to the water supply system through a force adjustment system 2''1.

次に、本実施例の効果として1i、従来の高温状態で長
い時間保持した後に)S却1ノる試料採取方法にくらべ
、)1頭1.1間で冷却を行うので炉心の水質状態をよ
りi丁確に評価でさる。イしノで、このデータに基づい
一τ給水への水素注入量を決定りるので′あるから、炉
内構造Hの針金性にとっC非常に影響の出にくい溶存酸
素91αに正確に1lll Hi−ることが極めて容易
となる。本発明によれば、従来間接的に評価してい/;
::水累汀入♀を直接的(、二計価することがiiJ能
となるのである。
Next, as an effect of this embodiment, cooling is performed for 1.1 hours per head, compared to the conventional sample collection method in which the sample is kept at a high temperature for a long time. I will give a more accurate evaluation. Based on this data, the amount of hydrogen to be injected into the feed water is determined by exactly 1lll Hi to the dissolved oxygen 91α, which has very little effect on the wire properties of the reactor internal structure H. - It becomes extremely easy to do so. According to the present invention, conventionally indirectly evaluated/;
::It is possible to directly (and double-evaluate) water accumulation♀.

尚、他の実施例としては、試料採取点を原子炉格納容器
外 あるい(31原子炉圧力容器自体に設置〕る例がある。
In addition, as another embodiment, there is an example in which the sample sampling point is installed outside the reactor containment vessel or in the reactor pressure vessel itself.

31だ、水素iU入ji’nは原子炉給復水系のいずれ
の位置′C□よい。これらの場合の構成、作用J3よび
効果は、前述の実施例に準する。
31. Hydrogen iU can be placed at any position in the reactor feed and condensate system. The configuration, operation J3, and effects in these cases are similar to those of the above-mentioned embodiments.

[発明の効果] 本発明によれば、原子炉水を原子炉(「力容器内の条4
′−1に近い状態で採取することか可能となるので、そ
れより17られる溶存酸素)農磨を人力パラメータとし
て給水系への水素注入量を適・l’lに制御りることが
てさる。
[Effect of the invention] According to the present invention, reactor water is transferred to the reactor
Since it is possible to collect hydrogen in a state close to '-1, it is possible to control the amount of hydrogen injected into the water supply system to an appropriate level by using the dissolved oxygen (dissolved oxygen) as a human parameter. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2図は従来
のBWR−次系および原子炉水試料採取系を示す系統図
、第3図は本田トレスヂン2号炉にJ’iける給水水素
注入試験結果の一例を示す特性図、第4図は高温水中で
の過酸化水素熱分解による酸素;門1α、水素)門磨絹
成比変化の1,1鈴lこJ、る評価例を示づ特・11図
゛(−′ある。 1・・・・・・・・・炉心 7・・・・・・・・・復水浄化系 9・・・・・・・・・原子炉8力容器 12・・・・・・・・・原子炉冷却祠浄化系13・・・
・・・・−・リンブリングライン14・・・・・・・・
・試オニ31分析ラック15・・・・・・・・・原子炉
冷2J’l祠浄化系熱交換諾:16・・・・・・・・・
冷却器 17・・・・・・・・・極上11)幾構18・・・・・
・・・・水素)〜ト入弓調節装置19・・・・・・・・
・水素カス注入昂調節ラック20・・・・・・・・・水
素カス供給装置21・・・・・・・・・水素カスJT力
調節ラック出願人      株式会社 東芝 代理人 弁理士  須 山 仏 − 第1図 艶′2図 第3図 j二) 岨[ す゛・′ブリ゛)′シー・、1ノ)帯イl:、時日−1
(会)第4iツ1
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a system diagram showing the conventional BWR sub-system and reactor water sample collection system, and Fig. 3 is a system diagram showing the conventional BWR sub-system and reactor water sampling system. Figure 4 is a characteristic diagram showing an example of the results of a water supply hydrogen injection test. An evaluation example is shown in Figure 11 (-'). 1... Core 7... Condensate purification system 9... Reactor 8 power vessel 12... Reactor cooling shrine purification system 13...
・・・・・・・Limbling line 14・・・・・・・・・・
・Trial Oni 31 Analysis Rack 15・・・・・・Reactor cold 2J'l shrine purification system heat exchange agreement: 16・・・・・・・・・
Cooler 17...Excellent 11) Structure 18...
・・・・Hydrogen)〜G Bow Adjustment Device 19・・・・・・・
・Hydrogen scum injection height adjustment rack 20...Hydrogen scum supply device 21...Hydrogen scum JT force adjustment rack Applicant: Toshiba Corporation Patent attorney Toshiba Suyama − Figure 1: Figure 2: Figure 3: j2)
(Meeting) 4th itsu 1

Claims (1)

【特許請求の範囲】[Claims] (1)原子炉圧力容器内の炉水をサンプリングして冷却
し原子炉格納容器内に設けられた冷却器および減圧機構
と、この減圧機構の下流側に設置され前記原子炉格納容
器外に設けられた試料分析ラックと、この試料分析ラッ
クからの溶存酸素を入力信号とし適量な水素注入量を出
力信号とする水素注入量調節装置と、この水素注入量調
節装置の出力信号を入力しかつ給水系配管に水素を注入
する水素ガス注入量調節ラックとを具備したことを特徴
とする原子炉への水素注入量制御装置。
(1) A cooler and a decompression mechanism installed inside the reactor containment vessel that sample and cool the reactor water in the reactor pressure vessel, and a decompression mechanism installed downstream of this depressurization mechanism outside the reactor containment vessel. A hydrogen injection amount adjustment device that uses dissolved oxygen from this sample analysis rack as an input signal and an appropriate amount of hydrogen injection as an output signal, and a hydrogen injection amount adjustment device that inputs the output signal of this hydrogen injection amount adjustment device and supplies water. 1. A hydrogen injection amount control device for a nuclear reactor, comprising a hydrogen gas injection amount adjustment rack for injecting hydrogen into system piping.
JP61097437A 1986-04-26 1986-04-26 Control device for hydrogen injection into reactor Expired - Fee Related JPH0721554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61097437A JPH0721554B2 (en) 1986-04-26 1986-04-26 Control device for hydrogen injection into reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61097437A JPH0721554B2 (en) 1986-04-26 1986-04-26 Control device for hydrogen injection into reactor

Publications (2)

Publication Number Publication Date
JPS62254099A true JPS62254099A (en) 1987-11-05
JPH0721554B2 JPH0721554B2 (en) 1995-03-08

Family

ID=14192336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61097437A Expired - Fee Related JPH0721554B2 (en) 1986-04-26 1986-04-26 Control device for hydrogen injection into reactor

Country Status (1)

Country Link
JP (1) JPH0721554B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197698A (en) * 1988-02-02 1989-08-09 Toshiba Corp Nuclear power plant
JP2005195346A (en) * 2003-12-26 2005-07-21 Toshiba Corp Corrosion reduction method for reactor structure material
US8295426B1 (en) 2003-06-13 2012-10-23 Kabushiki Kaisha Toshiba Method of reducing corrosion of nuclear reactor structural material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01197698A (en) * 1988-02-02 1989-08-09 Toshiba Corp Nuclear power plant
US8295426B1 (en) 2003-06-13 2012-10-23 Kabushiki Kaisha Toshiba Method of reducing corrosion of nuclear reactor structural material
JP2005195346A (en) * 2003-12-26 2005-07-21 Toshiba Corp Corrosion reduction method for reactor structure material
JP4634709B2 (en) * 2003-12-26 2011-02-16 株式会社東芝 Method for reducing corrosion of reactor structural materials
US20130070888A1 (en) * 2003-12-26 2013-03-21 Kabushiki Kaisha Toshiba Method of reducing corrosion of nuclear reactor structural material
US8731131B2 (en) * 2003-12-26 2014-05-20 Kabushiki Kaisha Toshiba Method of reducing corrosion of nuclear reactor structural material

Also Published As

Publication number Publication date
JPH0721554B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
CN106342210B (en) A kind of for measuring the sampling analytical system of concentration of hydrogen in containment vessel
CA3019058C (en) Power plant chemical control system
CN106653110A (en) External-cooling full-height comprehensive test platform for large-scale advanced reactor pressure vessel
EP2153446B1 (en) Electrochemical corrosion potential device and method
US4251219A (en) Apparatus for and method of determining contaminants on low pressure condensate
JPS62254099A (en) Controller for quantity of hydrogen injected to nuclear reactor
EP0328408A2 (en) Method and apparatus for obtaining a water sample from the core of a boiling water reactor
JP3483613B2 (en) Reactor bottom water quality measurement device
Singer et al. On the role of inert gas in incipient boiling liquid metal experiments
US4654187A (en) Method and a device for analyzing water in the primary circuit of a nuclear reactor
JPS58205893A (en) Method and device for controlling ph of pwr type reactor coolant
CN115078670A (en) Water vapor simulation test device and method for power plant
CN114334197A (en) Primary loop water charge monitoring method and system in low operation mode
CN114609184A (en) Radioactive material high-temperature steam oxidation test device and using method thereof
JPH02163699A (en) System for controlling ph of reactor coolant
CN213364318U (en) Full-automatic on-site sampling and analyzing device
Osterhout Control of oxygen, hydrogen, and tritium in sodium systems at Experimental Breeder Reactor II
CN219245477U (en) Device for detecting carbon dioxide content in cold water in generator
Holmes et al. The Utilization of On-Line Monitors at EBR-II for Sodium Purity
Arbeau et al. Kinetics of corrosion product release from carbon steel corroding in high-temperature, lithiated water
JP2865726B2 (en) Nuclear power plant
CN109496340A (en) The method for controlling the corrosion rate of the equipment of the technology circuit of nuclear power station
JPS60220898A (en) Method and device for controlling quality of water in nuclear reactor
Goldmann Liquid sodium as a reactor coolant
JPS5953517B2 (en) Reactor coolant sampling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees