JPH0127244B2 - - Google Patents

Info

Publication number
JPH0127244B2
JPH0127244B2 JP58192629A JP19262983A JPH0127244B2 JP H0127244 B2 JPH0127244 B2 JP H0127244B2 JP 58192629 A JP58192629 A JP 58192629A JP 19262983 A JP19262983 A JP 19262983A JP H0127244 B2 JPH0127244 B2 JP H0127244B2
Authority
JP
Japan
Prior art keywords
valve
pressure
diameter piston
cylinder
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58192629A
Other languages
Japanese (ja)
Other versions
JPS6085209A (en
Inventor
Shuichi Sato
So Kashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58192629A priority Critical patent/JPS6085209A/en
Publication of JPS6085209A publication Critical patent/JPS6085209A/en
Publication of JPH0127244B2 publication Critical patent/JPH0127244B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、デイーゼル機関の弁駆動装置、さら
に詳細には油圧駆動力により、エンジンの燃焼室
のガス交換を行なうきのこ状弁の開弁を行ない、
弁ばねの反発力又は油圧駆動力により閉弁を行な
う弁駆動装置に関する。
Detailed Description of the Invention Technical Field The present invention uses a valve drive device for a diesel engine, more specifically, a hydraulic drive force to open a mushroom-shaped valve for gas exchange in a combustion chamber of an engine.
The present invention relates to a valve driving device that closes a valve using the repulsive force of a valve spring or hydraulic driving force.

従来技術 デイーゼル機関のなす仕事は、第1図に示す如
くシリンダ容積を横軸に、シリンダ内圧力を縦軸
にとつて描いたサイクル閉曲線で囲まれた面積で
表わされることはよく知られている。第1図の排
気過程における実線で示す理論サイクルaに対し
て、実際のサイクルは鎖線bで示す如く下死点に
向つて圧力が漸減し、その閉曲線面積は理論サイ
クルの閉曲線面積に比してΔWiだけ減少する。
この面積はロス仕事であり、デイーゼル機関の熱
効率の関善にはΔWiを極力少なくすることが有
効である。即ち、排気過程でのサイクル線図を拡
大して示す第2図において、破線cで示すように
開弁速度を増大させることが最も有効である。
Prior Art It is well known that the work done by a diesel engine is expressed by the area surrounded by a closed cycle curve drawn with the cylinder volume on the horizontal axis and the cylinder internal pressure on the vertical axis, as shown in Figure 1. . In contrast to the theoretical cycle a shown by the solid line in the exhaust process in Figure 1, in the actual cycle the pressure gradually decreases toward the bottom dead center as shown by the chain line b, and the closed curve area is compared to the closed curve area of the theoretical cycle. It decreases by ΔWi.
This area is work loss, and it is effective to reduce ΔWi as much as possible in order to improve the thermal efficiency of a diesel engine. That is, in FIG. 2, which shows an enlarged cycle diagram during the exhaust process, it is most effective to increase the valve opening speed as indicated by the broken line c.

ところが、一般にデイーゼル機関の排気弁は、
カムの回転により、カム上を転動するローラ、押
し棒、揺れ腕を介して機械的に弁ばねに抗して開
弁方向に駆動され、弁ばねの力により閉弁する方
向に駆動される機構になつている。したがつて、
排気弁の揚程曲線は基本的にはカムのプロフイー
ルに依存することになるが、カムから排気弁迄の
一連の駆動伝達部材の圧接係合が外れて弁のおど
りを生じないようにするために、カムによる被駆
動部、すなわちローラから排気弁までの機械的結
合部材の質量と加速度の積が、排気弁の弁ばねに
よる力よりも小さくなるように加速度を選ばねば
ならないので、カムプロフイールの曲率の変化は
非常になだらかなものとならざるを得ず、弁揚程
曲線は第3図に実線dで示す如くなり、開弁速度
を速くした破線で示すeの如くすることは出来な
い。
However, in general, the exhaust valve of a diesel engine is
As the cam rotates, it is mechanically driven in the valve opening direction against the valve spring through the roller, push rod, and swinging arm that roll on the cam, and is driven in the valve closing direction by the force of the valve spring. It has become a mechanism. Therefore,
The lift curve of the exhaust valve basically depends on the profile of the cam, but in order to prevent the series of drive transmission members from the cam to the exhaust valve from coming out of pressure contact and causing the valve to float. , the curvature of the cam profile must be selected such that the product of the mass and acceleration of the part driven by the cam, i.e. the mechanical coupling member from the roller to the exhaust valve, is smaller than the force exerted by the valve spring of the exhaust valve. The change in the valve head must be very gradual, and the valve lift curve will become as shown by the solid line d in FIG. 3, and it cannot be made as shown by the broken line e, where the valve opening speed is increased.

上述の如く、被駆動部材の慣性力に拘束される
ことが比較的少ない排気弁駆動機構として、カム
によりプランジヤーを押して密封容器中に封入さ
れた作動油を圧縮し、その圧力でピストンを押し
て排気弁を駆動するカム、プランジヤ式油圧駆動
機構や、あるいは別置きの油圧源から供給される
圧油を電磁切換弁又はカム等を介して機関の運動
と同期させて切換える切換弁を介してシリンダに
供給しピストンを押して排気弁を開弁し、弁ばね
によつて閉弁するようにした油圧駆動装置があ
る。
As mentioned above, as an exhaust valve drive mechanism that is relatively less constrained by the inertia of the driven member, the cam pushes the plunger to compress the hydraulic oil sealed in the sealed container, and the pressure pushes the piston to exhaust the valve. Pressure oil supplied from a cam that drives the valve, a plunger type hydraulic drive mechanism, or a separate hydraulic source is connected to the cylinder via an electromagnetic switching valve or a switching valve that switches in synchronization with the movement of the engine via a cam, etc. There is a hydraulic drive device which opens an exhaust valve by supplying gas and pushing a piston, and closes the valve by a valve spring.

しかしながら、これらの油圧駆動装置の場合
も、排気弁の開弁速度を増大させるには、ピスト
ンの受圧面積とストロークの積、すなわち排開量
に相当する量の圧油を短時間のうちにシリンダに
供給する必要があるので、単位時間当りのプラン
ジヤ又は油圧ポンプの吐出流量、切換弁の通過流
量を増大させねばならないために油圧供給装置が
大型になると云う問題がある。すなわち、カムプ
ランジヤ方式の場合はプランジヤ径が増大し、慣
性質量が増大するので、カムプロフイールの設計
上、加速度を大きくとれず、したがつて開弁速度
を、第3図の曲線eの如く大きくできない。
However, in the case of these hydraulic drive devices, in order to increase the opening speed of the exhaust valve, an amount of pressure oil corresponding to the product of the pressure receiving area and the stroke of the piston, that is, the displacement amount, must be pumped into the cylinder in a short period of time. Therefore, there is a problem that the hydraulic supply device becomes large because the discharge flow rate of the plunger or hydraulic pump and the flow rate passing through the switching valve must be increased per unit time. In other words, in the case of the cam plunger system, the plunger diameter increases and the inertial mass increases, so due to the design of the cam profile, it is not possible to achieve a large acceleration. Can not.

また、別置油圧源による排気弁駆動装置では、
一般に第4図に示す如く、油圧シリンダ1は機関
のシリンダヘツド12に結合されており、駆動ピ
ストン2は弁ばね16により閉弁方向に付勢され
た排気弁13の弁棒14の先端と圧接係合してい
る。3ポート切換弁6によりシリンダケーシング
3とピストン2で囲まれた圧力室19に圧油供給
装置28で発生した圧油を供給することより、弁
ばね16の力及び排気弁13の弁がさ15の下面
に作用する燃焼室18のシリンダ内圧Pによる力
に抗してピストン2を押し進め、第5図に示す如
く排気弁13を開き、燃焼室18内の燃焼済みの
排気ガスを排気通路17を経てエンジン外へ排出
する。そして一定期間後、切換弁6を切換えて油
圧シリンダ1の圧力室19を導管7、戻り導管9
を経てタンク11に開放することにより、ピスト
ン2は弁ばね16の力により上昇して排気弁13
は閉鎖する。
In addition, in an exhaust valve drive device using a separate hydraulic power source,
Generally, as shown in FIG. 4, a hydraulic cylinder 1 is connected to a cylinder head 12 of an engine, and a driving piston 2 is in pressure contact with the tip of a valve stem 14 of an exhaust valve 13, which is biased in the valve closing direction by a valve spring 16. engaged. By supplying the pressure oil generated by the pressure oil supply device 28 to the pressure chamber 19 surrounded by the cylinder casing 3 and the piston 2 by the 3-port switching valve 6, the force of the valve spring 16 and the pressure of the exhaust valve 13 are reduced. The piston 2 is pushed forward against the force of the cylinder internal pressure P of the combustion chamber 18 acting on the lower surface, the exhaust valve 13 is opened as shown in FIG. It is then discharged out of the engine. After a certain period of time, the switching valve 6 is switched to connect the pressure chamber 19 of the hydraulic cylinder 1 to the conduit 7 and the return conduit 9.
The piston 2 is raised by the force of the valve spring 16 to open the exhaust valve 13.
will be closed.

なお、図中の4,5は油通路、8は加圧導管、
10は導管であつて、通路5及び導管10は駆動
ピストン2の移動を容易にするとともに、漏洩油
の排出を行なうためのものである。又h1はピスト
ン2のストローク、ひいては排気弁13の開弁ス
トロークになる。
In addition, 4 and 5 in the figure are oil passages, 8 is a pressure conduit,
Reference numeral 10 denotes a conduit, and the passage 5 and the conduit 10 are used to facilitate movement of the drive piston 2 and to drain leaked oil. Further, h 1 is the stroke of the piston 2, and thus the opening stroke of the exhaust valve 13.

上記の別置油圧源による排気弁油駆動装置にお
いては駆動ピストン2の変位速度Vは、圧力室1
9内への圧油の単位時間あたりの供給流量Qと駆
動ピストン2の受圧面積AによつてきまりV=
Q/Aであらわされる。
In the above-mentioned exhaust valve oil drive device using a separate hydraulic power source, the displacement speed V of the drive piston 2 is
Determined by the supply flow rate Q of pressure oil per unit time into the interior of 9 and the pressure receiving area A of the drive piston 2, V=
It is expressed as Q/A.

また駆動ピストン2の油圧駆動力Fは、供給圧
油の圧力P1と駆動ピストン2の受圧面積Aによ
つてきまり、F=P1×Aであらわされる。
Further, the hydraulic driving force F of the drive piston 2 is determined by the pressure P 1 of the supplied pressure oil and the pressure receiving area A of the drive piston 2, and is expressed by F=P 1 ×A.

一方、油圧ポンプ、タンク、こし器、アキユー
ムレータ、圧力調整弁、導管、各種弁類等から成
る圧油供給設備は通常、単位時間あたり一定の流
量で圧油を供給し、管路系内の圧力が一定値にな
るよう圧力調整弁で調整されており、管路系内の
圧力変動を吸収するようアキユームレータが配設
される。
On the other hand, pressure oil supply equipment consisting of hydraulic pumps, tanks, strainers, accumulators, pressure regulating valves, conduits, various valves, etc. usually supplies pressure oil at a constant flow rate per unit time, and A pressure regulating valve is used to adjust the pressure to a constant value, and an accumulator is installed to absorb pressure fluctuations within the pipeline system.

このような圧油供給設備の圧油供給能力Rは供
給圧P1と単位時間あたりの供給量Qの積R=P1
×Qで代表される。
The pressure oil supply capacity R of such pressure oil supply equipment is the product of supply pressure P 1 and supply amount Q per unit time R = P 1
It is represented by ×Q.

したがつて駆動ピストン2の変位速度V、すな
わち排気弁の開弁速度はV=R/P1A=R/Fで
あらわされ油圧源の圧油供給能力Rが大きいほ
ど、また排気弁を駆動するに要する力Fが小さい
ほど、開弁速度は大きくなる。
Therefore, the displacement speed V of the drive piston 2, that is, the opening speed of the exhaust valve, is expressed as V=R/P 1 A=R/F, and the greater the pressure oil supply capacity R of the hydraulic source, the more the exhaust valve is driven. Therefore, the smaller the force F required to do this, the faster the valve opening speed becomes.

排気弁13に作用するシリンダ内圧による力
は、開弁時にはその時の燃焼室18のシリンダ内
圧Pに弁がさ15の面積を乗じた積であるが、開
弁後は燃焼室18と排気通路17とが連通して弁
がさの上下面の圧力が均圧するので、ほゞ弁棒1
4の断面積とシリンダ内圧の積となる。しかも排
気の排出に伴いシリンダ内圧自体も急速に低下す
るので、ガスによる力は開弁開始時に較べてはる
かに小さくなる。
The force due to the cylinder internal pressure acting on the exhaust valve 13 is the product of the cylinder internal pressure P in the combustion chamber 18 at that time multiplied by the area of the valve 15 when the valve is opened, but after the valve is opened, the force due to the cylinder internal pressure in the combustion chamber 18 and the exhaust passage 17 is The pressure on the upper and lower surfaces of the valve shaft is equalized by communicating with the valve stem 1.
It is the product of the cross-sectional area of 4 and the cylinder internal pressure. Moreover, as the exhaust gas is discharged, the cylinder internal pressure itself rapidly decreases, so the force exerted by the gas becomes much smaller than when the valve starts opening.

