JP4163504B2 - Air balance device - Google Patents

Air balance device Download PDF

Info

Publication number
JP4163504B2
JP4163504B2 JP2002534199A JP2002534199A JP4163504B2 JP 4163504 B2 JP4163504 B2 JP 4163504B2 JP 2002534199 A JP2002534199 A JP 2002534199A JP 2002534199 A JP2002534199 A JP 2002534199A JP 4163504 B2 JP4163504 B2 JP 4163504B2
Authority
JP
Japan
Prior art keywords
flow path
pressure
valve
supply
transported body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002534199A
Other languages
Japanese (ja)
Other versions
JPWO2002030806A1 (en
Inventor
登 木村
Original Assignee
有限会社ヒロタカエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ヒロタカエンジニアリング filed Critical 有限会社ヒロタカエンジニアリング
Publication of JPWO2002030806A1 publication Critical patent/JPWO2002030806A1/en
Application granted granted Critical
Publication of JP4163504B2 publication Critical patent/JP4163504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F19/00Hoisting, lifting, hauling or pushing, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/21Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge
    • F15B2211/212Systems with pressure sources other than pumps, e.g. with a pyrotechnical charge the pressure sources being accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/321Directional control characterised by the type of actuation mechanically
    • F15B2211/325Directional control characterised by the type of actuation mechanically actuated by an output member of the circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/329Directional control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/365Directional control combined with flow control and pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40515Flow control characterised by the type of flow control means or valve with variable throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40584Assemblies of multiple valves the flow control means arranged in parallel with a check valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/42Flow control characterised by the type of actuation
    • F15B2211/428Flow control characterised by the type of actuation actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/47Flow control in one direction only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7052Single-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/76Control of force or torque of the output member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Description

技術分野
本発明は、被搬送体の荷重とシリンダへの供給圧力とを拮抗させて、被搬送体を吊下げるエアバランス装置に関する。
背景技術
従来より、特開平10−30609号公報にあるように、被搬送体の荷重がダイヤフラムにより仕切られた反力室に作用するように構成し、荷重の変化による圧力室の圧力変動に基づいて、主弁を切り換えて、シリンダの作用室に圧力源から圧縮空気を供給、あるいは、作用室を大気に開放して、作用室内圧を制御して、被搬送体の荷重とシリンダの作用力とを釣合わせて、被搬送体を吊下げるように構成したものが知られている。
しかしながら、こうした従来のものでは、被搬送体を昇降させる際に、シリンダのパッキン類の摺動抵抗に打ち勝ってピストンを摺動させて、作用室の体積を増減させなければ主弁の開閉が行われず、昇降操作が重く、操作し難いという問題があった。また、従来の圧力変動を感知しての主弁の開閉は、応差が発生するのを防ぐため(釣合時の上昇下降の抵抗差)にブリードし(主弁の開閉は従来2位置2ポート弁をブリードすることにより応差の影響を少なくするのが主であった。)、空気が絶えず洩れた状態で行っていたので、エネルギロスが大きいという問題があった。更に、種々の弁を設けなければならず装置が複雑になるという問題もあった。
発明の開示
本発明の課題は、操作が容易で、しかも簡単な構成で被搬送体と釣合わせることができるエアバランス装置を提供することにある。
かかる課題を達成すべく、本発明は課題を解決するため次の手段を取った。即ち、
被搬送体を昇降させるシリンダの作用室に接続した給排流路の圧力を、前記被搬送体の重量に拮抗する圧力に調圧する圧力調整弁を備え、前記シリンダの作用力と前記被搬送体の重量とを釣り合わせるエアバランス装置において、
釣合時に前記給排流路に連通する制御流路を備え、
また、支点ピンの廻りに揺動可能に支持した梃子部材に前記シリンダを取り付け、
更に、前記制御流路からのパイロット圧の導入により前記梃子部材に前記被搬送体の荷重と同方向の作用力を付与する復元力機構を支点ピン近くに設けると共に、前記被搬送体の荷重と前記復元力機構の作用力とに対して釣り合う作用力を圧縮空気の導入により前記梃子部材に付与する付勢力機構を設け、
かつ、前記圧力調整弁は、前記梃子部材の揺動による作用力と前記制御流路からのパイロット圧の導入による作用力とに応じて前記給排流路と前記制御流路とを介して圧縮空気の給排を行うことを特徴とするエアバランス装置がそれである。
また、被搬送体を昇降させるシリンダの作用室に接続した給排流路の圧力を、前記被搬送体の重量に拮抗する圧力に調圧する圧力調整弁を備え、前記シリンダの作用力と前記被搬送体の重量とを釣り合わせるエアバランス装置において、
釣合時には前記給排流路と制御流路とを連通し、昇降駆動時には前記給排流路とパイロット流路とを連通する切換弁を設けると共に、
前記昇降駆動時に、可変絞り弁を介して前記給排流路に圧縮空気を供給あるいは排出して前記被搬送体を昇降させる昇降弁機構を設け、
また、支点ピンの廻りに揺動可能に支持した梃子部材に前記シリンダを取り付け、
更に、前記制御流路からのパイロット圧の導入により前記梃子部材に前記被搬送体の荷重と同方向の作用力を付与する復元力機構を支点ピン近くに設けると共に、前記被搬送体の荷重と前記復元力機構の作用力とに対して釣り合う作用力を前記パイロット流路に連通したタンクからの圧縮空気の導入により前記梃子部材に付与する付勢力機構を設け、
かつ、前記圧力調整弁は、前記梃子部材の揺動による作用力と前記制御流路からのパイロット圧の導入による作用力とに応じて前記給排流路と前記制御流路及び前記切換弁を介して圧縮空気の給排を行うことを特徴とするエアバランス装置がそれである。
前記昇降弁機構は、パイロット圧の導入により、圧力源と前記給排流路とを可変絞り弁を介して連通する上昇弁と、パイロット圧の導入により、大気中と前記給排流路とを可変絞り弁を介して連通する下降弁とを備えてもよい。また、前記付勢力機構は、前記タンクに連通された付勢室を備え、付勢室に導入される圧縮空気圧の作用力により前記梃子部材に作用力を付与するものでもよい。
発明を実施するための最良の形態
以下本発明の実施の形態を図面に基づいて詳細に説明する。
図1に示すように、1は被搬送体で、シリンダ2に吊下げ支持されている。シリンダ2のシリンダチューブ4にはピストン6が摺動可能に挿入されている。シリンダチューブ4とピストン6とにより形成された作用室8に圧縮空気が供給されると、ピストン6を上昇させる作用力が働くように構成されている。また、ピストン6と一体のロッド6aにはフック9が取り付けられており、このフック9に被搬送体1を吊り下げることができるようにされている。
作用室8には、給排流路10の一端が接続されており、給排流路10には補助タンク12が接続されている。給排流路10の他端は、切換弁14に接続されている。切換弁14は、パイロット操作式のもので、給排流路10とパイロット流路16とを連通する昇降駆動位置14aと、給排流路10と制御流路18とを連通する釣合位置14bとを備えている。
給排流路10には、圧力源20と連通した高圧流路22が接続されると共に、大気中に開放された低圧流路24が接続されている。高圧流路22には、上昇弁26と可変絞り弁28とが介装されている。上昇弁26は、上昇用パイロット流路27を介してパイロット圧が導入されたときに高圧流路22を連通する開位置26aと、パイロット圧の導入がなく排気のときに高圧流路22を遮断する閉位置26bとを備えている。
低圧流路24には、下降弁30と可変絞り弁32とが介装されている。下降弁30は、下降用パイロット流路31を介してパイロット圧が導入されたときに低圧流路24を連通する開位置30aと、パイロット圧の導入がなく排気のときに低圧流路24を遮断する閉位置30bとを備えている。尚、本実施形態では、上昇弁26、可変絞り弁28、下降弁30、可変絞り弁32により昇降弁機構を構成している。
上昇用パイロット流路27と下降用パイロット流路31とは、シャトル弁34を介して、駆動用パイロット流路36に接続されている。駆動用パイロット流路36は、切換弁14を昇降駆動位置14aに切り換えるように、切換弁14にパイロット圧を導入するように接続されている。また、切換弁14には、切換弁14を釣合位置14bに切り換えるパイロット圧を導入する釣合用パイロット流路37も接続されている。
シリンダ2のシリンダチューブ4は、梃子部材38の一端に、ピン40を介して揺動可能、かつ、位置調整可能に取り付けられている。梃子部材38は天井等に取り付けられた吊下部材42に支点ピン44を介して揺動可能に取り付けられている。
この吊下部材42には、圧力調整弁50の弁本体51が取り付けられている。弁本体51には復元力機構48も一体的に組み込まれている。圧力調整弁50は、制御流路18を大気中に開放する開放位置50aと、制御流路18を遮断する遮断位置50bと、制御流路18を圧力源20に接続された高圧流路49aに連通する連通位置50cとを備えている。高圧流路49aには、逆流を防止するチェック弁49bが介装されている。
次に、前述した圧力調整弁50の具体的構成を、図5によって説明する。図1は、圧力調整弁50をJIS記号で示した場合であり、図5は具体的構成を示す断面図である。
圧力調整弁50の弁本体51には、調圧室52、給気室54、排気室56が形成されている。調圧室52には制御流路18が接続されており、給気室54には高圧流路49aが接続されている。
調圧室52と給気室54とは連通されており、調圧室52と給気室54とは摺動可能に支持された給気弁体58によって連通・遮断されるように構成されている。また、調圧室52には、大気中に開放される排気室56が連通されており、摺動可能に支持された排気弁体60によって調圧室52と排気室56とが連通・遮断されるように構成されている。
弁本体51には、復元力機構48が一体的に設けられており、復元力機構48は弁本体51に形成された収納孔62を仕切るダイヤフラム64を備えている。ダイヤフラム64により収納孔62が仕切られて制御室66が形成されている。制御室66はバイパス流路68を介して制御流路18と連通されている。
ダイヤフラム64にはロッド70が一体的に取り付けられており、ロッド70は弁本体51を貫通して外部に突出され、その先端は梃子部材38に接触されている。ダイヤフラム64の受圧面積をB、制御室66の圧力をpとすると、B×pの作用力が梃子部材38に、支点ピン44から距離bの位置に働くように構成されている。また、この作用力は支点ピン44の廻りに、被搬送体1の荷重による作用力と同方向に作用するように構成されている。
圧力調整弁50に設けられたステム72が排気弁体60を貫通してその先端がダイヤフラム64に取り付けられている。制御室66に導入されるパイロット圧の作用により、ロッド70の後端に当接されている。ロッド70が梃子部材38を押したときには、ステム72を介して排気弁体60を摺動させて調圧室52と排気室56とを連通する開放位置50aに切り換えるように構成されている。また、ロッド70が梃子部材38により押されたときには、ステム72を介して給気弁体58を摺動させて調圧室52と給気室54とを連通する連通位置50cに切り換えるように構成されている。
吊下部材42には、復元力機構48と対向して付勢力機構74が取り付けられている。付勢力機構74は本体76に形成された収納孔78を仕切るダイヤフラム80を備え、ダイヤフラム80により仕切られた収納孔78の一方に付勢室82が形成されている。ダイヤフラム80には、ロッド84が一体的に取り付けられており、ロッド84は本体76を貫通して外部に突出されており、その先端は梃子部材38に接触されている。本実施形態では、これらによりアクチュエータを構成している。
本体76には、付勢室82に連通した導入ポート86が形成されており、導入ポート86には導入流路88の一端が接続されている。導入流路88の他端には、タンク90が接続されており、導入流路88にはチェック弁92と絞り94とが並列に介装されている。また、パイロット流路16が、チェック弁92よりもタンク90側の導入流路88に接続されている。
ダイヤフラム80の受圧面積をC、付勢室82の圧力をpとすると、C×pの作用力が梃子部材38に、支点ピン44から距離cの位置に働くように構成されている。また、この作用力は支点ピン44の廻りに、被搬送体1の荷重による作用力と逆方向に作用するように構成されている。
ピン40と支点ピン44との距離をa、作用室8の受圧面積をA、作用室8の圧力をp、被搬送体1の荷重やフック9、ロッド6a、ピストン6等の昇降する物体の総重量をWとすると、作用室8、制御室66、付勢室82の各圧力が等しい場合、下記式が成立するように形成される。尚、昇降する物体以外のピン40に加わる下向きの重量(シリンダチューブ4等の重量)と釣合うように、吊下部材42と梃子部材38との間に、ばね96が配置されている。
aA+bB=cC…(1)
W=pA…(2)
a>b
次に、前述したエアバランス装置の作動について説明する。
まず、図1に示すように、フック9に被搬送体1を吊下げる。そして、昇降駆動時には、上昇用パイロット流路27にパイロット圧を供給する。よって、上昇弁26は開位置26aに切り換えられ、圧力源20から圧縮空気が可変絞り弁28、上昇弁26、高圧流路22、給排流路10を介して、作用室8に供給される。作用室8に供給される圧縮空気圧の作用により、ピストン6、ロッド6aを介して被搬送体1が上昇する。その際、可変絞り弁28の設定に応じた速度で、被搬送体1が上昇する。
また、上昇用パイロット流路27へのパイロット流体の供給で、シャトル弁34、駆動用パイロット流路36を介して、切換弁14にパイロット圧が導入されて、切換弁14が昇降駆動位置14aに切り換えられる。よって、給排流路10、切換弁14、パイロット流路16を介してタンク90に圧縮空気が供給されると共に、絞り94を介して付勢室82に圧縮空気が供給される。
被搬送体1を所定の高さにまで上昇させた後、上昇用パイロット流路27へのパイロット流体の供給を停止し排気にすると、上昇弁26は閉位置26bに切り換えられる。よって、高圧流路22は遮断され、作用室8内の圧力pによる作用力は、被搬送体1の荷重と釣合う(式(2)が成立)。また、作用室8、給排流路10、パイロット流路16、導入流路88、タンク90、付勢室82により閉回路が形成され、これらの圧力pが等しくなる。
一方、昇降駆動時に、下降用パイロット流路31にパイロット圧を供給すると、下降弁30が開位置30aに切り換えられる。よって、作用室8内の圧縮空気が給排流路10、下降弁30、可変絞り弁32、低圧流路24を介して大気中に放出され、被搬送体1が下降する。その際、可変絞り弁32の設定に応じた速度で、被搬送体1が下降する。
また、下降用パイロット流路31へのパイロット流体の供給で、シャトル弁34、駆動用パイロット流路36を介して、切換弁14にパイロット圧が導入されて、切換弁14が昇降駆動位置14aに切り換えられる。よって、タンク90からもパイロット流路16、切換弁14、給排流路10、低圧流路24、下降弁30、可変絞り弁32を介して圧縮空気が大気中に放出される。
被搬送体1を所定の高さまで下降させた後、下降用パイロット流路31へのパイロット流体の供給を停止し排気にすると、下降弁30は閉位置30bに切り換えられる。依って、低圧流路24は遮断され、作用室8内の圧力pによる作用力は、被搬送体1の荷重と釣合う(式(2)が成立)。また、作用室8、給排流路10、パイロット流路16、導入流路88、タンク90、付勢室82により閉回路が形成され、これらの圧力pが等しくなる。
梃子部材38には、支点ピン44の廻りに、被搬送体1の荷重に応じた作用力と、復元力機構48の作用力とが作用すると共に、これに対向した付勢力機構74の作用力が作用する。梃子部材38が揺動すると、圧力調整弁50が切り換えられて、制御室66の圧力が作用室8の圧力と等しくなると、前述した式(1)が成立して、梃子部材38の支点ピン44の廻りの作用力が釣合う。
被搬送体1を圧縮空気圧を利用して昇降させるのではなく、作業者が被搬送体1等を直接持ち上げたり、あるいは降ろしたりする釣合時には、切換弁14に釣合用パイロット流路37を介してパイロット圧を供給する。よって、切換弁14は釣合位置14bに切り換えられ、制御流路18と給排流路10とが連通される。しかし、このときに、制御流路18の圧力とパイロット流路16の圧力とに差があると、誤動作(上昇あるいは下降)が発生する。このとき、ピン40の位置を長穴に沿って移動して変更、あるいは、圧力調整弁50の取り付け位置bを変更して、前述した式(1)を成立させればよい。
この釣合時に、被搬送体1を上昇させる際には、被搬送体1、シリンダ2等を持ち上げる。これにより、梃子部材38が支点ピン44の廻りに揺動し、ロッド70を介して圧力調整弁50が連通位置50cに切り換えられる。圧力源20から、高圧流路49a、圧力調整弁50、制御流路18、給排流路10を介して作用室8に圧縮空気が供給されて、作用室8の圧力が上昇し、被搬送体1が上昇する。同時に、制御流路18、バイパス流路68を介して制御室66にも圧縮空気が供給されて、圧力が上昇する。被搬送体1等を持ち上げる際には、復元力機構48の作用力に抗して持ち上げる必要があるが、梃子部材38により、b/aの軽い力で持ち上げることができる。
持ち上げを止めると、制御室66に導入される供給圧pによる作用力を受けて、ロッド70を介して梃子部材38が支点ピン44の廻りに揺動される。その際、圧力調整弁50は開放位置50aに切り換えられ、制御室66から圧縮空気が大気中に放出される。
よって、制御室66内の圧力が低下する。そして、前述した式(1)が成立する圧力pになったときには、梃子部材38の揺動が停止し、圧力調整弁50は遮断位置50bに切り換えられ、また、作用室8内の圧力pによる作用力と被搬送体1の荷重とが釣合って、上昇を停止する。
一方、被搬送体1、シリンダ2等を降ろすと、梃子部材38が支点ピン44の廻りに揺動し、制御室66内の圧力の作用により、圧力調整弁50が開放位置50aに切り換えられ、作用室8内の圧縮空気が、給排流路10、切換弁14、制御流路18、圧力調整弁50を介して大気中に放出され、被搬送体1が下降する。
降ろすのを止めると、付勢力機構74の付勢室82に導入される圧力pの作用を受けて、ロッド84を介して梃子部材38が支点ピン44の廻りに揺動される。その際、ロッド70を介して圧力調整弁50を遮断位置50bに切り換える。そして、前述した式(1)が成立して、梃子部材38の揺動が停止し、また、作用室8内の圧力pによる作用力と被搬送体1の荷重等の総重量Wとが釣合って、下降を停止する。
タンク90を設けたことにより、被搬送体1を手で昇降するときに、付勢力機構74の付勢室82内圧力変化を小さくして、軽く梃子部材38を揺動させることができるようにしている。また、高圧流路49aにチェック弁49bを設けて、圧力源20からの圧縮空気の供給が停止したとき、圧力調整弁50の制御室66内圧力が低下し、連通位置50c側に切り替わって被搬送体1が自重で落下するのを防止している。更に、補助タンク12、絞り94を設けたことにより、ヒビリ動作の発生を防止することができるようにしている。
次に、前述した実施形態と異なる第2実施形態のエアバランス装置について、図2によって説明する。尚、前述した実施形態のエアバランス装置と同じ部材については同一番号を付して詳細な説明を省略する。以下同様である。
本第2実施形態では、シリンダ100のシリンダチューブ102が水平に固定されており、このシリンダチューブ102に定滑車104が回転可能に支持されている。ピストン106と一体のロッド108には動滑車110が回転可能に支持されており、被搬送体1を吊り下げるワイヤ112が定滑車104と動滑車110とに掛け渡された後、ワイヤ112の先端は、ピン40に締結されている。
シリンダ100の作用室114との間で、給排流路10を介して圧縮空気を給排することにより、動滑車110が移動して、2倍の作用力で被搬送体1を昇降させることができる。よって、下記(1a)、(2a)式に示すように、作用室8の受圧面積は前述した実施形態の受圧面積Aの2倍で、被搬送体1と釣合わせることができる。
この第2実施形態の場合でも、前述した実施形態と同様に、被搬送体1を持ち上げたり、引き下げたりすることにより、軽い力で、被搬送体1を昇降させることができると共に、被搬送体1を釣り合った状態に保つこともできる。
(A/2)×a+b×B=c×C …(1a)
p×A/2=W …(2a)
a>b
また、図3に示す第3実施形態のように、増速機構120を設けてもよい。増速機構120に、ねじ機構122を用い、ドラム124にワイヤ126を巻き付けてワイヤ126の先端に取り付けたフック128に被搬送体1を吊り下げる。また、梃子部材38に支持したフレーム230にシリンダチューブ4を取り付け、ロッド6aをドラム124にスラストベアリング134を介して取り付ける。ここで、Lはねじのリード、Dはドラムピッチ径とすると、下記式が成立する。この増速機構120を用いると、シリンダ2を駆動することにより増速される。
(L/πD)×A×a+b×B=cC …(1b)
(p×L×A)/(π×D)=W …(2b)
a>b
更に、図4に示す第4実施形態のように、被搬送体1をピン140の廻りに揺動可能に支持されたレバー142に吊り下げるようにしてもよい。その際、このレバー142にシリンダ2のロッド6aの先端を接続する。ここで、Eをピン140から被搬送体1までの距離、eをピン140からロッド6aまでの距離とすると、下記式が成立する。よって、シリンダ2の押し側でも、被搬送体1と釣合わせることができる。
(e/E)×A×a+b×B=c×C …(1c)
(e/E)×p×A=W …(2c)
a>b
次に、別の実施例の圧力調整弁150について、図6によって説明する。
この圧力調整弁150は、弁本体151に弁体152が摺動可能に支持されている。弁体152は、弁本体151に形成された弁座154への着座・離間により、高圧流路49aと制御流路18とを遮断・連通することができるように構成されている。弁体152は、コイルばね156により、弁座154に着座する方向に付勢されている。
弁本体151には、収納孔158が形成されており、収納孔158はダイヤフラム160により仕切られて、一方に制御室162が形成されている。制御室162内には、弁体152の先端が突出されており、弁体152の後端は、弁本体151の外部にまで突出されている。
弁体152には、その軸方向に排気孔164が貫通・形成されており、排気孔164は制御室162を大気と連通できるように形成されている。弁体152の先端には、ダイヤフラム160が接触して、排気孔164を閉塞あるいは開放できるように構成されている。また、制御室162内のダイヤフラム160の受圧面積はBとなるように形成されている。調圧室168は制御流路18と接続されており、制御室162はバイパス路170を介して制御流路18に接続されている。
この実施例の圧力調整弁150の場合でも、ロッド70が梃子部材38により押されると、弁体152を摺動させて、弁座154から離間させ、高圧流路49aと制御流路18とを調圧室168を介して接続する連通位置50c(図1参照)に切り換える。また、制御室162内に導入されるパイロット圧が上昇すると、ダイヤフラム160を弁体152の先端から離間して、制御流路18をバイパス路170、制御室162を介して排気孔164と連通する開放位置50a(図1参照)に切り換える。
次に、他の実施例の圧力調整弁180について、図7によって説明する。
圧力調整弁180の弁本体181には、スプール182が摺動可能に支持されており、スプール182の摺動により、制御流路18と高圧流路49aとの連通・遮断と、制御流路18と大気との連通・遮断が切り換えられるように構成されている。
また、スプール182の一端には、制御室184が形成されており、制御室184に導入されるパイロット圧の作用により、スプール182を摺動させる作用力が働くように構成されている。制御室184は受圧面積がBとなるように形成されている。制御室184はバイパス路192を介して制御流路18に接続されている。
スプール182の両端側には、それぞれコイルばね188,190が配置されており、コイルばね188,190は、スプール182が遮断位置50b(図1参照)となるように、スプール182を両側から付勢している。尚、このコイルばね108,110は必要に応じて設ければよく、必ずしも設けなくてもよい。
弁本体181には、制御室184と反対側にロッド70が摺動可能に挿入されており、ロッド70が押し込まれたときにはスプール182を摺動させるように構成されている。これにより、制御流路18と高圧流路49aとを連通する連通位置50c(図1参照)に切り換えられる。また、制御室184に導入される制御流路18からのパイロット圧の作用により、スプール182を摺動させて、制御流路18を大気中に開放する開放位置50a(図1参照)に切り換えられるように構成されている。
以上本発明はこの様な実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得る。
産業上の利用可能性
以上詳述したように本発明のエアバランス装置は、少ない部品点数で被搬送体と釣り合わせることができると共に、梃子部材により軽い力で圧力調整弁を切り換えることにより、ブリードに伴うエア洩れによるエネルギロスがなく、シリンダのパッキン類の摺動抵抗の影響が少ないので、被搬送体を昇降させる操作を小さい力で行うことができ操作が容易であるという効果を奏する。
【図面の簡単な説明】
図1は、本発明の一実施形態としてのエアバランス装置の概略構成図であり、
図2は、第2実施形態としてのエアバランス装置の要部概略構成図であり、
図3は、第3実施形態としてのエアバランス装置の要部概略構成図であり、
図4は、第4実施形態としてのエアバランス装置の要部概略構成図であり、
図5は、本実施形態の圧力調整弁の断面図であり、
図6は、別の実施形態としての圧力調整弁の断面図であり、そして
図7は、他の実施形態としての圧力調整弁の断面図である。
TECHNICAL FIELD The present invention relates to an air balance device that suspends a conveyed object by antagonizing a load of the conveyed object and a supply pressure to a cylinder.
Background Art Conventionally, as disclosed in Japanese Patent Laid-Open No. 10-30609, a load of a transported body is configured to act on a reaction force chamber partitioned by a diaphragm, and based on pressure fluctuations in the pressure chamber due to a change in the load. The main valve is switched and compressed air is supplied from the pressure source to the working chamber of the cylinder, or the working chamber is opened to the atmosphere, and the pressure in the working chamber is controlled, so that the load of the transported body and the acting force of the cylinder are controlled. And a structure in which the transported body is suspended is known.
However, in such a conventional one, when the transported body is raised and lowered, the main valve is opened and closed unless the volume of the working chamber is increased or decreased by overcoming the sliding resistance of the cylinder packings and sliding the piston. There was a problem that the lifting operation was heavy and difficult to operate. In addition, the conventional opening and closing of the main valve by sensing pressure fluctuations bleed in order to prevent the occurrence of hysteresis (rising and lowering resistance difference at the time of balancing). The main effect was to reduce the effect of hysteresis by bleeding the valve.) Since air was constantly leaking, there was a problem of large energy loss. Furthermore, there is a problem that various valves must be provided and the apparatus becomes complicated.
DISCLOSURE OF THE INVENTION An object of the present invention is to provide an air balance device that is easy to operate and can be balanced with a transported body with a simple configuration.
In order to achieve this problem, the present invention has taken the following measures in order to solve the problem. That is,
A pressure adjusting valve that regulates the pressure of the supply / discharge flow path connected to the working chamber of the cylinder that raises and lowers the transported body to a pressure that antagonizes the weight of the transported body, and the acting force of the cylinder and the transported body In the air balance device that balances the weight of
A control flow path communicating with the supply / discharge flow path at the time of balancing,
In addition, the cylinder is attached to a lever member supported so as to be swingable around the fulcrum pin,
Further, a restoring force mechanism is provided near a fulcrum pin for applying an acting force in the same direction as the load of the transported body to the lever member by introducing pilot pressure from the control flow path, and the load of the transported body is An urging force mechanism is provided that imparts an acting force that is balanced against the acting force of the restoring force mechanism to the lever member by introducing compressed air;
The pressure regulating valve is compressed via the supply / discharge flow path and the control flow path in accordance with an action force caused by swinging of the lever member and an action force caused by introducing pilot pressure from the control flow path. The air balance device is characterized by supplying and discharging air.
A pressure adjusting valve that regulates the pressure of the supply / discharge flow path connected to the working chamber of the cylinder that raises and lowers the transported body to a pressure that antagonizes the weight of the transported body; In the air balance device that balances the weight of the carrier,
Provided with a switching valve that communicates the supply / exhaust flow path and the control flow path at the time of balancing, and communicates the supply / exhaust flow path and the pilot flow path at the time of raising and lowering driving,
A raising / lowering valve mechanism that raises or lowers the transported body by supplying or discharging compressed air to or from the supply / exhaust flow path via a variable throttle valve during the raising / lowering drive,
In addition, the cylinder is attached to a lever member supported so as to be swingable around the fulcrum pin,
Further, a restoring force mechanism is provided near a fulcrum pin for applying an acting force in the same direction as the load of the transported body to the lever member by introducing pilot pressure from the control flow path, and the load of the transported body is An urging force mechanism is provided that imparts to the insulator member an action force that balances against the action force of the restoring force mechanism by introducing compressed air from a tank communicating with the pilot flow path,
In addition, the pressure adjusting valve includes the supply / exhaust flow path, the control flow path, and the switching valve in accordance with an action force caused by swinging of the lever member and an action force caused by introduction of pilot pressure from the control flow path. The air balance device is characterized in that compressed air is supplied and discharged via the air.
The up-and-down valve mechanism connects the pressure source and the supply / exhaust flow path through a variable throttle valve by introducing pilot pressure, and connects the atmosphere and the supply / exhaust flow path by introducing pilot pressure. And a lowering valve communicating with the variable throttle valve. The urging force mechanism may include an urging chamber communicated with the tank, and may apply an acting force to the lever member by an acting force of a compressed air pressure introduced into the urging chamber.
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.
As shown in FIG. 1, reference numeral 1 denotes a transported body, which is supported by being suspended from a cylinder 2. A piston 6 is slidably inserted into the cylinder tube 4 of the cylinder 2. When compressed air is supplied to the working chamber 8 formed by the cylinder tube 4 and the piston 6, an acting force that raises the piston 6 works. A hook 9 is attached to the rod 6 a integrated with the piston 6, and the transported body 1 can be suspended from the hook 9.
One end of a supply / discharge channel 10 is connected to the working chamber 8, and an auxiliary tank 12 is connected to the supply / discharge channel 10. The other end of the supply / discharge channel 10 is connected to a switching valve 14. The switching valve 14 is of a pilot operation type, and an elevating drive position 14a that communicates the supply / discharge flow path 10 and the pilot flow path 16, and a balance position 14b that communicates the supply / discharge flow path 10 and the control flow path 18. And.
A high pressure flow path 22 communicating with the pressure source 20 is connected to the supply / discharge flow path 10, and a low pressure flow path 24 opened to the atmosphere is connected. A rising valve 26 and a variable throttle valve 28 are interposed in the high pressure channel 22. The rising valve 26 shuts off the high-pressure channel 22 when the pilot pressure is introduced via the ascending pilot channel 27 and the high-pressure channel 22 communicates with the open position 26a when the pilot pressure is not introduced. Closed position 26b.
A lowering valve 30 and a variable throttle valve 32 are interposed in the low pressure flow path 24. The down valve 30 shuts off the low-pressure channel 24 when the pilot pressure is introduced via the descending pilot channel 31 and the low-pressure channel 24 communicates with the open position 30a when the pilot pressure is not introduced. And a closed position 30b. In this embodiment, the ascending / descending valve mechanism is constituted by the ascending valve 26, the variable throttle valve 28, the descending valve 30, and the variable throttle valve 32.
The ascending pilot channel 27 and the descending pilot channel 31 are connected to a driving pilot channel 36 via a shuttle valve 34. The driving pilot flow path 36 is connected to introduce a pilot pressure to the switching valve 14 so as to switch the switching valve 14 to the lift drive position 14a. The switching valve 14 is also connected with a balancing pilot flow path 37 for introducing a pilot pressure for switching the switching valve 14 to the balancing position 14b.
The cylinder tube 4 of the cylinder 2 is attached to one end of the lever member 38 through a pin 40 so as to be swingable and position adjustable. The lever member 38 is swingably attached to a suspension member 42 attached to a ceiling or the like via a fulcrum pin 44.
A valve body 51 of the pressure adjustment valve 50 is attached to the suspension member 42. A restoring force mechanism 48 is also integrated into the valve body 51. The pressure adjustment valve 50 includes an open position 50 a that opens the control flow path 18 to the atmosphere, a blocking position 50 b that blocks the control flow path 18, and a high pressure flow path 49 a that is connected to the pressure source 20. And a communication position 50c communicating with each other. A check valve 49b that prevents backflow is interposed in the high-pressure channel 49a.
Next, a specific configuration of the pressure adjusting valve 50 described above will be described with reference to FIG. FIG. 1 is a case where the pressure regulating valve 50 is indicated by a JIS symbol, and FIG. 5 is a cross-sectional view showing a specific configuration.
A pressure regulating chamber 52, an air supply chamber 54, and an exhaust chamber 56 are formed in the valve main body 51 of the pressure regulating valve 50. The control flow path 18 is connected to the pressure regulating chamber 52, and the high pressure flow path 49 a is connected to the air supply chamber 54.
The pressure regulating chamber 52 and the air supply chamber 54 are communicated with each other, and the pressure regulating chamber 52 and the air supply chamber 54 are configured to be communicated and blocked by an air supply valve body 58 that is slidably supported. Yes. In addition, an exhaust chamber 56 that is open to the atmosphere communicates with the pressure regulating chamber 52, and the pressure regulating chamber 52 and the exhaust chamber 56 are communicated and blocked by an exhaust valve body 60 that is slidably supported. It is comprised so that.
The valve body 51 is integrally provided with a restoring force mechanism 48, and the restoring force mechanism 48 includes a diaphragm 64 that partitions an accommodation hole 62 formed in the valve body 51. A storage chamber 62 is partitioned by a diaphragm 64 to form a control chamber 66. The control chamber 66 communicates with the control flow path 18 via the bypass flow path 68.
A rod 70 is integrally attached to the diaphragm 64. The rod 70 penetrates the valve main body 51 and protrudes to the outside, and its tip is in contact with the lever member 38. When the pressure receiving area of the diaphragm 64 is B and the pressure of the control chamber 66 is p, an acting force of B × p acts on the lever member 38 at a position b from the fulcrum pin 44. Further, this acting force is configured to act around the fulcrum pin 44 in the same direction as the acting force due to the load of the transported body 1.
A stem 72 provided in the pressure regulating valve 50 passes through the exhaust valve body 60 and the tip thereof is attached to the diaphragm 64. Due to the action of the pilot pressure introduced into the control chamber 66, it abuts against the rear end of the rod 70. When the rod 70 pushes the lever member 38, the exhaust valve body 60 is slid through the stem 72 to switch to the open position 50a that allows the pressure regulating chamber 52 and the exhaust chamber 56 to communicate with each other. Further, when the rod 70 is pushed by the lever member 38, the air supply valve body 58 is slid through the stem 72 so as to switch to the communication position 50c in which the pressure regulating chamber 52 and the air supply chamber 54 are communicated. Has been.
A biasing force mechanism 74 is attached to the suspension member 42 so as to face the restoring force mechanism 48. The biasing force mechanism 74 includes a diaphragm 80 that partitions a storage hole 78 formed in the main body 76, and a biasing chamber 82 is formed in one of the storage holes 78 partitioned by the diaphragm 80. A rod 84 is integrally attached to the diaphragm 80, and the rod 84 protrudes to the outside through the main body 76, and its tip is in contact with the lever member 38. In the present embodiment, these constitute an actuator.
An introduction port 86 communicating with the urging chamber 82 is formed in the main body 76, and one end of an introduction flow path 88 is connected to the introduction port 86. A tank 90 is connected to the other end of the introduction flow path 88, and a check valve 92 and a throttle 94 are interposed in parallel in the introduction flow path 88. The pilot flow path 16 is connected to the introduction flow path 88 on the tank 90 side with respect to the check valve 92.
When the pressure receiving area of the diaphragm 80 is C and the pressure of the urging chamber 82 is p, an acting force of C × p acts on the lever member 38 at a position c from the fulcrum pin 44. Further, this acting force is configured to act around the fulcrum pin 44 in the direction opposite to the acting force due to the load of the transported body 1.
The distance between the pin 40 and the fulcrum pin 44 is a, the pressure receiving area of the working chamber 8 is A, the pressure of the working chamber 8 is p, the load of the transported body 1 and the objects such as the hook 9, the rod 6 a, the piston 6, etc. When the total weight is W, when the pressures in the working chamber 8, the control chamber 66, and the urging chamber 82 are equal, the following formula is established. A spring 96 is disposed between the suspension member 42 and the lever member 38 so as to balance the downward weight (weight of the cylinder tube 4 and the like) applied to the pins 40 other than the object to be raised and lowered.
aA + bB = cC (1)
W = pA (2)
a> b
Next, the operation of the above-described air balance device will be described.
First, as shown in FIG. 1, the transported body 1 is suspended from the hook 9. Then, a pilot pressure is supplied to the ascending pilot flow path 27 when driving up and down. Accordingly, the ascending valve 26 is switched to the open position 26 a, and compressed air is supplied from the pressure source 20 to the working chamber 8 via the variable throttle valve 28, the ascending valve 26, the high-pressure channel 22, and the supply / exhaust channel 10. . Due to the action of the compressed air pressure supplied to the working chamber 8, the transported body 1 rises through the piston 6 and the rod 6a. At that time, the transported body 1 is raised at a speed according to the setting of the variable throttle valve 28.
Further, when the pilot fluid is supplied to the ascending pilot flow path 27, pilot pressure is introduced into the switching valve 14 via the shuttle valve 34 and the driving pilot flow path 36, and the switching valve 14 is moved to the lift drive position 14a. Can be switched. Therefore, compressed air is supplied to the tank 90 via the supply / discharge flow path 10, the switching valve 14, and the pilot flow path 16, and compressed air is supplied to the biasing chamber 82 via the throttle 94.
After raising the transported body 1 to a predetermined height, when the supply of pilot fluid to the ascending pilot flow path 27 is stopped and exhausted, the ascending valve 26 is switched to the closed position 26b. Therefore, the high-pressure channel 22 is shut off, and the acting force due to the pressure p in the working chamber 8 is balanced with the load of the transported body 1 (formula (2) is established). Further, a closed circuit is formed by the working chamber 8, the supply / discharge passage 10, the pilot passage 16, the introduction passage 88, the tank 90, and the biasing chamber 82, and these pressures p become equal.
On the other hand, when the pilot pressure is supplied to the descending pilot flow path 31 during the ascending / descending drive, the descending valve 30 is switched to the open position 30a. Therefore, the compressed air in the working chamber 8 is released into the atmosphere through the supply / discharge flow path 10, the down valve 30, the variable throttle valve 32, and the low pressure flow path 24, and the transported body 1 is lowered. At that time, the transported body 1 is lowered at a speed corresponding to the setting of the variable throttle valve 32.
Further, when the pilot fluid is supplied to the descending pilot flow path 31, the pilot pressure is introduced into the switching valve 14 via the shuttle valve 34 and the driving pilot flow path 36, and the switching valve 14 is moved to the lift drive position 14a. Can be switched. Therefore, the compressed air is released from the tank 90 into the atmosphere via the pilot flow path 16, the switching valve 14, the supply / discharge flow path 10, the low pressure flow path 24, the lowering valve 30, and the variable throttle valve 32.
After the transported body 1 is lowered to a predetermined height, when the supply of pilot fluid to the descending pilot flow path 31 is stopped and exhausted, the descending valve 30 is switched to the closed position 30b. Therefore, the low-pressure channel 24 is shut off, and the acting force due to the pressure p in the working chamber 8 balances the load of the transported body 1 (formula (2) is established). Further, a closed circuit is formed by the working chamber 8, the supply / discharge passage 10, the pilot passage 16, the introduction passage 88, the tank 90, and the biasing chamber 82, and these pressures p become equal.
An acting force according to the load of the transported body 1 and an acting force of the restoring force mechanism 48 act on the lever member 38 around the fulcrum pin 44, and an acting force of the biasing force mechanism 74 opposed thereto. Works. When the lever member 38 swings, the pressure regulating valve 50 is switched, and when the pressure in the control chamber 66 becomes equal to the pressure in the working chamber 8, the above-described equation (1) is established and the fulcrum pin 44 of the lever member 38 is obtained. The working force around is balanced.
Rather than raising and lowering the transported body 1 using compressed air pressure, when the operator directly lifts or lowers the transported body 1 or the like, the switching valve 14 is connected via the balancing pilot flow path 37. Supply pilot pressure. Therefore, the switching valve 14 is switched to the balance position 14b, and the control flow path 18 and the supply / discharge flow path 10 are communicated. However, if there is a difference between the pressure in the control flow path 18 and the pressure in the pilot flow path 16 at this time, a malfunction (increase or decrease) occurs. At this time, the position of the pin 40 may be changed by moving along the elongated hole, or the mounting position b of the pressure adjusting valve 50 may be changed to satisfy the above-described equation (1).
At the time of this balance, when raising the to-be-conveyed body 1, the to-be-conveyed body 1, the cylinder 2, etc. are lifted. Accordingly, the lever member 38 swings around the fulcrum pin 44, and the pressure adjustment valve 50 is switched to the communication position 50c via the rod 70. Compressed air is supplied from the pressure source 20 to the working chamber 8 through the high-pressure flow path 49a, the pressure regulating valve 50, the control flow path 18, and the supply / discharge flow path 10, and the pressure in the working chamber 8 rises to be conveyed. Body 1 rises. At the same time, the compressed air is also supplied to the control chamber 66 through the control flow path 18 and the bypass flow path 68, and the pressure rises. When the transported body 1 or the like is lifted, it is necessary to lift it against the acting force of the restoring force mechanism 48. However, the lever member 38 can lift the transported body 1 or the like with a light force of b / a.
When the lifting is stopped, the lever member 38 is swung around the fulcrum pin 44 through the rod 70 under the action of the supply pressure p introduced into the control chamber 66. At that time, the pressure regulating valve 50 is switched to the open position 50a, and the compressed air is released from the control chamber 66 into the atmosphere.
Therefore, the pressure in the control chamber 66 is reduced. When the pressure p at which the above-described formula (1) is established, the swing of the lever member 38 is stopped, the pressure regulating valve 50 is switched to the shut-off position 50b, and the pressure p in the working chamber 8 is The acting force and the load of the transported body 1 are balanced, and the ascent is stopped.
On the other hand, when the transported body 1, the cylinder 2 and the like are lowered, the lever member 38 swings around the fulcrum pin 44, and the pressure adjusting valve 50 is switched to the open position 50a by the action of the pressure in the control chamber 66, The compressed air in the working chamber 8 is released into the atmosphere through the supply / discharge flow path 10, the switching valve 14, the control flow path 18, and the pressure adjustment valve 50, and the transported body 1 is lowered.
When the lowering is stopped, the lever member 38 is swung around the fulcrum pin 44 through the rod 84 under the action of the pressure p introduced into the biasing chamber 82 of the biasing force mechanism 74. At that time, the pressure adjustment valve 50 is switched to the cutoff position 50b via the rod 70. Then, the above-described equation (1) is established, the swinging of the lever member 38 is stopped, and the acting force due to the pressure p in the working chamber 8 and the total weight W such as the load of the transported body 1 are changed. Accordingly, the descent is stopped.
By providing the tank 90, when the transported body 1 is moved up and down by hand, the pressure change in the biasing chamber 82 of the biasing force mechanism 74 is reduced, and the lever member 38 can be lightly swung. ing. In addition, when the check valve 49b is provided in the high-pressure flow path 49a and the supply of compressed air from the pressure source 20 is stopped, the pressure in the control chamber 66 of the pressure regulating valve 50 is lowered and switched to the communication position 50c side. The carrier 1 is prevented from falling by its own weight. Furthermore, by providing the auxiliary tank 12 and the throttle 94, it is possible to prevent the occurrence of a chattering operation.
Next, an air balance device of a second embodiment different from the above-described embodiment will be described with reference to FIG. Note that the same members as those in the air balance device of the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. The same applies hereinafter.
In the second embodiment, the cylinder tube 102 of the cylinder 100 is fixed horizontally, and the fixed pulley 104 is rotatably supported by the cylinder tube 102. A movable pulley 110 is rotatably supported by a rod 108 that is integral with the piston 106, and after a wire 112 that suspends the transported body 1 is stretched between the fixed pulley 104 and the movable pulley 110, the tip of the wire 112. Is fastened to the pin 40.
By supplying and discharging compressed air to and from the working chamber 114 of the cylinder 100 via the supply and discharge flow path 10, the movable pulley 110 moves and moves the transported body 1 up and down with double acting force. Can do. Therefore, as shown in the following formulas (1a) and (2a), the pressure receiving area of the working chamber 8 is twice the pressure receiving area A of the above-described embodiment and can be balanced with the transported body 1.
Even in the case of the second embodiment, the transported body 1 can be lifted and lowered with a light force by lifting or lowering the transported body 1 as in the above-described embodiment, and the transported body. 1 can also be kept balanced.
(A / 2) × a + b × B = c × C (1a)
p × A / 2 = W (2a)
a> b
Moreover, you may provide the speed-increasing mechanism 120 like 3rd Embodiment shown in FIG. A screw mechanism 122 is used as the speed increasing mechanism 120, a wire 126 is wound around the drum 124, and the transported body 1 is suspended from a hook 128 attached to the tip of the wire 126. Further, the cylinder tube 4 is attached to the frame 230 supported by the lever member 38, and the rod 6 a is attached to the drum 124 via the thrust bearing 134. Here, when L is the lead of the screw and D is the drum pitch diameter, the following equation is established. When the speed increasing mechanism 120 is used, the speed is increased by driving the cylinder 2.
(L / πD) × A × a + b × B = cC (1b)
(P × L × A) / (π × D) = W (2b)
a> b
Further, as in the fourth embodiment shown in FIG. 4, the transported body 1 may be hung on a lever 142 supported so as to be swingable around the pin 140. At this time, the tip of the rod 6 a of the cylinder 2 is connected to the lever 142. Here, when E is the distance from the pin 140 to the conveyed object 1 and e is the distance from the pin 140 to the rod 6a, the following equation is established. Therefore, even the push side of the cylinder 2 can be balanced with the transported body 1.
(E / E) * A * a + b * B = c * C (1c)
(E / E) × p × A = W (2c)
a> b
Next, a pressure regulating valve 150 of another embodiment will be described with reference to FIG.
In the pressure regulating valve 150, a valve body 152 is slidably supported by a valve main body 151. The valve body 152 is configured such that the high-pressure channel 49a and the control channel 18 can be shut off and communicated with each other by being seated and separated from the valve seat 154 formed in the valve body 151. The valve body 152 is biased by a coil spring 156 in a direction in which the valve body 152 is seated on the valve seat 154.
A storage hole 158 is formed in the valve main body 151, the storage hole 158 is partitioned by a diaphragm 160, and a control chamber 162 is formed on one side. The front end of the valve body 152 protrudes into the control chamber 162, and the rear end of the valve body 152 protrudes to the outside of the valve main body 151.
An exhaust hole 164 is formed through the valve body 152 in the axial direction, and the exhaust hole 164 is formed so that the control chamber 162 can communicate with the atmosphere. A diaphragm 160 is brought into contact with the tip of the valve body 152 so that the exhaust hole 164 can be closed or opened. The pressure receiving area of the diaphragm 160 in the control chamber 162 is formed to be B. The pressure regulation chamber 168 is connected to the control flow path 18, and the control chamber 162 is connected to the control flow path 18 via the bypass path 170.
Even in the case of the pressure regulating valve 150 of this embodiment, when the rod 70 is pushed by the lever member 38, the valve body 152 is slid to be separated from the valve seat 154, and the high pressure flow path 49a and the control flow path 18 are separated. It switches to the communication position 50c (refer FIG. 1) connected via the pressure regulation chamber 168. FIG. Further, when the pilot pressure introduced into the control chamber 162 increases, the diaphragm 160 is separated from the tip of the valve body 152 and the control flow path 18 is communicated with the exhaust hole 164 via the bypass path 170 and the control chamber 162. Switch to the open position 50a (see FIG. 1).
Next, a pressure regulating valve 180 according to another embodiment will be described with reference to FIG.
A spool 182 is slidably supported on the valve main body 181 of the pressure regulating valve 180. By sliding the spool 182, the control channel 18 and the high-pressure channel 49a are communicated and blocked, and the control channel 18 It can be configured to switch between communication and shutoff with the atmosphere.
In addition, a control chamber 184 is formed at one end of the spool 182, and an action force that slides the spool 182 is applied by the action of a pilot pressure introduced into the control chamber 184. The control chamber 184 is formed so that the pressure receiving area is B. The control chamber 184 is connected to the control flow path 18 via the bypass path 192.
Coil springs 188 and 190 are respectively arranged at both ends of the spool 182. The coil springs 188 and 190 urge the spool 182 from both sides so that the spool 182 is in the blocking position 50b (see FIG. 1). is doing. The coil springs 108 and 110 may be provided as necessary, and are not necessarily provided.
A rod 70 is slidably inserted into the valve body 181 on the side opposite to the control chamber 184, and the spool 182 is slid when the rod 70 is pushed. Thereby, the control channel 18 and the high-pressure channel 49a are switched to the communication position 50c (see FIG. 1). Further, by the action of the pilot pressure from the control flow path 18 introduced into the control chamber 184, the spool 182 is slid to be switched to an open position 50a (see FIG. 1) where the control flow path 18 is opened to the atmosphere. It is configured as follows.
The present invention is not limited to such embodiments as described above, and can be implemented in various modes without departing from the gist of the present invention.
INDUSTRIAL APPLICABILITY As described in detail above, the air balance device of the present invention can be balanced with the conveyed object with a small number of parts, and can also be switched by switching the pressure regulating valve with a light force by the lever member. Since there is no energy loss due to air leakage and there is little influence of the sliding resistance of the cylinder packing, the operation of raising and lowering the transported body can be performed with a small force, and the operation is easy.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an air balance device as one embodiment of the present invention,
FIG. 2 is a schematic configuration diagram of a main part of an air balance device as a second embodiment.
FIG. 3 is a schematic configuration diagram of a main part of an air balance device as a third embodiment.
FIG. 4 is a schematic configuration diagram of a main part of an air balance device as a fourth embodiment.
FIG. 5 is a cross-sectional view of the pressure regulating valve of the present embodiment,
FIG. 6 is a sectional view of a pressure regulating valve as another embodiment, and FIG. 7 is a sectional view of a pressure regulating valve as another embodiment.

Claims (4)

被搬送体を昇降させるシリンダの作用室に接続した給排流路の圧力を、前記被搬送体の重量に拮抗する圧力に調圧する圧力調整弁を備え、前記シリンダの作用力と前記被搬送体の重量とを釣り合わせるエアバランス装置において、
釣合時に前記給排流路に連通する制御流路を備え、
また、支点ピンの廻りに揺動可能に支持した梃子部材に前記シリンダを取り付け、
更に、前記制御流路からのパイロット圧の導入により前記梃子部材に前記被搬送体の荷重と同方向の作用力を付与する復元力機構を支点ピン近くに設けると共に、前記被搬送体の荷重と前記復元力機構の作用力とに対して釣り合う作用力を圧縮空気の導入により前記梃子部材に付与する付勢力機構を設け、
かつ、前記圧力調整弁は、前記梃子部材の揺動による作用力と前記制御流路からのパイロット圧の導入による作用力とに応じて前記給排流路と前記制御流路とを介して圧縮空気の給排を行うことを特徴とするエアバランス装置。
A pressure adjusting valve that regulates the pressure of the supply / discharge flow path connected to the working chamber of the cylinder that raises and lowers the transported body to a pressure that antagonizes the weight of the transported body, and the acting force of the cylinder and the transported body In the air balance device that balances the weight of
A control flow path communicating with the supply / discharge flow path at the time of balancing,
In addition, the cylinder is attached to a lever member supported so as to be swingable around the fulcrum pin,
Further, a restoring force mechanism is provided near a fulcrum pin for applying an acting force in the same direction as the load of the transported body to the lever member by introducing pilot pressure from the control flow path, and the load of the transported body is An urging force mechanism is provided that imparts an acting force that is balanced against the acting force of the restoring force mechanism to the lever member by introducing compressed air;
The pressure regulating valve is compressed via the supply / discharge flow path and the control flow path in accordance with an action force caused by swinging of the lever member and an action force caused by introducing pilot pressure from the control flow path. An air balance device for supplying and discharging air.
被搬送体を昇降させるシリンダの作用室に接続した給排流路の圧力を、前記被搬送体の重量に拮抗する圧力に調圧する圧力調整弁を備え、前記シリンダの作用力と前記被搬送体の重量とを釣り合わせるエアバランス装置において、
釣合時には前記給排流路と制御流路とを連通し、昇降駆動時には前記給排流路とパイロット流路とを連通する切換弁を設けると共に、
前記昇降駆動時に、可変絞り弁を介して前記給排流路に圧縮空気を供給あるいは排出して前記被搬送体を昇降させる昇降弁機構を設け、
また、支点ピンの廻りに揺動可能に支持した梃子部材に前記シリンダを取り付け、
更に、前記制御流路からのパイロット圧の導入により前記梃子部材に前記被搬送体の荷重と同方向の作用力を付与する復元力機構を支点ピン近くに設けると共に、前記被搬送体の荷重と前記復元力機構の作用力とに対して釣り合う作用力を前記パイロット流路に連通したタンクからの圧縮空気の導入により前記梃子部材に付与する付勢力機構を設け、
かつ、前記圧力調整弁は、前記梃子部材の揺動による作用力と前記制御流路からのパイロット圧の導入による作用力とに応じて前記給排流路と前記制御流路及び前記切換弁を介して圧縮空気の給排を行うことを特徴とするエアバランス装置。
A pressure adjusting valve that regulates the pressure of the supply / discharge flow path connected to the working chamber of the cylinder that raises and lowers the transported body to a pressure that antagonizes the weight of the transported body, and the acting force of the cylinder and the transported body In the air balance device that balances the weight of
Provided with a switching valve that communicates the supply / exhaust flow path and the control flow path at the time of balancing, and communicates the supply / exhaust flow path and the pilot flow path at the time of raising and lowering driving,
A raising / lowering valve mechanism that raises or lowers the transported body by supplying or discharging compressed air to or from the supply / exhaust flow path via a variable throttle valve during the raising / lowering drive,
In addition, the cylinder is attached to a lever member supported so as to be swingable around the fulcrum pin,
Further, a restoring force mechanism is provided near a fulcrum pin for applying an acting force in the same direction as the load of the transported body to the lever member by introducing pilot pressure from the control flow path, and the load of the transported body is An urging force mechanism is provided that imparts to the insulator member an action force that balances against the action force of the restoring force mechanism by introducing compressed air from a tank communicating with the pilot flow path,
In addition, the pressure adjusting valve includes the supply / exhaust flow path, the control flow path, and the switching valve in accordance with an action force caused by swinging of the lever member and an action force caused by introduction of pilot pressure from the control flow path. The air balance device is characterized in that compressed air is supplied and discharged via the air .
前記昇降弁機構は、パイロット圧の導入により、圧力源と前記給排流路とを可変絞り弁を介して連通する上昇弁と、パイロット圧の導入により、大気中と前記給排流路とを可変絞り弁を介して連通する下降弁とを備えたことを特徴とする請求項2記載のエアバランス装置。 The up-and-down valve mechanism connects the pressure source and the supply / exhaust flow path through a variable throttle valve by introducing pilot pressure, and connects the atmosphere and the supply / exhaust flow path by introducing pilot pressure. The air balance device according to claim 2, further comprising a descending valve communicating with the variable throttle valve . 前記付勢力機構は、前記タンクに連通された付勢室を備え、付勢室に導入される圧縮空気圧の作用力により前記梃子部材に作用力を付与することを特徴とする請求項1ないし請求項3のいずれかに記載のエアバランス装置。2. The urging force mechanism includes an urging chamber communicated with the tank, and applies an acting force to the lever member by an acting force of a compressed air pressure introduced into the urging chamber. Item 4. The air balance device according to any one of Items 3.
JP2002534199A 2000-10-11 2001-08-17 Air balance device Expired - Fee Related JP4163504B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000310579 2000-10-11
JP2000310579 2000-10-11
PCT/JP2001/007101 WO2002030806A1 (en) 2000-10-11 2001-08-17 Air balance device

