JPS6123921Y2 - - Google Patents
Info
- Publication number
- JPS6123921Y2 JPS6123921Y2 JP12996781U JP12996781U JPS6123921Y2 JP S6123921 Y2 JPS6123921 Y2 JP S6123921Y2 JP 12996781 U JP12996781 U JP 12996781U JP 12996781 U JP12996781 U JP 12996781U JP S6123921 Y2 JPS6123921 Y2 JP S6123921Y2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- load
- control valve
- air
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000007246 mechanism Effects 0.000 claims description 13
- 230000001105 regulatory effect Effects 0.000 claims description 13
- 238000004891 communication Methods 0.000 claims description 7
- 238000009825 accumulation Methods 0.000 description 8
- 230000006837 decompression Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Forklifts And Lifting Vehicles (AREA)
- Fluid-Pressure Circuits (AREA)
Description
【考案の詳細な説明】
〔産業上の利用分野〕
本考案は、リフタ等を構成するシリンダを昇降
制御するためにシリンダ駆動装置に関するもので
ある。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cylinder drive device for controlling the elevation and descent of a cylinder constituting a lifter or the like.
シリンダを使用したリフタによつて負荷の昇降
を行う場合、通常、高圧空気源からの圧縮空気を
方向切換弁を介してシリンダに送給することによ
りそれを駆動し、該駆動または復帰に伴つてシリ
ンダから排出される空気は、上記方向切換弁を介
して大気に排出している。
When lifting or lowering a load using a lifter using a cylinder, it is normally driven by supplying compressed air from a high-pressure air source to the cylinder via a directional control valve, and the Air discharged from the cylinder is discharged to the atmosphere via the directional switching valve.
しかしながら、上記シリンダの駆動、復帰に伴
つて該シリンダから排出される空気は、圧力即ち
多量のエネルギーを持つているため、そのまま大
気中に排出するのは省エネルギーの観点から問題
がある。 However, since the air discharged from the cylinder as the cylinder is driven and returned has pressure, that is, a large amount of energy, it is problematic from the point of view of energy saving to discharge it directly into the atmosphere.
この問題を解決するための先行技術として、先
に、第4図に示すようなシリンダ駆動装置を提案
している(実開昭57−102号公報参照)。 As a prior art for solving this problem, a cylinder drive device as shown in FIG. 4 was previously proposed (see Japanese Utility Model Application Publication No. 102/1983).
このシリンダ駆動装置は、シリンダ21のヘツ
ド室22を、減圧弁23により空気源24の圧力
を所期の圧力に減圧した蓄圧タンク25に、電磁
比例流量制御弁27を備えた平換管路28を介し
て連通させ、シリンダ21のロツド室28は、上
記平換管路から分岐させた圧力制御弁30を有す
る環流管路29によつて蓄圧タンク25に連通さ
せている。 This cylinder drive device connects a head chamber 22 of a cylinder 21 to a pressure accumulating tank 25 in which the pressure of an air source 24 is reduced to a desired pressure by a pressure reducing valve 23, and a conversion pipe 28 provided with an electromagnetic proportional flow control valve 27. The rod chamber 28 of the cylinder 21 is communicated with the pressure accumulator tank 25 through a recirculation line 29 having a pressure control valve 30 branched from the conversion line.
このシリンダ駆動装置においては、負荷Aが下
降して停止している図示の状態において、電磁比
例流量制御弁27に通電すると共に圧力制御弁3
0の通電を断つと、電磁比例流量制御弁27の通
電量に応じた空気量が蓄圧タンク25からヘツド
室22に流入して負荷Aを制御性よく上昇させ
る。 In this cylinder drive device, in the illustrated state where the load A is lowered and stopped, the electromagnetic proportional flow control valve 27 is energized and the pressure control valve 3 is energized.
When the energization of 0 is cut off, an amount of air corresponding to the amount of energization of the electromagnetic proportional flow control valve 27 flows from the pressure accumulator tank 25 into the head chamber 22, raising the load A with good controllability.
また、負荷Aが下昇した状態で圧力制御弁30
に通電すると、蓄圧タンク25の圧力空気が減圧
されてロツド室28に流入し、この作用力と負荷
Aの作用力とによつてヘツド室22の作用力に打
勝つて負荷Aを下降させ、これに伴つてヘツド室
22の圧力空気が蓄圧タンク25に貫流して回収
される。負荷Aが下降端に到達すると、電磁比例
流量制御弁27の通電を断つてヘツド室22を閉
鎖する。 In addition, when the load A is lowered, the pressure control valve 30
When energized, the pressure air in the pressure storage tank 25 is reduced in pressure and flows into the rod chamber 28, and this acting force and the acting force of the load A overcome the acting force of the head chamber 22 and lower the load A. Along with this, the pressurized air in the head chamber 22 flows through the pressure accumulator tank 25 and is recovered. When the load A reaches the lower end, the electromagnetic proportional flow control valve 27 is de-energized and the head chamber 22 is closed.
上記先行技術は、ヘツド室22の圧力空気の供
給排出量を電磁比例流量制御弁27の通電量によ
つて制御するので、ストローク途中における高速
移動やストローク端における緩衝的停止等を行え
るという点でシリンダ21の制御性に優れ、しか
もシリンダ21のストロークに応じて蓄圧タンク
25の内圧が変化するのをできるだけ抑制し、そ
れによつて蓄圧タンク25の容量をできるだけ小
さくすることができるという点で優れているが、
上記行程における起動性の点で問題を有してい
る。 The above-mentioned prior art has the advantage that since the amount of pressurized air supplied and discharged from the head chamber 22 is controlled by the amount of energization of the electromagnetic proportional flow control valve 27, it is possible to perform high-speed movement in the middle of a stroke and a buffer stop at the end of the stroke. It is excellent in that it has excellent controllability of the cylinder 21, and can suppress changes in the internal pressure of the pressure storage tank 25 as much as possible according to the stroke of the cylinder 21, thereby making the capacity of the pressure storage tank 25 as small as possible. There are, but
There is a problem with starting performance in the above process.
即ち、負荷Aを繰返し昇降させる場合の下降端
においては、シリンダ21のロツド室28に圧力
制御弁30で減圧された空気圧が供給されてお
り、この空気圧と負荷荷重とによる合成作用力が
ヘツド室側の空気圧による作用力に打勝つて負荷
をその位置に保持している。 That is, at the descending end when the load A is raised and lowered repeatedly, the air pressure reduced by the pressure control valve 30 is supplied to the rod chamber 28 of the cylinder 21, and the combined force of this air pressure and the load is applied to the head chamber. The load is held in that position by overcoming the force exerted by the air pressure on the side.
そして、この状態から負荷を上昇させるとき
は、ロツド室28を大気に開放すると共に、ヘツ
ド室22を蓄圧タンク25に連通させて該ヘツド
室22に空気圧を供給することになるが、ロツド
室28の空気圧が背圧として作用するため、両室
における作用力の逆転に時間がかかり、その分上
昇行程の起動遅れが生じることになる。 When the load is increased from this state, the rod chamber 28 is opened to the atmosphere, and the head chamber 22 is communicated with the pressure storage tank 25 to supply air pressure to the head chamber 22. Since the air pressure acts as back pressure, it takes time to reverse the acting forces in both chambers, which causes a delay in starting the upward stroke.
この起動遅れを少なくするためには、負荷Aが
下降端に到達したときにロツド室28内の空気圧
を排出してて上昇時の背圧をなくせばよいが、そ
の排出により両室における作用力関係が逆転する
ため、負荷が不必要に上昇して非常に危険であ
る。ヘツド室22を電磁比例流量制御弁27によ
り蓄圧タンク25と遮断したとしても、ヘツド室
22から電磁比例流量制御弁27に至る配管には
かなりの容積があるため、その中の空気圧によつ
て負荷Aが持上げられ、それを定位置に維持する
ことは困難である。 In order to reduce this start-up delay, the air pressure in the rod chamber 28 can be discharged when the load A reaches the descending end to eliminate the back pressure during the upward movement. Since the relationship is reversed, the load increases unnecessarily, which is very dangerous. Even if the head chamber 22 is isolated from the pressure storage tank 25 by the electromagnetic proportional flow control valve 27, the piping from the head chamber 22 to the electromagnetic proportional flow control valve 27 has a considerable volume, so the air pressure inside it will cause a load. A is lifted and it is difficult to keep it in place.
本考案は、排気の一部を蓄圧タンクに回収、蓄
積してエネルギーの有効利用を図るようにした上
記既提案のシリンダ駆動装置において、負荷の下
降端でヘツド室内の空気圧を排出しても、負荷の
危険且つ不必要な上昇を生じることがないように
し、而して負荷の上昇時の背圧をなくして上昇の
起動遅れをできるだけ小さくすることを、技術的
課題とするものである。
The present invention is based on the above-mentioned previously proposed cylinder drive device in which a part of the exhaust gas is recovered and stored in a pressure accumulator tank for effective use of energy. The technical problem is to prevent dangerous and unnecessary increases in the load, eliminate back pressure when the load increases, and minimize the delay in starting the increase.
上記課題を解決するため、本考案においては、
負荷を上下に駆動するシリンダのヘツド室と負荷
を上昇させるに必要な圧力を有する蓄圧タンクと
を、通電量に比例した流量が得られる電磁比例流
量制御弁を備えた平衡管路を介して連通させ、該
シリンダにおけるロツド室と上記蓄圧タンクとを
圧力制御弁を備えた還流通路を介して連通させ、
該圧力制御弁を、ロツド室を蓄圧タンクと大気と
に切換連通させると共に、蓄圧タンクへの連通時
に、該蓄圧タンクの圧力をヘツド室の空気圧に抗
して負荷を下動させ得る圧力に減圧してロツド室
に流入させるものとして構成し、上記ヘツド室に
調圧機構を付設して、該調圧機構を、ヘツド室の
空気を負荷が上昇しない程度に低下させる位置と
その低下のための連通を遮断する位置とに切換可
能に構成するという技術的手段を講じている。
In order to solve the above problems, in this invention,
The head chamber of the cylinder that drives the load up and down and the pressure accumulator tank that has the pressure necessary to increase the load are communicated via a balanced pipe equipped with an electromagnetic proportional flow control valve that provides a flow rate proportional to the amount of energization. and communicating the rod chamber in the cylinder and the pressure accumulating tank via a reflux passage equipped with a pressure control valve,
The pressure control valve switches the rod chamber into communication with the pressure accumulation tank and the atmosphere, and when communicating with the pressure accumulation tank, reduces the pressure in the pressure accumulation tank to a pressure that can lower the load against the air pressure in the head chamber. A pressure regulating mechanism is attached to the head chamber, and the pressure regulating mechanism is set at a position where the air in the head chamber is lowered to an extent that the load does not increase, and at a position where the air in the head chamber is lowered to the extent that the load does not increase. A technical measure has been taken to enable switching between the position and the position where communication is cut off.
上記構成のシリンダ駆動装置において、上昇端
にある負荷を下降させるために、ヘツド室を電磁
比例流量制御弁を介して蓄圧タンクに連通させた
ままロツド室を圧力制御弁を介して蓄圧タンクに
連通させると、蓄圧タンクからの空気が圧力制御
弁によつて所要圧に減圧されてロツド室に流入
し、この空気圧と負荷荷重との合成作用力によ
り、負荷がピストンと共にヘツド室の空気圧によ
る作用力に抗して下動する。
In the cylinder drive device configured as described above, in order to lower the load at the rising end, the head chamber is communicated with the pressure accumulation tank via the electromagnetic proportional flow control valve, and the rod chamber is communicated with the pressure accumulation tank via the pressure control valve. When this happens, the air from the pressure storage tank is reduced to the required pressure by the pressure control valve and flows into the rod chamber, and due to the combined force of this air pressure and the load, the load is reduced together with the piston by the force exerted by the air pressure in the head chamber. moves downward against the
この場合に、負荷の下動によつてヘツド室の空
気が蓄圧タンクに送入されるが、この空気量は電
磁比例流量制御弁への通電量に応じて制御され、
急速に蓄圧タンクに送入されることがなく、
また蓄圧タンクの空気圧の一部は圧力制御弁を
通じてロツド室に供給されるため、蓄圧タンクの
圧力変化は可及的に抑制され、従つて小容量の蓄
圧タンクを使用しても蓄圧タンクの圧力変化を十
分に小さくすることができる。 In this case, air in the head chamber is sent to the pressure storage tank as the load is lowered, but the amount of air is controlled according to the amount of electricity applied to the electromagnetic proportional flow control valve.
Since the air pressure in the pressure storage tank is not rapidly sent to the pressure storage tank, and a part of the air pressure in the pressure storage tank is supplied to the rod chamber through the pressure control valve, pressure changes in the pressure storage tank are suppressed as much as possible, and therefore the air pressure is small. Even if a pressure storage tank with a large capacity is used, the pressure change in the pressure storage tank can be made sufficiently small.
負荷が下降端に到達すると、電磁比例流量制御
弁を非通電としてヘツド室を蓄圧タンクから遮断
すると共に、調圧機構により該ヘツド室の空気を
低圧にして排出し、同時に、圧力制御弁によりロ
ツド室を大気に開放する。これにより、負荷の上
昇を生じることなくロツド室内の空気圧の排出が
行われ、負荷は上昇行程に備えて下降端で待機す
る。 When the load reaches the lower end, the electromagnetic proportional flow control valve is de-energized to isolate the head chamber from the pressure storage tank, and the pressure regulating mechanism discharges the air in the head chamber at a low pressure.At the same time, the pressure control valve closes the rod. Open the room to the atmosphere. As a result, the air pressure in the rod chamber is discharged without causing an increase in the load, and the load waits at the lower end in preparation for the upward stroke.
この状態から負荷を上昇させるときには、ヘツ
ド室と調圧機構の連通を遮断すると共に、蓄圧タ
ンクの空気を電磁比例流量制御弁を介して該ヘツ
ド室に流入させるが、このとき、ロツド室が大気
圧となつているため、このロツド室の空気圧が起
動の際に背圧として作用することがなく、従つて
その起動が迅速に行われることになる。この場
合、この上昇方向への駆動の速度制御は、上記流
量制御弁への通電量を増減することにより制御性
よく行われる。 When increasing the load from this state, the communication between the head chamber and the pressure regulating mechanism is cut off, and the air in the pressure storage tank is allowed to flow into the head chamber via the electromagnetic proportional flow control valve. Since the rod chamber is at atmospheric pressure, the air pressure in this rod chamber does not act as back pressure during startup, and therefore, startup is performed quickly. In this case, the speed control of the drive in the upward direction is performed with good controllability by increasing/decreasing the amount of electricity supplied to the flow rate control valve.
本考案のシリンダ駆動装置によれば、負荷が下
降端に到達したとき、調圧機構によりヘツド室の
圧力を低下させると同時にロツド室を大気に開放
するようにしたので、負荷の危険な上昇を生じる
ことなく、ロツド室の空気圧を全排出した状態で
該負荷を下降端に待機させることができ、これに
よつて上昇行程時の背圧をなくしてその起動を早
めることができる。
According to the cylinder drive device of the present invention, when the load reaches the lowering end, the pressure regulating mechanism lowers the pressure in the head chamber and at the same time opens the rod chamber to the atmosphere, thereby preventing a dangerous increase in the load. The load can be left on standby at the descending end with all the air pressure in the rod chamber discharged without this occurring, thereby eliminating back pressure during the upward stroke and speeding up its startup.
また、上述のように上昇起動を早めるために、
ロツド室の空気圧を全排出するため、逆に負荷の
危険な上昇を招く可能性が生じるが、シリンダの
昇降駆動速度を電磁比例流量制御弁の通電量によ
つて制御するようにしているので、負荷を制御性
よく昇降させることができる。 Also, as mentioned above, in order to accelerate the start of the rise,
Since all the air pressure in the rod chamber is exhausted, there is a possibility that the load will increase dangerously, but since the cylinder lifting speed is controlled by the amount of current supplied to the electromagnetic proportional flow control valve, The load can be raised and lowered with good controllability.
以下、本考案の実施例を図面に基づいて詳細に
説明するに、第1図において、シリンダ1は負荷
Aを昇降させるリフタを構成するもので、該シリ
ンダ1におけるヘツド室2は、減圧弁3により空
気源4の圧力を所期の圧力に減圧して蓄圧タンク
5に、電磁比例流量制御弁7を備えた平衡管路6
を介して連通させ、該シリンダ1におけるロツド
室8は、上記平衡管路6から分岐させた圧力制御
弁10を有する環流管路9によつて蓄圧タンク5
に連通させ、されに上記ヘツド室2には、3ポー
ト切換弁12と小容量の減圧タンク13とからな
る調圧機構11を接続している。
Hereinafter, an embodiment of the present invention will be described in detail based on the drawings. In FIG. 1, a cylinder 1 constitutes a lifter for raising and lowering a load A, and a head chamber 2 in the cylinder 1 is connected to a pressure reducing valve 3. The pressure of the air source 4 is reduced to a desired pressure by the pressure accumulating tank 5, and the balanced pipe 6 is equipped with an electromagnetic proportional flow control valve 7.
The rod chamber 8 in the cylinder 1 is connected to the pressure accumulator tank 5 by a reflux line 9 having a pressure control valve 10 branched from the balance line 6.
Furthermore, a pressure regulating mechanism 11 consisting of a three-port switching valve 12 and a small-capacity pressure reducing tank 13 is connected to the head chamber 2.
上記電磁比例流量制御弁7は、非通電時にヘツ
ド室2と蓄圧タンク5の間の平衡管路6を閉塞
し、通電時にはその通電量に比例した弁開度で無
段階的に開弁して、その開弁度即ち通電量に比例
した流量を蓄圧タンク5からヘツド室2に流入さ
せるように構成したものであり、また、上記圧力
制御弁10は、電磁比例圧力制御弁として構成
し、非通電時にはロツド室8と蓄圧タンク5の間
の環流管路9を閉塞すると共にロツド室8を大気
に開放し、通電時にはロツド室8と蓄圧タンク5
とを連通させて、ロツド室8が通電量に比例した
設定圧、即ちヘツド室2の空気圧に抗して負荷を
下降端まで下動させ得る圧力となるまで、蓄圧タ
ンク5からロツド室8に空気を流入させるように
したものである。 The electromagnetic proportional flow control valve 7 closes the balance line 6 between the head chamber 2 and the pressure storage tank 5 when not energized, and opens steplessly with a valve opening proportional to the amount of energization when energized. The pressure control valve 10 is configured to flow from the pressure storage tank 5 into the head chamber 2 at a flow rate proportional to its valve opening degree, that is, the amount of energization.The pressure control valve 10 is configured as an electromagnetic proportional pressure control valve, When energized, the recirculation pipe 9 between the rod chamber 8 and pressure accumulator tank 5 is closed, and the rod chamber 8 is opened to the atmosphere, and when energized, the rod chamber 8 and pressure accumulator tank 5 are closed.
from the pressure accumulator tank 5 to the rod chamber 8 until the rod chamber 8 reaches a set pressure proportional to the amount of energization, that is, a pressure that can move the load down to the lower end against the air pressure in the head chamber 2. It is designed to allow air to flow in.
なお、空気源4から供給される空気圧が蓄圧タ
ンク5の所期の設定圧力になつている場合には減
圧弁3を設ける必要がない。 Note that if the air pressure supplied from the air source 4 is at the desired set pressure of the pressure storage tank 5, there is no need to provide the pressure reducing valve 3.
次に、上述したシリンダ駆動装置の作用につい
て説明する。 Next, the operation of the cylinder drive device described above will be explained.
第1図は負荷Aが下降端にある場合を示してお
り、この状態から圧力制御弁10が非通電とな
り、電磁比例流量制御弁7及び3ポート切換弁1
2を共に非通電状態にある場合には、ヘツド室2
は蓄圧タンク5及び減圧タンク13と連通せず、
またロツド室8は蓄圧タンク5と遮断されて大気
に開放した状態にある。 FIG. 1 shows a case where the load A is at the lower end, and from this state the pressure control valve 10 is de-energized, the electromagnetic proportional flow control valve 7 and the 3-port switching valve 1
2 are both de-energized, the head chamber 2
does not communicate with the pressure accumulation tank 5 and the pressure reduction tank 13,
Further, the rod chamber 8 is isolated from the pressure storage tank 5 and is open to the atmosphere.
今、この状態で電磁比例流量制御弁7に通電す
れば、その通電量に応じた空気流量が蓄圧タンク
5からヘツド室2に流入し、その流量に応じた速
されシリンダロツド1aが負荷Aを支持しつつ上
昇ストロークする。この上昇に伴つてロツド室8
の空気は圧力制御弁10から大気に排出されると
共に、ヘツド室2の容積の増大に伴う蓄圧タンク
5の低圧化に伴つてその分を補償する空気が減圧
弁3を介して空気源4から蓄圧タンク5に補給さ
れる。 Now, if the electromagnetic proportional flow control valve 7 is energized in this state, a flow rate of air corresponding to the amount of energization will flow from the pressure storage tank 5 into the head chamber 2, and the cylinder rod 1a will support the load A at a speed corresponding to the flow rate. While doing so, make an upward stroke. With this rise, rod chamber 8
The air is discharged to the atmosphere from the pressure control valve 10, and as the pressure in the pressure storage tank 5 decreases due to the increase in the volume of the head chamber 2, air to compensate for the decrease in pressure is discharged from the air source 4 via the pressure reducing valve 3. The pressure storage tank 5 is replenished.
この後、負荷Aを再び下降させるには、電磁比
例流量制御弁7を通電にしてヘツド室2と蓄圧タ
ンク5とを連通させたまま、圧力制御弁10に通
電し、蓄圧タンク5からの圧力を減圧してロツド
室8に加えればよい。これにより、シリンダ1の
ロツド室8側には負荷Aの作用力と蓄圧タンク5
からの減圧圧力による作用とが加わつて、ヘツド
室2側の作用力に打ち勝ち、負荷Aが下降する。
その負荷Aの下降に伴つてヘツド室2の圧力空気
が平衡管路6を通して蓄圧タンク5に送入される
が、この空気量は電磁比例流量制御弁7で制御さ
れて急速に蓄圧タンク5に送入されることがな
く、また、該蓄圧タンクを環流管路9を介してロ
ツド室8と連通させているので、蓄圧タンクに戻
る空気の一部がロツド室8に環流し、蓄圧タンク
5の圧力上昇が抑制される。 After this, in order to lower the load A again, the electromagnetic proportional flow control valve 7 is energized to keep the head chamber 2 and the pressure accumulation tank 5 in communication, and the pressure control valve 10 is energized to reduce the pressure from the pressure accumulation tank 5. It is sufficient to reduce the pressure and add it to the rod chamber 8. As a result, the acting force of the load A and the pressure accumulating tank 5 are applied to the rod chamber 8 side of the cylinder 1.
With the addition of the effect of the reduced pressure from the head chamber 2, the load A is lowered by overcoming the acting force on the head chamber 2 side.
As the load A decreases, pressurized air in the head chamber 2 is fed into the pressure storage tank 5 through the balance pipe 6, but the amount of air is controlled by the electromagnetic proportional flow control valve 7 and rapidly flows into the pressure storage tank 5. Also, since the pressure accumulator tank is communicated with the rod chamber 8 via the recirculation pipe 9, a part of the air that returns to the pressure accumulator tank flows back to the rod chamber 8, and the pressure accumulator tank 5 pressure rise is suppressed.
また、上記負荷の上昇、下降ストロークの速度
は、そのストロークに伴う蓄圧タンク5の若干の
圧力変化とは無関係に圧力制御弁10または電磁
比例流量制御弁7への通電量を変化させることに
より調節でき、これによりストローク途中におけ
る高速移動やストローク端における緩衝的停止、
さらにはストローク途中における非常停止を行う
ことができる。 In addition, the speed of the above-mentioned load rise and fall strokes can be adjusted by changing the amount of current applied to the pressure control valve 10 or the electromagnetic proportional flow control valve 7, regardless of the slight pressure change in the pressure storage tank 5 that accompanies the stroke. This allows for high-speed movement in the middle of the stroke, a cushioned stop at the end of the stroke,
Furthermore, an emergency stop can be performed in the middle of a stroke.
而して、負荷Aが下降端に達すると、次の上昇
ストロークに備えて次のような動作が行われる。 When the load A reaches the lower end, the following operation is performed in preparation for the next upward stroke.
即ち、電磁比例流量制御弁7を非通電にしてヘ
ツド室2と蓄圧タンク5とを遮断すると共に、3
ポート切換弁12に通電してヘツド室2と減圧タ
ンク13とを連通させ、同時に圧力制御弁10を
非通電にしてロツド室8を大気に開放させる。こ
れによつて、ロツド室8は大気圧となり、またヘ
ツド室2の空気圧が減圧タンク13への流入によ
つて減圧され、ロツド室8が大気圧となつても負
荷Aを上昇させない程度にまで低圧化する。 That is, the electromagnetic proportional flow control valve 7 is de-energized to cut off the head chamber 2 and the pressure accumulator tank 5, and the 3
The port switching valve 12 is energized to communicate the head chamber 2 and the decompression tank 13, and at the same time the pressure control valve 10 is de-energized to open the rod chamber 8 to the atmosphere. As a result, the rod chamber 8 becomes atmospheric pressure, and the air pressure in the head chamber 2 is reduced by flowing into the decompression tank 13, to the extent that the load A does not increase even if the rod chamber 8 becomes atmospheric pressure. Lower pressure.
この状態で待機中の負荷を再び上昇させる場合
は、3ポート切換弁12を非通電にし、電磁比例
流量制御弁7を通電にすればよいが、ロツド室8
が大気圧化し、しかもヘツド室2及びそれに連な
る管路には残存空気圧があるため、負荷の応答は
速く、従つて該負荷Aを高速起動させることがで
きる。 If you want to increase the standby load again in this state, you can de-energize the 3-port switching valve 12 and energize the electromagnetic proportional flow control valve 7.
Since the pressure is reduced to atmospheric pressure and there is residual air pressure in the head chamber 2 and the conduit connected thereto, the response of the load is fast, and therefore the load A can be started at high speed.
第2図は調圧機構11の異なる実施例を示すも
ので、2ポート切換弁14とリリーフ弁15とに
よつてそれを構成し、これによつて前記実施例の
場合と同様の効果が得られるようにしたものであ
る。 FIG. 2 shows a different embodiment of the pressure regulating mechanism 11, which is composed of a 2-port switching valve 14 and a relief valve 15, thereby achieving the same effects as in the previous embodiment. It was designed so that
次に、第1図に示す装置に基づいて行つた実験
例について説明する。 Next, an example of an experiment conducted based on the apparatus shown in FIG. 1 will be explained.
負荷重量:700kgf
シリンダ:内径180mm、ロツド径45mm、
ストローク800mm
蓄圧タンク:79
配 管:配管サイズ1B、配管長3m
圧 力:蓄圧タンク圧力PT=4.3kgf/cm2
ロツド室圧力Pr=2.6kgf/cm2
減圧タンク:0.7
減圧タンク連絡による静定圧力:
Pt=2.7kgf/cm2
第3図Aは調圧機構11を機能させない場合、
即ち、電磁比例流量制御弁7及び圧力制御弁10
を共にオンにし、ロツド室8に2.6kgf/cm2、ヘツ
ド室2に4.3kgf/cm2の空気圧をそれぞれ供給した
状態で負荷Aを下降端に待機させ、その状態から
圧力制御弁10をオフにして該負荷Aを上昇させ
た場合を示し、また同図Bは調圧機構11を機能
させた場合、即ち、圧力制御弁10をオフにして
ロツド室8を大気に開放すると共に、電磁比例流
量制御弁7をオフ、3ポート切換弁12をオンに
してヘツド室2を減圧した状態で負荷Aを下降端
に待機させ、その状態から該負荷を上昇させた場
合を示しており、この図から、調圧機構を設けて
ヘツド室及びロツド室の圧力を調整した場合に、
起動時間を0.25secから0.035secに、またフルス
トローク時間を2.53secから2.29secにそれぞれ短
縮できたことがわかる。
Load weight: 700kgf Cylinder: Inner diameter 180mm, Rod diameter 45mm, Stroke 800mm Accumulator tank: 79 Piping: Piping size 1B, Piping length 3m Pressure: Accumulator tank pressure P T =4.3kgf/cm 2 Rod chamber pressure P r =2.6 kgf/cm 2 Decompression tank: 0.7 Static constant pressure by connecting the decompression tank: P t = 2.7 kgf/cm 2 Figure 3 A shows when the pressure regulating mechanism 11 is not activated,
That is, the electromagnetic proportional flow control valve 7 and the pressure control valve 10
Both are turned on, the load A is placed on standby at the lower end with air pressures of 2.6 kgf/cm 2 supplied to the rod chamber 8 and 4.3 kgf/cm 2 supplied to the head chamber 2, and from that state the pressure control valve 10 is turned off. Figure B shows the case where the pressure regulating mechanism 11 is activated, that is, the pressure control valve 10 is turned off to open the rod chamber 8 to the atmosphere, and the electromagnetic proportional The flow control valve 7 is turned off, the 3-port switching valve 12 is turned on, the head chamber 2 is depressurized, the load A is placed on standby at the lower end, and the load is raised from that state. Therefore, when a pressure regulating mechanism is installed to adjust the pressure in the head and rod chambers,
It can be seen that the startup time was reduced from 0.25sec to 0.035sec, and the full stroke time was reduced from 2.53sec to 2.29sec.
第1図は本考案の一実施例を示す回路図、第2
図は調圧機構の異なる実施例を示す回路図、第3
図A,Bは実験結果を示す線図、第4図は先行技
術の回路図である。
1…シリンダ、2…ヘツド室、5…蓄圧タン
ク、6…平衡管路、7…電磁比例流量制御弁、8
…ロツド室、9…環流管路、10…圧力制御弁、
11…調圧機構。
Figure 1 is a circuit diagram showing one embodiment of the present invention;
The figure is a circuit diagram showing different embodiments of the pressure regulating mechanism.
Figures A and B are diagrams showing experimental results, and Figure 4 is a circuit diagram of the prior art. DESCRIPTION OF SYMBOLS 1... Cylinder, 2... Head chamber, 5... Pressure storage tank, 6... Balance pipe, 7... Electromagnetic proportional flow control valve, 8
...Rod chamber, 9...Recirculation pipe, 10...Pressure control valve,
11...Pressure regulation mechanism.
Claims (1)
荷を上昇させるに必要な圧力を有する蓄圧タンク
とを、通電量に比例した流量が得られる電磁比例
流量制御弁を備えた平衡管路を介して連通させ、
該シリンダにおけるロツド室と上記蓄圧タンクと
を圧力制御弁を備えた環流管路を介して連通さ
せ、該圧力制御弁を、ロツド室を蓄圧タンクと大
気とに切換連通させると共に、蓄圧タンクへの連
通時に、該蓄圧タンクの圧力をヘツド室の空気圧
に抗して負荷を下動させ得る圧力に減圧してロツ
ド室に流入させるものとして構成し、上記ヘツド
室に調圧機構を付設して、該調圧機構を、ヘツド
室の空気を負荷が上昇しない程度に低下させる位
置とその低下のための連通を遮断する位置とに切
換可能に構成したことを特徴とするシリンダ駆動
装置。 The head chamber of the cylinder that drives the load up and down and the pressure accumulator tank that has the pressure necessary to increase the load are communicated via a balanced pipe equipped with an electromagnetic proportional flow control valve that provides a flow rate proportional to the amount of energization. let me,
The rod chamber in the cylinder and the pressure accumulator tank are communicated via a recirculation pipe provided with a pressure control valve, and the pressure control valve is used to switch the rod chamber into communication with the pressure accumulator tank and the atmosphere, and to connect the pressure accumulator tank to the atmosphere. At the time of communication, the pressure in the pressure storage tank is reduced to a pressure that can lower the load against the air pressure in the head chamber, and the pressure is allowed to flow into the rod chamber, and a pressure regulating mechanism is attached to the head chamber, A cylinder drive device characterized in that the pressure regulating mechanism is configured to be switchable between a position where the air in the head chamber is lowered to an extent that the load does not increase and a position where communication for the lowering is cut off.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12996781U JPS5835001U (en) | 1981-09-01 | 1981-09-01 | cylinder drive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12996781U JPS5835001U (en) | 1981-09-01 | 1981-09-01 | cylinder drive device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5835001U JPS5835001U (en) | 1983-03-07 |
JPS6123921Y2 true JPS6123921Y2 (en) | 1986-07-18 |
Family
ID=29923622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12996781U Granted JPS5835001U (en) | 1981-09-01 | 1981-09-01 | cylinder drive device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5835001U (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7089244B2 (en) * | 2019-09-06 | 2022-06-22 | Smc株式会社 | Air cylinder, head cover and rod cover |
JP7063436B2 (en) * | 2019-09-06 | 2022-05-09 | Smc株式会社 | Flow controller and drive unit equipped with it |
-
1981
- 1981-09-01 JP JP12996781U patent/JPS5835001U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5835001U (en) | 1983-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5131318A (en) | Directional control valve for pneumatic cylinder | |
JPS6024961Y2 (en) | cylinder drive device | |
KR100303012B1 (en) | Hydraulic elevator system | |
JPS6123921Y2 (en) | ||
WO2001083358A1 (en) | Air balance device | |
CN201412400Y (en) | Hydraulic control device of turnover mechanism and turnover mechanism | |
JPH045A (en) | Deceleration controlling method for piston rod in pneumatic cylinder | |
JP2000007292A (en) | Elevator | |
JPH07259518A (en) | Variable valve system of internal combustion engine | |
JPH0127244B2 (en) | ||
JPH0249363Y2 (en) | ||
JPH0249362Y2 (en) | ||
JP2001063939A (en) | Movable cylinder and hydraulic elevator using it | |
JP2791851B2 (en) | Energy-saving hydraulic elevator | |
US4315716A (en) | Suction control valve | |
JP4163504B2 (en) | Air balance device | |
RU1781156C (en) | Hydraulic lift | |
CN212455016U (en) | Double-pressure hydraulic system | |
JP3581750B2 (en) | Hydraulic elevator descending speed control device | |
JP2529543B2 (en) | Pressure adjustment circuit | |
JPH0435356Y2 (en) | ||
JPH0742857A (en) | Back pressure valve | |
JPH08133612A (en) | Fluid pressure elevator | |
JP3031298U (en) | Control devices such as chairs | |
JPH08268692A (en) | Lift device |