このように、排気弁の開弁に必要な力は、開弁
開始時はほゞシリンダ内圧による力により、開弁
後はほゞ、排気弁の開弁ストロークに比例する弁
ばね力によつて決まる。後者は前者に比して通常
はるかに小さく、駆動部の慣性質量の大きな従来
のカム駆動の場合でも1/3以下であり、駆動部の
慣性質量を小さくできる油圧駆動の場合にはさら
に小さくなる。一方、排気弁の開弁時のシリンダ
内圧は、例えばエンジンのターボコンパウンド化
のように排気ガスのエネルギーを有効利用してエ
ンジンの高性能化をはかるために高くなる傾向に
あり、開弁時にはさらに大きな駆動力が必要とな
る。
In this way, the force required to open the exhaust valve is due to the force due to the cylinder internal pressure when the valve starts opening, and after the valve is opened, it is due to the valve spring force that is proportional to the opening stroke of the exhaust valve. It's decided. The latter is usually much smaller than the former, and is less than 1/3 even in the case of a conventional cam drive, which has a large inertial mass of the drive part, and is even smaller in the case of a hydraulic drive, which can reduce the inertial mass of the drive part. . On the other hand, the cylinder internal pressure when the exhaust valve is open tends to be higher due to the use of turbo compound engines, which effectively utilize the energy of exhaust gas to improve engine performance. Large driving force is required.

したがつて駆動ピストン2の受圧面積はシリン
ダ内圧による力に抗して排気弁13を開弁させる
に足るよう設定される。ところが上述のように開
弁後は排気弁の開弁ストロークを進めるに必要な
駆動力は非常に小さくなるため、第4図に示すご
とく駆動ピストン2の受圧面積が駆動ピストンの
全ストロークh1にわたつて一定である従来の油圧
駆動式排気弁駆動装置では、圧力室19内の圧力
P1が急激に低下する。一方、圧油の供給設備は
管路系内の圧力を一定に保つようその供給能力が
設定されており、管路系の一部である圧力室19
での圧力の低下を直ちに回復するよう作用する。
そのため管路系内に大きな圧力脈動を発生させる
と共に、供給能力が十分でないと圧力の回復に時
間を要し、管路系内全体の圧力を低下させること
にもなる。
Therefore, the pressure-receiving area of the drive piston 2 is set to be sufficient to open the exhaust valve 13 against the force due to the cylinder internal pressure. However, as mentioned above, after the valve is opened, the driving force required to advance the opening stroke of the exhaust valve becomes very small, so as shown in Fig. 4, the pressure receiving area of the drive piston 2 becomes equal to the total stroke h1 of the drive piston. In a conventional hydraulically driven exhaust valve drive device, which is constant over time, the pressure in the pressure chamber 19
P 1 drops rapidly. On the other hand, the supply capacity of the pressure oil supply equipment is set to keep the pressure within the pipeline system constant, and a pressure chamber 19 that is part of the pipeline system is used.
It acts to immediately restore the pressure drop at.
Therefore, large pressure pulsations are generated within the pipe system, and if the supply capacity is not sufficient, it takes time to recover the pressure, resulting in a decrease in the overall pressure within the pipe system.

エンジンは通常、複数の燃焼シリンダから成
り、油圧駆動の場合、圧油供給設備は各シリンダ
で共用されるから管路系は各シリンダの排気弁駆
動装置に連通しており、個々のシリンダで発生す
る圧力脈動や圧力の低下は互いに他のシリンダで
の油圧駆動を不安定にさせるばかりでなく、管路
系に集積されてエンジン全体の排気弁油圧制御シ
ステムの機能を損なうことになる。
Engines usually consist of multiple combustion cylinders, and in the case of hydraulic drive, the pressure oil supply equipment is shared by each cylinder, so the piping system is connected to the exhaust valve drive device of each cylinder, and the exhaust gas is generated in each cylinder. This pressure pulsation and pressure drop not only destabilizes the hydraulic drive in other cylinders, but also accumulates in the piping system and impairs the function of the exhaust valve hydraulic control system of the entire engine.

したがつて圧油の供給能力Rは圧力室19内の
圧力が油圧源から供給される圧油の圧力P1に保
持されるよう設定される必要があり、開弁後の排
気弁の必要駆動力の低下による駆動ピストン2の
変位速度の増大に伴う圧力室19の容積増大を補
充するに足るよう供給流量を増大させる必要があ
る。そのため、圧油供給設備は不必要に大きな供
給能力を要求されて設備が大型化し製作費用がか
さむ。
Therefore, the pressure oil supply capacity R needs to be set so that the pressure in the pressure chamber 19 is maintained at the pressure P1 of the pressure oil supplied from the hydraulic source, and the required drive of the exhaust valve after opening is required. It is necessary to increase the supply flow rate to compensate for the increase in the volume of the pressure chamber 19 due to the increase in the displacement speed of the drive piston 2 due to the decrease in force. Therefore, the pressure oil supply equipment is required to have an unnecessarily large supply capacity, which increases the size of the equipment and the manufacturing cost.

また十分供給能力の大きな圧油供給設備が得ら
れたとしても、それを運転させるために電力消費
が多くなるばかりでなく油圧駆動力が排気弁の必
要駆動力よりもはるかに大きいため排気弁の全ス
トローク移動完了時の衝撃力が大きく駆動装置や
排気弁の寿命を著しく損なうという幣害がある。
さらに衝撃を緩和させるために弁ばねのばね定数
を大きくすることは弁ばねが大型化し、寸法的に
制約の多いシリンダヘツドに大きな格納スペース
を配設しなければならないという問題があるばか
りでなく、排気弁13の開弁速度の低下をも招来
する。
Furthermore, even if pressure oil supply equipment with a sufficiently large supply capacity is obtained, not only will it consume a lot of electricity to operate it, but the hydraulic driving force will be much larger than the required driving force of the exhaust valve, so the exhaust valve will not be able to operate. There is a disadvantage that the impact force upon completion of the full stroke movement is large and significantly shortens the life of the drive device and exhaust valve.
Furthermore, increasing the spring constant of the valve spring in order to reduce the impact not only increases the size of the valve spring, but also requires a large storage space in the cylinder head, which has many dimensional restrictions. This also results in a decrease in the opening speed of the exhaust valve 13.

目 的 本発明は、従来の油圧駆動式排気弁駆動装置の
上述の問題点を解決した、圧油の供給量の著しい
増大を招くことなく、ひいては圧油の供給設備を
大型化させることなく、弁の開弁速度を増大させ
ることの出来るデイーゼル機関弁油圧駆動装置を
提供することを目的とする。
Purpose The present invention solves the above-mentioned problems of the conventional hydraulically driven exhaust valve drive device, without causing a significant increase in the amount of pressure oil supplied, and without increasing the size of the pressure oil supply equipment. An object of the present invention is to provide a diesel engine valve hydraulic drive device that can increase the opening speed of a valve.

構 成 上記の問題点を解決する本発明の弁駆動装置
は、機関のシリンダヘツドに固定された油圧シリ
ンダのシリンダボアに摺動自在に嵌合し、圧油の
圧力により開弁方向に移動する大径ピストンと、
該大径ピストンに同心的に穿設され、かつ前記シ
リンダボアの圧力室に連通する圧力室が形成され
る小径シリンダボアに摺動自在に嵌合する小径ピ
ストンとを有して成り、上記小径ピストンは連結
棒を介して閉弁手段により閉鎖方向に付勢される
弁に係合し、かつ大径ピストンに設けられた押圧
部により大径ピストンが開弁方向に移動するとき
同方向に押されて連行され、前記シリンダケーシ
ングには大径ピストンのストロークを開弁行程の
途中で停止する如く制限するストツパが設けられ
ており、小径ピストンは弁の全行程を移動可能と
なつていることを特徴としており、この構成によ
り、駆動ピストン2の可動部分の圧油の受圧面積
を、弁に作用するガス力の大きな開弁初期には大
きくし、その後の弁開状態では小さくすることが
でき、圧油の供給流量を著しく増大させることな
く、ひいては圧油の供給設備を大型化させること
なく、弁の急開が達成される。
Structure The valve drive device of the present invention, which solves the above problems, is a large valve drive device that is slidably fitted into the cylinder bore of a hydraulic cylinder fixed to the cylinder head of an engine, and moved in the valve opening direction by the pressure of pressure oil. diameter piston;
a small-diameter piston that is bored concentrically with the large-diameter piston and slidably fits into a small-diameter cylinder bore in which a pressure chamber communicating with the pressure chamber of the cylinder bore is formed; The connecting rod engages with the valve that is urged in the closing direction by the valve closing means, and is pushed in the same direction when the large diameter piston moves in the valve opening direction by a pressing portion provided on the large diameter piston. The cylinder casing is provided with a stopper that limits the stroke of the large-diameter piston to a stop in the middle of the valve-opening stroke, and the small-diameter piston is capable of moving throughout the entire stroke of the valve. With this configuration, the pressure-receiving area of the pressure oil of the movable part of the drive piston 2 can be made large at the initial stage of valve opening when the gas force acting on the valve is large, and then made small in the valve-open state. Rapid opening of the valve is achieved without significantly increasing the supply flow rate of the pressure oil, and without increasing the size of the pressure oil supply equipment.

以下、本発明を図に示す実施例にもとずいて詳
細に説明する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第6図及び第7図は夫々本発明を排気弁駆動装
置に適用した実施例の排気弁閉鎖時の状態及び排
気弁全開時の状態を示す。弁ばね16、排気弁1
3は前記の第4図及び第5図に示した従来の装置
の例と同じであるから図示は省略されている。
又、切換弁6、圧油供給装置28、タンク11の
接続も前記の従来の装置の例と同様である。
FIG. 6 and FIG. 7 respectively show the state when the exhaust valve is closed and the state when the exhaust valve is fully opened in an embodiment in which the present invention is applied to an exhaust valve drive device. Valve spring 16, exhaust valve 1
3 is the same as the example of the conventional apparatus shown in FIGS. 4 and 5, and is therefore omitted from illustration.
Further, the connections of the switching valve 6, the pressure oil supply device 28, and the tank 11 are also the same as in the example of the conventional device described above.

しかし、この実施例では、駆動ピストンは、大
径ピストン21と小径ピストン22から成り、大
径ピストン21はシリンダケーシング20のシリ
ンダボアに摺動自在に嵌合し、小径ピストン22
は大径ピストン21に同心的に穿設された小径シ
リンダボアに摺動自在に嵌合し、その上端面に圧
油が作用するように大径ピストン21には通路2
7が穿設されている。小径ピストン22の下端面
は排気弁の弁ばね16により常時閉弁方向に付勢
されている排気弁の弁棒14の上端に圧接係合し
ている。小径ピストン22には、該ピストンが所
定のストロークh1を超えて変位しないように、シ
リンダヘツド12に固定された座30と相対距離
を有するストツパ29が配設されている。
However, in this embodiment, the drive piston consists of a large diameter piston 21 and a small diameter piston 22, the large diameter piston 21 is slidably fitted into the cylinder bore of the cylinder casing 20, and the small diameter piston 22 is fitted into the cylinder bore of the cylinder casing 20.
is slidably fitted into a small diameter cylinder bore concentrically formed in the large diameter piston 21, and a passage 2 is provided in the large diameter piston 21 so that pressure oil acts on the upper end surface of the small diameter cylinder bore.
7 is drilled. The lower end surface of the small diameter piston 22 is pressed into engagement with the upper end of the valve stem 14 of the exhaust valve, which is normally biased in the valve closing direction by the valve spring 16 of the exhaust valve. A stop 29 is arranged on the small diameter piston 22 and has a distance relative to a seat 30 fixed to the cylinder head 12 so that the piston does not displace beyond a predetermined stroke h1 .

ケーシング20には大径ピストン21に対する
圧力室25及び前記の通路27を介して小径ピス
トン22に対する圧力室26に圧油を供給及び解
放する通路4が上端に設けられている他、大径ピ
ストンのストロークh2を規制するため大径ピスト
ン22に段差として設けられた、座面32が当接
する座面33が設けられている。
The casing 20 is provided at its upper end with a passage 4 for supplying and releasing pressure oil to the pressure chamber 25 for the large-diameter piston 21 and the pressure chamber 26 for the small-diameter piston 22 via the passage 27. In order to regulate the stroke h 2 , the large diameter piston 22 is provided with a seat surface 33 which is provided as a step and which the seat surface 32 comes into contact with.

ケーシング20には、大径ピストン21の移動
を容易にするためと、ケーシング20と大径ピス
トン21の間隙及び小径ボアと小径ピストン22
の間隙を通つて漏洩したドレン油を排出するため
の通路23,24が穿設されており導管10を介
してタンク11に開放している。
The casing 20 has a gap between the casing 20 and the large-diameter piston 21, a small-diameter bore, and a small-diameter piston 22 to facilitate the movement of the large-diameter piston 21.
Passages 23 and 24 are provided for draining drain oil leaked through the gap and open into the tank 11 via the conduit 10.

この装置は以上の構成されているので、切換弁
6が第7図に示す如く、加圧導管8と導管7とが
連通する位置に切換えられると、圧油供給装置2
8で発生した圧油は通路4を通つて油圧シリンダ
1の圧力室25に流入する。圧油は同時に通路2
7を通つて小径シリンダ22の上端面に作用する
が、その駆動力は排気弁13の弁がさ下面に作用
するガス力に打ち勝つだけの力がないので、小径
ピストン22は大径ピストン21に対して相対変
位せず、大径ピストン21が圧力室25に流入し
た圧油によりガス力と弁ばね力に抗して押し下げ
られると、大径ピストン21の内部座面31が小
径ピストン22の上端面を押圧して、小径ピスト
ン22は大径ピストン21と一体となつて下方に
移動し、排気弁13を開弁する。排気弁13が開
弁すると、燃焼室18(第4図、第5図と同様で
あり、第6図、第7図には図示せず)は排気通路
17と連通して排気弁13に作用するガス力が急
激に減少する。したがつて、大径ピストン21が
h2のストロークを変位して座面32がシリンダに
設けられた座面33に当接して停止した後も小径
ピストン22はその上部の圧力室26内に流入す
る圧油の圧力が排気弁13に作用するガス力と弁
ばね力に打勝つて下降し、ストツパ29が機関の
シリンダヘツドに設けられた座30に当接して停
止し、第7図に示す弁全開状態に到つて、圧力室
26にはP1の圧力が保持される。下降した位置
にある大径ピストン21に対する小径ピストン2
2のストロークh3は前記のh2との和が所定の排気
弁のストロークh1になるように設定される。な
お、ストロークh2の大きさは、圧力室25、通路
27、圧力室26の圧油の圧力が低下して小径ピ
ストン22の動きが不安定にならないように必要
最小限に選ばれる。また、大径ピストン21がス
トロークh2を変位し切つた後、座面32,33に
は大きな油圧力が作用しつゞけるので、通路23
に適当な絞り(図示せず)を設けるか、あるいは
座面32又は33に溝(図示せず)を設けて着座
時の衝撃緩和や接触面の油膜切れ防止をはかるの
がよい。
Since this device is configured as described above, when the switching valve 6 is switched to the position where the pressure conduit 8 and the conduit 7 communicate with each other as shown in FIG.
The pressure oil generated in step 8 flows into the pressure chamber 25 of the hydraulic cylinder 1 through the passage 4. Pressure oil is flowing through passage 2 at the same time.
7 and acts on the upper end surface of the small diameter cylinder 22, but the driving force is not strong enough to overcome the gas force that acts on the bottom surface of the exhaust valve 13, so the small diameter piston 22 acts on the upper end surface of the small diameter cylinder 22. On the other hand, when the large diameter piston 21 is pushed down by the pressure oil flowing into the pressure chamber 25 against the gas force and the valve spring force without relative displacement, the internal seating surface 31 of the large diameter piston 21 is moved above the small diameter piston 22. By pressing the end face, the small diameter piston 22 moves downward together with the large diameter piston 21, and the exhaust valve 13 is opened. When the exhaust valve 13 opens, the combustion chamber 18 (same as in FIGS. 4 and 5, and not shown in FIGS. 6 and 7) communicates with the exhaust passage 17 and acts on the exhaust valve 13. gas power decreases rapidly. Therefore, the large diameter piston 21
Even after the seat surface 32 comes into contact with the seat surface 33 provided in the cylinder after displacing the stroke of h 2 and stops, the pressure of the pressure oil flowing into the pressure chamber 26 in the upper part of the small diameter piston 22 is maintained at the exhaust valve 13. The stopper 29 descends by overcoming the gas force and valve spring force acting on the engine, and the stopper 29 comes into contact with the seat 30 provided on the cylinder head of the engine and stops.The valve reaches the fully open state shown in FIG. 7, and the pressure chamber is closed. A pressure of P 1 is maintained at 26. Small diameter piston 2 relative to large diameter piston 21 in the lowered position
The stroke h3 of 2 is set so that the sum with the above h2 becomes the stroke h1 of the predetermined exhaust valve. The size of the stroke h 2 is selected to be the minimum necessary so that the pressure of the pressure oil in the pressure chamber 25, passage 27, and pressure chamber 26 does not decrease and the movement of the small diameter piston 22 becomes unstable. Further, after the large diameter piston 21 has completed the stroke h 2 , large hydraulic pressure continues to act on the seating surfaces 32 and 33, so that the passage 23
It is preferable to provide a suitable throttle (not shown) in the seat 32 or 33, or to provide a groove (not shown) in the seat surface 32 or 33 in order to cushion the shock when the seat is seated and to prevent the oil film from running out on the contact surface.

所定時間、開弁状態を保持した後、切換弁6を
変位させて、導管7を戻り導管9に連通させる
と、圧力室25,26はタンク11に開放される
ので、弁ばね16のばね力により排気弁13及び
小径ピストン22は上方に移動し、ストロークh3
だけ移動して小径ピストン22の上端面が大径ピ
ストン21の座面31に当接すると、小径ピスト
ン22は大径ピストン21を押し上げ、h2のスト
ロークを移動し第6図に示す状態に到り、排気弁
13を閉弁して燃焼室18と排気通路17を遮断
する。
After maintaining the valve open state for a predetermined period of time, when the switching valve 6 is displaced and the conduit 7 is communicated with the return conduit 9, the pressure chambers 25 and 26 are opened to the tank 11, so that the spring force of the valve spring 16 is reduced. The exhaust valve 13 and the small diameter piston 22 move upward, and the stroke h 3
When the upper end surface of the small-diameter piston 22 comes into contact with the seat surface 31 of the large-diameter piston 21, the small-diameter piston 22 pushes up the large-diameter piston 21, moves by a stroke of h2, and reaches the state shown in FIG. Then, the exhaust valve 13 is closed to block the combustion chamber 18 and the exhaust passage 17.

上記の閉弁動作中の排気弁13の速度を制限す
る必要がある場合は、戻り導管9に適切な絞り3
4を設けることができる。また排気弁13のオー
バーシユートを防止するために、弁棒14にスト
ツパ(図示せず)を設けるのがよい。
If it is necessary to limit the speed of the exhaust valve 13 during the valve-closing operation described above, a suitable throttle 3 is installed in the return conduit 9.
4 can be provided. Further, in order to prevent the exhaust valve 13 from overshooting, it is preferable to provide a stopper (not shown) on the valve stem 14.

小径ピストン22の直径D2および弁ばね16
のばね定数は、圧力室26への圧油の供給流量と
の関連において、小径ピストン22の開弁移動中
に排気弁13が小径ピストン22と一体となつて
動くこと、ストツパ29が座30に当接する際の
衝撃力が過大にならないこと、弁ばね16のばね
力が排気弁13の閉弁動作を十分短い時間にほゞ
完了させるに足るだけの大きさであること等の条
件を配慮して選定される。
Diameter D 2 of small diameter piston 22 and valve spring 16
The spring constant is determined by the fact that the exhaust valve 13 moves together with the small-diameter piston 22 during the opening movement of the small-diameter piston 22, and that the stopper 29 moves against the seat 30 in relation to the flow rate of pressure oil supplied to the pressure chamber 26. Conditions such as the impact force at the time of contact not being excessive and the spring force of the valve spring 16 being large enough to almost complete the closing operation of the exhaust valve 13 in a sufficiently short time are taken into consideration. The selection will be made based on the following.

上記の如く構成された実施例では、排気弁13
の開弁に要する圧油の供給量は、大径ピストンの
直径をD1、小径ピストンの直径をD2とすれば h2・(D1/2)2π+h3(D2/2)2πであり、第4図、
第5 図に示す従来の構成の場合の供給量h1(D1/2)2πと 比較すれば、その比rは次の如くなる。
In the embodiment configured as described above, the exhaust valve 13
The amount of pressure oil supplied to open the valve is h 2 · (D 1 /2) 2 π + h 3 (D 2 /2) 2 where the diameter of the large diameter piston is D 1 and the diameter of the small diameter piston is D 2. π, and Fig. 4,
When compared with the supply amount h 1 (D 1 /2) 2 π in the case of the conventional configuration shown in FIG. 5, the ratio r becomes as follows.

r=h2・D21+h3・D22/h1・D21=1−h3/h1
1−(D2/D12} 例えばh3/h1=9/10、D2/D1=1/2とすれ
ば、 r=0.325となり、圧油の量をほゞ1/3にも
減少させることができる。
r= h2D2 / 1 + h3D2 / 2 / h1D2 / 1 =1− h3 / h1 {
1-(D 2 /D 1 ) 2 } For example, if h 3 /h 1 = 9/10 and D 2 /D 1 = 1/2, then r = 0.325, which reduces the amount of pressure oil to approximately 1/3. can also be reduced.

圧油の所要供給量が大幅に減少することによ
り、非常に短時間のうちに圧油を供給するに際し
て問題となる単位時間あたりの油圧源の供給流
量、切換弁の通過流量や圧力・流量補償のための
アキユムレータの蓄圧容量等を左程増加させるこ
となく、油圧駆動による排気弁の急開を達成する
ことが可能となる。
Due to the significant reduction in the required supply amount of pressure oil, the supply flow rate of the hydraulic source per unit time, flow rate through the switching valve, and pressure/flow compensation, which are problems when supplying pressure oil in a very short time. It becomes possible to achieve rapid opening of the exhaust valve by hydraulic drive without significantly increasing the pressure accumulation capacity of the accumulator.

上記の実施例では弁を閉じる作用を行なう弁ば
ねとして機械的なコイルばねを使用した構成とし
たが、弁ばねは必らずしも機械的なばねに限定さ
れるものではなく、密閉シリンダ中に圧縮気体を
封入し、シリンダ中をピストンが移動して気体の
容積が変化するとボイルシヤールの法則に基いて
容積に反比例した圧力が発生しばね作用を行なう
気体ばね(空気ばね)を弁ばねとして使用するこ
とも可能である。
In the above embodiment, a mechanical coil spring is used as the valve spring that closes the valve, but the valve spring is not necessarily limited to a mechanical spring. A gas spring (air spring) is used as a valve spring, in which a compressed gas is filled in the cylinder, and when the piston moves inside the cylinder and the volume of the gas changes, pressure is generated that is inversely proportional to the volume based on Boyle-Schard's law, which acts as a spring. It is also possible to do so.

さらに、閉弁作用を弁ばねによらずに、油圧駆
動によつて行なうことも可能である。その実施例
を第8図に基いて説明する。第8図の弁閉状態を
示しており、開弁用の油圧シリンダ1の構成は第
6,7図で説明した前記実施例と同じであるから
同じ部材に対しては同じ符号を付し、改めて説明
することを省略する。
Furthermore, it is also possible to perform the valve closing action not by a valve spring but by hydraulic drive. The embodiment will be explained based on FIG. The valve shown in FIG. 8 is shown in the closed state, and the structure of the hydraulic cylinder 1 for opening the valve is the same as that of the embodiment described in FIGS. 6 and 7, so the same members are given the same reference numerals. A further explanation will be omitted.

この実施例では、前の実施例における弁ばね1
6の代りに、弁棒14を囲んでエンジンのシリン
ダヘツド12内に油圧シリンダ室40が設けられ
ており、弁棒14の一部41は他の部分より直径
が大きくされており、油圧シリンダ室の内径に嵌
合してピストンの役目をしている。油圧シリンダ
室の上端は導管42を介してタンク11に開放さ
れる導管10に接続されている。一方、油圧シリ
ンダ室の下端には導管43が接続されている。油
圧切換弁6′は前記の実施例と異なり、4ポート
切換弁となつており、第8図に示す切換位置で、
上記導管43を圧油供給装置28に接続し、開弁
用油圧シリンダ1の圧力室25,26に接続され
た導管7をタンク11に開放する導管9に接続す
るようになつている。
In this example, the valve spring 1 in the previous example
6, a hydraulic cylinder chamber 40 is provided in the cylinder head 12 of the engine surrounding the valve stem 14, and a portion 41 of the valve stem 14 has a larger diameter than the other portion. It fits into the inner diameter of the piston and acts as a piston. The upper end of the hydraulic cylinder chamber is connected via a conduit 42 to a conduit 10 that opens into the tank 11. On the other hand, a conduit 43 is connected to the lower end of the hydraulic cylinder chamber. Unlike the previous embodiment, the hydraulic switching valve 6' is a 4-port switching valve, and in the switching position shown in FIG.
The conduit 43 is connected to the pressure oil supply device 28, and the conduit 7 connected to the pressure chambers 25, 26 of the valve-opening hydraulic cylinder 1 is connected to the conduit 9 that opens to the tank 11.

開弁時、切換弁6′をもう1つの位置に切換え
ると、導管43はタンク11に開放する導管9に
接続され、導管7は油圧源28に接続される。
When opening, switching the switching valve 6' to the other position connects the conduit 43 to the conduit 9 which opens into the tank 11, and the conduit 7 to the hydraulic source 28.

したがつて、開弁状態では前記実施例と同様、
最初は大径ピストン27と小径ピストン22が一
体に動いて大きな力で弁を開き、弁がある程度開
いた後は小径ピストンのみによつて弁を所定の開
度迄開く。開弁時、弁棒14が下方に移動するに
従い、弁棒14に設けられたピストン部41が移
動し、シリンダ室40のそれより下部の圧力室の
油を導管43を経てタンク11へ排出し、ピスト
ン部41より上方のシリンダ室内は導管10,4
2を経てタンク11のところで大気に開放されて
いるので閉弁用油圧シリンダ40は、開弁動作に
対して抵抗を与えることはない。
Therefore, in the valve open state, as in the previous embodiment,
Initially, the large diameter piston 27 and the small diameter piston 22 move together to open the valve with a large force, and after the valve has opened to a certain extent, the small diameter piston alone opens the valve to a predetermined opening degree. When the valve is opened, as the valve stem 14 moves downward, the piston part 41 provided on the valve stem 14 moves, and the oil in the pressure chamber below that of the cylinder chamber 40 is discharged into the tank 11 through the conduit 43. , the cylinder chamber above the piston part 41 contains conduits 10 and 4.
Since the valve-closing hydraulic cylinder 40 is exposed to the atmosphere at the tank 11 via the valve 2, the valve-closing hydraulic cylinder 40 does not provide any resistance to the valve-opening operation.

一方、第8図に示す閉弁時の状態では、シリン
ダ室40のピストン部41の下側の部分には油圧
源28より切換弁6′導管43を経て圧油が供給
され、ピストン41を上方に押圧する。このとき
油圧シリンダ1の圧力室25,26はタンク11
に開放されているから弁棒14は容易に上方に移
動し、弁を閉じることができる。
On the other hand, in the state shown in FIG. 8 when the valve is closed, pressure oil is supplied from the oil pressure source 28 to the lower part of the piston part 41 of the cylinder chamber 40 through the switching valve 6' conduit 43, and the piston 41 is moved upward. to press. At this time, the pressure chambers 25 and 26 of the hydraulic cylinder 1 are connected to the tank 11.
Since the valve stem 14 is open to the outside, the valve stem 14 can easily move upward and close the valve.

この実施例においても、戻り配管9に絞り34
を設けることにより排油の速度を制限することが
できる。
Also in this embodiment, a throttle 34 is provided in the return pipe 9.
By providing this, it is possible to limit the speed of oil drainage.

なお、油圧切換弁として第8図の例では4ポー
ト切換弁を使用したが、その替りに3ポート切換
弁2個を第9図に示す如く接続して使用しても同
じ作用をさせることができる。
Although a 4-port switching valve is used as the hydraulic switching valve in the example shown in Fig. 8, the same effect can be obtained by using two 3-port switching valves connected as shown in Fig. 9 instead. can.

以上の説明では、排気弁を対象として記述した
が、この発明の弁駆動装置はそのまゝ4サイクル
機関の給気弁の駆動装置にも適用することが出
来、排気弁、給気弁の両方を油圧駆動とすること
により、揺れ腕(ロツカーアーム)等の機械的な
動弁機構を省略することができる。
In the above explanation, the exhaust valve has been described, but the valve drive device of the present invention can also be applied to the drive device of the air supply valve of a 4-cycle engine, and can be applied to both the exhaust valve and the air intake valve. By hydraulically driving the valve, a mechanical valve mechanism such as a rocker arm can be omitted.

効 果 以上の如く、本発明によれば、油圧源の供給流
量、切換弁の通過流量や油圧源の圧力、流量補償
のためのアキユムレータ蓄圧容量等を著しく増加
させることなく、ひいては、圧油の供給設備を大
型化させることなく油圧駆動による弁の安定した
急開が可能となるので、それだけ少ない費用で機
関の熱効率の向上に効果が得られる。
Effects As described above, according to the present invention, the supply flow rate of the hydraulic source, the flow rate passing through the switching valve, the pressure of the hydraulic source, the accumulator pressure accumulation capacity for flow rate compensation, etc., are not significantly increased, and the pressure oil can be reduced. Since the valve can be opened stably and rapidly by hydraulic drive without increasing the size of the supply equipment, the thermal efficiency of the engine can be improved at a correspondingly lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はデイーゼル機関のサイクル線図の一
例、第2図は排気過程でのサイクル線図の拡大
図、第3図は排気弁の弁揚程線図の一例、第4図
及び第5図は夫々従来の油圧駆動排気弁駆動装置
の一例の閉弁状態及び開弁状態の構成と作動を説
明する縦断面図、第6図及び第7図は夫々本発明
の実施例の閉弁状態及び開弁状態を示す構成と作
動を説明する縦断面図、第8図は本発明の他の実
施例の閉弁状態を示す縦断面図、第9図はその油
圧切換弁の変形実施例を示す図式図である。 1……駆動部(油圧シリンダ)、6……切換弁、
9……戻り導管、12……シリンダヘツド、13
……排気弁(弁)、14……弁棒(連結棒)、16
……弁ばね、20……ケーシング、21……大径
ピストン、22……小径ピストン、25,26…
…圧力室、29……ストツパ、30……座、31
……内部座面(押圧部)、h1……排気弁行程、h2
……大径ピストン行程。
Figure 1 is an example of a cycle diagram of a diesel engine, Figure 2 is an enlarged view of the cycle diagram during the exhaust process, Figure 3 is an example of a valve lift diagram of an exhaust valve, and Figures 4 and 5 are FIGS. 6 and 7 are longitudinal cross-sectional views illustrating the structure and operation of an example of a conventional hydraulically driven exhaust valve drive device in a closed state and an open state, respectively, and FIGS. FIG. 8 is a vertical cross-sectional view showing the valve state in a valve closed state; FIG. 9 is a schematic diagram showing a modified example of the hydraulic switching valve. It is a diagram. 1... Drive unit (hydraulic cylinder), 6... Switching valve,
9...Return conduit, 12...Cylinder head, 13
...Exhaust valve (valve), 14...Valve rod (connecting rod), 16
...Valve spring, 20...Casing, 21...Large diameter piston, 22...Small diameter piston, 25, 26...
...Pressure chamber, 29...Stopper, 30...Seat, 31
...Internal seat surface (pressing part), h 1 ...Exhaust valve stroke, h 2
...Large diameter piston stroke.

Claims (1)

【特許請求の範囲】 1 油圧シリンダにより弁を開き、閉弁手段によ
り該弁を閉じる、デイーゼルエンジンの燃焼室の
ガス交換を行なうきのこ状弁の駆動装置であつ
て、開弁初期には油圧シリンダのピストンの受圧
面積を大きくとり、その後受圧面積を小さくする
ようにしたものにおいて、油圧シリンダはシリン
ダケーシングと、該シリンダーケーシングのシリ
ンダボアに摺動自在に嵌合し、圧油の圧力により
開弁方向に移動し、開弁初期に必要とする大きい
受圧面積にほゞ等しい受圧面積を有する大径ピス
トンと、大径ピストンに同心的に穿設され、かつ
前記のシリンダボアの圧力室に連通する圧力室が
形成される小径シリンダボアに摺動自在に嵌合
し、開弁初期経過後必要とする小さい受圧面積に
ほゞ等しい受圧面積を有する小径ピストンとを有
して成り、上記小径ピストンは連結棒を介して閉
弁手段により閉弁方向に付勢される弁と係合し、
かつ大径ピストンに設けられた押圧部により大径
ピストンが開弁方向に移動する時同方向に押され
て連行され、前記シリンダーケーシングには大径
ピストンの行程を弁の開弁行程の途中で停止する
如く制限するストツパが設けられ、上記小径ピス
トンは弁の全行程を移動可能となつていることを
特徴とする弁駆動装置。 2 上記の油圧シリンダを制御する方向切換弁か
らの戻り導管に絞りを配設したことを特徴とする
特許請求の範囲第1項に記載のデイーゼル機関の
弁駆動装置。 3 上記の閉弁手段がコイルばねであることを特
徴とする特許請求の範囲第1項乃至第2項に記載
の弁駆動装置。 4 上記の閉弁手段が空気ばねであることを特徴
とする特許請求の範囲第1項乃至第2項に記載の
弁駆動装置。 5 上記の閉弁手段が油圧駆動手段であることを
特徴とする特許請求の範囲第1項乃至第2項に記
載の弁駆動装置。
[Scope of Claims] 1. A driving device for a mushroom-shaped valve for gas exchange in a combustion chamber of a diesel engine, in which a valve is opened by a hydraulic cylinder and the valve is closed by a valve-closing means, in which the hydraulic cylinder is used at the initial stage of opening. The hydraulic cylinder is slidably fitted into the cylinder casing and the cylinder bore of the cylinder casing, and is moved in the valve opening direction by the pressure of the pressure oil. a large-diameter piston having a pressure-receiving area approximately equal to the large pressure-receiving area required at the initial stage of valve opening, and a pressure chamber that is bored concentrically with the large-diameter piston and communicates with the pressure chamber of the cylinder bore. and a small-diameter piston that is slidably fitted into a small-diameter cylinder bore in which a connecting rod is formed and has a pressure-receiving area that is approximately equal to the small pressure-receiving area that is required after the initial period of valve opening. engages with the valve biased in the valve closing direction by the valve closing means through the valve closing means;
When the large-diameter piston moves in the valve-opening direction, the large-diameter piston is pushed in the same direction by a pressing part provided on the large-diameter piston and is carried along, and the cylinder casing has a pressure section that controls the stroke of the large-diameter piston in the middle of the valve's opening stroke. 1. A valve driving device characterized in that a stopper is provided to restrict the valve to a stop, and the small-diameter piston is movable over the entire stroke of the valve. 2. The valve drive device for a diesel engine according to claim 1, wherein a throttle is disposed in a return conduit from a directional control valve that controls the hydraulic cylinder. 3. The valve driving device according to claim 1 or 2, wherein the valve closing means is a coil spring. 4. The valve driving device according to claim 1 or 2, wherein the valve closing means is an air spring. 5. The valve drive device according to claim 1 or 2, wherein the valve closing means is a hydraulic drive means.
JP58192629A 1983-10-17 1983-10-17 Valve driving device for diesel engine Granted JPS6085209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58192629A JPS6085209A (en) 1983-10-17 1983-10-17 Valve driving device for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58192629A JPS6085209A (en) 1983-10-17 1983-10-17 Valve driving device for diesel engine

Publications (2)

Publication Number Publication Date
JPS6085209A JPS6085209A (en) 1985-05-14
JPH0127244B2 true JPH0127244B2 (en) 1989-05-29

Family

ID=16294423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58192629A Granted JPS6085209A (en) 1983-10-17 1983-10-17 Valve driving device for diesel engine

Country Status (1)

Country Link
JP (1) JPS6085209A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255641A (en) 1991-06-24 1993-10-26 Ford Motor Company Variable engine valve control system
DE59508878D1 (en) * 1995-04-18 2001-01-04 Waertsilae Nsd Schweiz Ag Wint Hydraulic stepped piston arrangement and its application in a drive with a variable thrust
DK176119B1 (en) * 2000-02-16 2006-09-04 Man B & W Diesel As Hydraulic actuation system for an exhaust valve in an internal combustion engine
GB0017425D0 (en) * 2000-07-14 2000-08-30 Lotus Car A valve system for controlling flow of gas into or out of a variable volume chamber of an internal combustion engine or a compressor
US6776129B2 (en) 2001-10-19 2004-08-17 Robert Bosch Gmbh Hydraulic actuator for a gas exchange valve
GB2394000B (en) * 2002-10-10 2007-03-28 Lotus Car An arrangement of an internal combustion engine poppet valve and an actuator therefor
JP5080426B2 (en) * 2008-11-11 2012-11-21 株式会社赤阪鉄工所 Valve operating device for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487321A (en) * 1977-12-24 1979-07-11 Mitsubishi Heavy Ind Ltd Hydraulic valve drive equipment of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487321A (en) * 1977-12-24 1979-07-11 Mitsubishi Heavy Ind Ltd Hydraulic valve drive equipment of internal combustion engine

Also Published As

Publication number Publication date
JPS6085209A (en) 1985-05-14

Similar Documents

Publication Publication Date Title
KR101215988B1 (en) variable valve actuator with a pneumatic booster
US6651630B2 (en) High pressure fuel pump
US7258088B2 (en) Engine valve actuation system
JP2527268Y2 (en) Valve train for internal combustion engine
EP1529160A1 (en) Piston-in-piston variable compression ratio engine
JP4567264B2 (en) Method and apparatus for performing fuel injection
US5221072A (en) Resilient hydraulic actuator
US4865528A (en) Method and arrangement for starting an hydraulic diaphragm pump against load
JPH0127244B2 (en)
JPH02264104A (en) Valve system for internal combustion engine
JP2003042040A (en) Fuel injection device
CN1291144C (en) Servo control synchronous advancing device for unit pump or unit oil sprayer
JP3601148B2 (en) Bellows pump
JPH05202707A (en) Valve system of engine
WO2020124554A1 (en) Valve train and engine
JPH08247331A (en) Hydraulic valve system of diesel engine
JPH057451Y2 (en)
JP2563796Y2 (en) Hydraulic valve gear for internal combustion engine
JP4378877B2 (en) Hydraulic control valve and fuel injection valve
JP2003511626A (en) Hydraulically assisted pressure transducer for fuel injection system for internal combustion engines
JPH0544539B2 (en)
JPS5872606A (en) Exhaust gas controller of piston control hole type
JPS6313023B2 (en)
JPS6046266B2 (en) Internal combustion engine fuel injection system
JPS6143228A (en) Electrohydraulic control device of internal-combustion engine