Publications (2)

Publication Number Publication Date
JPWO2002030806A1 JPWO2002030806A1 (en) 2004-02-19
JP4163504B2 true JP4163504B2 (en) 2008-10-08

Family

ID=18790514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002534199A Expired - Fee Related JP4163504B2 (en) 2000-10-11 2001-08-17 Air balance device

Country Status (4)

Country Link
JP (1) JP4163504B2 (en)
KR (1) KR100734661B1 (en)
CN (1) CN1315718C (en)
WO (1) WO2002030806A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100668147B1 (en) * 2005-04-18 2007-01-11 주식회사 동성산기 Balancing air hoist system without control
US7602562B2 (en) * 2007-05-21 2009-10-13 Electro Scientific Industries, Inc. Fluid counterbalance for a laser lens used to scribe an electronic component substrate
CN101403550B (en) * 2008-11-18 2010-06-09 上海理工大学 Miniature pneumatic pressure balancer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880393A (en) * 1973-06-04 1975-04-29 Conco Inc Load balancer with balance override control
JPS6430609A (en) * 1987-07-24 1989-02-01 Otsuka Chemical Co Ltd Method for removing dissolved oxygen
JP2736036B2 (en) * 1995-07-05 1998-04-02 有限会社ヒロタカエンジニアリング Pressure adjustment circuit
JPH1030609A (en) * 1996-04-19 1998-02-03 Hirotaka Eng:Kk Pressure adjusting circuit
JP4224836B2 (en) * 1998-09-09 2009-02-18 Smc株式会社 All air balancer equipment

Also Published As

Publication number Publication date
WO2002030806A1 (en) 2002-04-18
CN1315718C (en) 2007-05-16
CN1469840A (en) 2004-01-21
KR20030046499A (en) 2003-06-12
JPWO2002030806A1 (en) 2004-02-19
KR100734661B1 (en) 2007-07-02

Similar Documents

Publication Publication Date Title
US5131318A (en) Directional control valve for pneumatic cylinder
KR101647571B1 (en) Fluid pressure control device
JP4163415B2 (en) Air balance device
JP4163504B2 (en) Air balance device
US5184535A (en) Speed control device for a pneumatic cylinder
JP2001193709A (en) Hydraulic control device
US5261314A (en) Directional control valve for pneumatic cylinder
JP2013139316A (en) Lifting device
JP2584314B2 (en) Pressure regulating valve with switching mechanism
JPH08303404A (en) Cylinder driving device
JP2010065812A (en) Pneumatic elevating cylinder
JPH08268692A (en) Lift device
JP2002327706A (en) Hydraulic control device
JPS5824642B2 (en) Tandou Act Yueta Seigiyosouchi
JPH1030609A (en) Pressure adjusting circuit
JPS6123921Y2 (en)
JPH0544702A (en) Elevatable cylinder proportional control circuit
JP2736036B2 (en) Pressure adjustment circuit
JPH0988903A (en) Cylinder device for pneumatic work shift device with sudden rising prevention mechanism
JP2543531Y2 (en) Pressure control valve for pneumatic cylinder lift
JPS6249418A (en) Pressure control valve
JP2504661B2 (en) Speed-up hydraulic circuit
JPH10310400A (en) Balancer device
JPH0441400A (en) Balance valve of balanced cargo controller
JPH06185658A (en) Check valve drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080402

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4163504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140801

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees