JPH045A - Deceleration controlling method for piston rod in pneumatic cylinder - Google Patents

Deceleration controlling method for piston rod in pneumatic cylinder

Info

Publication number
JPH045A
JPH045A JP10087890A JP10087890A JPH045A JP H045 A JPH045 A JP H045A JP 10087890 A JP10087890 A JP 10087890A JP 10087890 A JP10087890 A JP 10087890A JP H045 A JPH045 A JP H045A
Authority
JP
Japan
Prior art keywords
air
deceleration
piston rod
stroke
pressure chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10087890A
Other languages
Japanese (ja)
Inventor
Takashi Kimura
隆 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10087890A priority Critical patent/JPH045A/en
Publication of JPH045A publication Critical patent/JPH045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To reduce shock in a deceleration process by flowing air in an opposite direction to that of a high speed process in at least one of intake and exhaust ports, and corresponding pressure and flowing time of the air to kinetic energy of a load. CONSTITUTION:Secondary pressure chamber passages 49 of pneumatic cylinder changeover valves 7 are connected to ports 4, 5 on head and rod sides of an air cylinder 1. Air is supplied to the head side port 4 fast, and exhausted from the rod side port 5 fast, to shift a piston rode 3 with high speed. In such a deceleration process, combination of operation conditions and operation time of the two changeover valves 7 are selected in correspondence with kinetic energy of a load W. The air flows in an opposite direction to that of a high speed process in at least one of the ports 4, 5, while the pressure and the flowing time thereof are controlled. Deceleration is thus facilitated, and the shock at this time is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は空気シリンダにおいて、ピストンロッドの速
度を高速行程から低速行程に移行させる際の減速行程に
おけるピストンロッドの減速制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for controlling the deceleration of a piston rod during a deceleration stroke when the speed of the piston rod is transferred from a high speed stroke to a low speed stroke in an air cylinder.

を従来技術] 従来空気シリンダのピストンロッドの速度を高速から低
速に移行させる際の減速を、空気シリンダの排気側をリ
リーフ弁等を使用して一定圧力に保持して行なっている
が、この方法は空気回路では一般に困難である。
[Prior art] Conventionally, the speed of the piston rod of an air cylinder is decelerated when changing from high speed to low speed by maintaining a constant pressure on the exhaust side of the air cylinder using a relief valve, etc., but this method is generally difficult in air circuits.

[発明が解決しようとする課題] この発明は空気シリンダにおいてピストンロッドの減速
が容易に実施でき、かつ減速ショックの小さい空気シリ
ンダにおけるピストンロッドの減速制御方法の提供を課
題とする。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for controlling deceleration of a piston rod in an air cylinder in which the deceleration of the piston rod in an air cylinder can be easily performed and the deceleration shock is small.

[課題を解決するための技術的手段] 上記の課題を解決するためけこの発明は負荷に連結され
た空気シリンダのピストンロッドの速度を高速行程から
低速行程に移行させる際の減速行程において、空気シリ
ンダの吸、排気ボーi〜の少なくとも一方のポートの空
気の流れを、ピストンロッドの高速行程時の空気の流れ
と逆にし、逆流空気の圧力及び流動時間を負荷の運動エ
ネルギ量に対応させて設定している。
[Technical Means for Solving the Problems] In order to solve the above problems, the present invention provides an air cylinder that is connected to a load. The air flow in at least one port of the cylinder's suction and exhaust ports is reversed to the air flow during high-speed stroke of the piston rod, and the pressure and flow time of the reverse air are made to correspond to the kinetic energy of the load. It is set.

5作用コ 負荷に連結されたピストンロッドの速度を高速行程から
低速行程に移行させる際の減速行程において、空気シリ
ンダの吸、排気ボートの少なくとも一方のポートの空気
の流れを、ピストンロッドの高速行程時の空気の流れと
逆にし、逆流空気の圧力及び流動時間を負荷の運動エネ
ルギ量に対応させて、即ち運動エネルギ量が大きい時は
大きく設定されているので減速は効果的に行なわれ、か
つショックの発生が少ない。
5 Action During the deceleration stroke when the speed of the piston rod connected to the load is transferred from a high-speed stroke to a low-speed stroke, the flow of air in at least one port of the air cylinder's intake port and exhaust boat is controlled during the high-speed stroke of the piston rod. The pressure and flow time of the backflow air are made to correspond to the amount of kinetic energy of the load, that is, when the amount of kinetic energy is large, the setting is large, so deceleration is effectively performed. Shocks are less likely to occur.

[実施例] 以下実施例を示す図面によりこの発明を説明する。第1
〜3図は第1実施例を示す。同図において1は空気シリ
ンダを、2はピストンを、3はピストンロッドを、4は
ヘッド側ポートを、5はロッド側ポートを、Wは負荷を
それぞれ示す。7は空気シリンダ切換弁で、本出願人の
出願に係わる特願昭63−307186号において開示
されているものである。
[Examples] The present invention will be described below with reference to drawings showing examples. 1st
Figures 1 to 3 show the first embodiment. In the figure, 1 is an air cylinder, 2 is a piston, 3 is a piston rod, 4 is a head side port, 5 is a rod side port, and W is a load. 7 is an air cylinder switching valve, which is disclosed in Japanese Patent Application No. 63-307186 filed by the present applicant.

第1実施例の説明に先立ち前記の空気シリンダ切換弁(
以俊単に切換弁と言う)7の構成、作用を第10図、第
11図により説明する。第10図において、切換弁7の
ハウジング8内には第1調圧ピストン15、第2調圧ピ
ストン16が配置され、第1調圧ピストン15と底壁1
2との間が受圧室17となっており、両調圧ピストン1
5.16間が背圧室18、第2調圧ピストン16とハウ
ジング8との間が調整室19となっている。底壁12に
は中間フランジ33か設けられ、その上、下側はそれぞ
れ大気圧室42と一次圧室38となっている。大気圧室
42と一次圧室38とは二次圧室37を介して連通して
いる。大気圧室42はボート42aを介して大気に連通
し、二次圧室37は二次圧室通路49を介して空気シリ
ンダ60のロッド側ポート61に連通している。−次圧
室38は空気源48に連通している。第1調圧ピストン
15にはステム46か取りつ【ブられ、ステム46に第
2弁体41が固着されている。第2弁体41は第1調圧
ピストン15の移動により二次圧室37と大気圧室42
とを連通又は遮断する。
Prior to the explanation of the first embodiment, the air cylinder switching valve (
The structure and operation of the switching valve 7 (simply referred to as a switching valve) will be explained with reference to FIGS. 10 and 11. In FIG. 10, a first pressure regulating piston 15 and a second pressure regulating piston 16 are arranged in the housing 8 of the switching valve 7, and the first pressure regulating piston 15 and the bottom wall 1
2 is a pressure receiving chamber 17, and both pressure regulating pistons 1
The space between 5 and 16 is a back pressure chamber 18, and the space between the second pressure regulating piston 16 and the housing 8 is a regulating chamber 19. An intermediate flange 33 is provided on the bottom wall 12, and the upper and lower sides thereof form an atmospheric pressure chamber 42 and a primary pressure chamber 38, respectively. The atmospheric pressure chamber 42 and the primary pressure chamber 38 communicate with each other via the secondary pressure chamber 37. The atmospheric pressure chamber 42 communicates with the atmosphere via a boat 42a, and the secondary pressure chamber 37 communicates with the rod side port 61 of the air cylinder 60 via a secondary pressure chamber passage 49. - the subpressure chamber 38 communicates with an air source 48; A stem 46 is attached to the first pressure regulating piston 15, and a second valve body 41 is fixed to the stem 46. The second valve body 41 is moved between the secondary pressure chamber 37 and the atmospheric pressure chamber 42 by the movement of the first pressure regulating piston 15.
communicate or cut off.

次圧室38と二次圧室37とは第1弁体ばね43により
付勢されている第1弁体39により常には連通を遮断さ
れている。第1弁体39とステム46の下端との間には
隙間が設けられており、ステム46が第1調圧ピストン
15とともに下降するとステム46の下端が第1弁体3
9に当接し、第1弁体ばね43の弾力に抗して第1弁体
39を押し下げ、−次圧室38と二次圧室37とを連通
させる。
The communication between the secondary pressure chamber 38 and the secondary pressure chamber 37 is normally cut off by the first valve body 39 which is biased by the first valve body spring 43 . A gap is provided between the first valve body 39 and the lower end of the stem 46, and when the stem 46 descends together with the first pressure regulating piston 15, the lower end of the stem 46
9 and pushes down the first valve body 39 against the elasticity of the first valve body spring 43, thereby causing the secondary pressure chamber 38 and the secondary pressure chamber 37 to communicate with each other.

二次圧室37は二次圧室ボート50.3ポ一ト2位置空
圧電磁弁(以後3ボート電磁弁と言う)51及び受圧室
ポート52を介して受圧室17に連通可能となっている
。調整室19は調整室ボート53を介して5ボ一ト2位
置空圧電磁弁(以後5ポート電磁弁と言う)54に連通
可能となり、5ポート電磁弁54は3ポート電磁弁51
に接続しており、又空気源48に連通している。
The secondary pressure chamber 37 can communicate with the pressure receiving chamber 17 via a secondary pressure chamber boat 50.3 point 2 position pneumatic solenoid valve (hereinafter referred to as 3 boat solenoid valve) 51 and a pressure receiving chamber port 52. There is. The adjustment chamber 19 can communicate with a 5-port 2-position pneumatic solenoid valve (hereinafter referred to as 5-port solenoid valve) 54 via an adjustment chamber boat 53, and the 5-port solenoid valve 54 is connected to the 3-port solenoid valve 51.
It is also connected to an air source 48.

二次圧室37の圧力調整はハンドル22と第1調整ばね
24とにより行なわれる。
The pressure in the secondary pressure chamber 37 is adjusted by the handle 22 and the first adjustment spring 24.

第11図は切換弁7の動作を模式的に示したものである
。同図において、 (イ)は第10図のピストン63を急速上昇させる場合
を示し、3ポート電磁弁51.5ポート電磁弁54に通
電すると5ポート電磁弁54を介して調整室19に空気
源48から加圧空気が導入され、第2調整ピストン16
を押し下げる。これにともない第1調圧ピストン15は
押し下げられ、受圧室17の空気は3ポート電磁弁51
.5ポート電磁弁54を経て大気中に排気され、又第1
弁体39は押し下げられて一次圧室38と二次圧室37
とが連通し、空気源48の空気が空気シリンダ60のロ
ッド側に供給され、ピストン63が負荷Wとともに急速
上昇する。二次圧室37の圧力は一次圧力と等しくなっ
ている。
FIG. 11 schematically shows the operation of the switching valve 7. In the same figure, (A) shows the case where the piston 63 of FIG. Pressurized air is introduced from 48 and the second adjusting piston 16
Press down. Accordingly, the first pressure regulating piston 15 is pushed down, and the air in the pressure receiving chamber 17 is pumped through the 3-port solenoid valve 51.
.. It is exhausted to the atmosphere through the 5-port solenoid valve 54, and the first
The valve body 39 is pushed down and the primary pressure chamber 38 and the secondary pressure chamber 37
The air from the air source 48 is supplied to the rod side of the air cylinder 60, and the piston 63 rises rapidly along with the load W. The pressure in the secondary pressure chamber 37 is equal to the primary pressure.

(ロ)はピストン63を低速上昇させる場合及び空気シ
リンダ60の上端での停止の場合を示し、3ポート電磁
弁51を非通電、5ポート電磁弁54を通電にする。こ
れにより5ポート電磁弁54を介して調整室19に空気
源48から加圧空気が導入され、第2調圧ピストン16
を押し下げる。
(b) shows a case where the piston 63 is raised at a low speed and a case where the air cylinder 60 is stopped at the upper end, the 3-port solenoid valve 51 is de-energized and the 5-port solenoid valve 54 is energized. As a result, pressurized air is introduced from the air source 48 into the adjustment chamber 19 via the 5-port solenoid valve 54, and the second pressure adjustment piston 16
Press down.

これにともない第1調圧ピストン15は押し下げられ受
圧室17は3ポート電磁弁51を介して二次圧室37に
連通する。二次圧は第1調整ばね24により高圧に調整
され、ステム43は第1弁体39を少し押し下げ二次圧
室37を一次圧室38と小隙間を介して連通させる。こ
れにより空気源48の加圧空気は一次圧室38から徐々
に二次圧室37に、さらに空圧シリンダ60のロッド側
のボート61に流れるので、ビントン63は減速上昇し
上昇端に達する。
Accordingly, the first pressure regulating piston 15 is pushed down and the pressure receiving chamber 17 communicates with the secondary pressure chamber 37 via the 3-port solenoid valve 51. The secondary pressure is adjusted to a high pressure by the first adjustment spring 24, and the stem 43 slightly pushes down the first valve body 39 to communicate the secondary pressure chamber 37 with the primary pressure chamber 38 through a small gap. As a result, the pressurized air from the air source 48 gradually flows from the primary pressure chamber 38 to the secondary pressure chamber 37 and further to the boat 61 on the rod side of the pneumatic cylinder 60, so that the Vinton 63 decelerates and rises to reach the rising end.

(ハ)はピストン63を急速降下させる場合を示し、3
ポート電磁弁51を通電、5ボート電磁弁54を非通電
にする。これにより空気源48の加圧空気が5ボート電
磁弁54.3ボート電磁弁51経て受圧室17に導入さ
れ、第1調圧ピストン15が上昇する。これにともない
ステム46を介して第2弁体41が上昇し、二次圧室3
7と大気圧室42とが連通し、又−次圧室38と二次圧
室37とは第1弁体ばね43の弾力を受けている第1弁
体39により連通を遮断されているので空気シリンダ6
0のロッド64側のシリンダ室内の空気が急速に大気中
に放出され、ピストンが急降下する。
(C) shows the case where the piston 63 is rapidly lowered;
The port solenoid valve 51 is energized, and the 5-boat solenoid valve 54 is de-energized. As a result, the pressurized air from the air source 48 is introduced into the pressure receiving chamber 17 through the five-boat solenoid valve 54 and the third-boat solenoid valve 51, and the first pressure regulating piston 15 moves up. Accordingly, the second valve body 41 rises via the stem 46, and the secondary pressure chamber 3
7 and the atmospheric pressure chamber 42 are in communication, and the secondary pressure chamber 38 and the secondary pressure chamber 37 are cut off from communication by the first valve body 39 which is receiving the elasticity of the first valve body spring 43. air cylinder 6
The air in the cylinder chamber on the 0 rod 64 side is rapidly released into the atmosphere, causing the piston to descend rapidly.

(ニ)はピストン63を低速降下及び下降端に位置させ
る場合を示し、3ポート電磁弁51及び5ボート電磁弁
54を共に非通電にする。これにより空気源48の加圧
空気は切換弁7には供給されず、二次圧室37は二次圧
室ボート50.3ポート電磁弁51及び受圧室ボート5
2を介して受圧室17に連通する。そして二次圧は第1
調整ばね24により低圧に調整されており、二次圧室3
7と大気圧室42とは小隙間を介して連通し、空気シリ
ンダ60の空気は二次圧室37から徐々に大気圧室42
、ボート42aを経て大気中に放出されるのでピストン
63は減速降下し、降下端に達する。
(D) shows the case where the piston 63 is positioned at the low speed lowering and lowering end, and both the 3-port solenoid valve 51 and the 5-boat solenoid valve 54 are de-energized. As a result, pressurized air from the air source 48 is not supplied to the switching valve 7, and the secondary pressure chamber 37 is connected to the secondary pressure chamber boat 50.3 port solenoid valve 51 and the pressure receiving chamber boat 5.
It communicates with the pressure receiving chamber 17 via 2. And the secondary pressure is the first
The pressure is adjusted to low by the adjustment spring 24, and the secondary pressure chamber 3
7 and the atmospheric pressure chamber 42 communicate with each other through a small gap, and the air in the air cylinder 60 gradually flows from the secondary pressure chamber 37 to the atmospheric pressure chamber 42.
, the piston 63 decelerates and descends, reaching the lower end.

第1実施例において空気シリンダ1のヘッド側ボート4
及びロッド側ボート5に空気シリンダ切換弁7の二次圧
室通路49がそれぞれ連結されている。この場合 (a)第1図はピストンロッド3の高速行程を示す。高
速行程中ではヘッド側ポート4の切換弁7は第11図の
(イ)の状態に保持され、ロッド側ポート5の切換弁7
は第11図の(ハ)の状態に保持される。即ち空気シリ
ンダ1のヘッド側に空気が急速に供給され、ロッド側か
ら空気が急速に排出されるのでピストンロッド3は高速
で移動する。
In the first embodiment, the head side boat 4 of the air cylinder 1
A secondary pressure chamber passage 49 of the air cylinder switching valve 7 is connected to the rod-side boat 5 and the rod-side boat 5, respectively. In this case, (a) FIG. 1 shows the high-speed stroke of the piston rod 3. During the high-speed stroke, the switching valve 7 of the head side port 4 is held in the state shown in FIG. 11 (a), and the switching valve 7 of the rod side port 5 is
is maintained in the state shown in FIG. 11(c). That is, air is rapidly supplied to the head side of the air cylinder 1, and air is rapidly discharged from the rod side, so that the piston rod 3 moves at high speed.

(b)第2図はピストンロッド3の減速行程を示す。減
速行程中ではヘッド側ポート4の切換弁7は第11図の
(ハ)の状態[急速排気で気流の方向は(a)の場合と
逆になる]又は第11図の(ロ)の状態[減速吸気で気
流の方向は(a)の場合と同じコ又は第11図の(ニ)
の状@[減速排気で気流の方向は(a)の場合とは逆]
に保持され、これ等の各状態にそれぞれ対応してロット
側ボート5の切換弁7は第11図の(イ)の状態[急速
吸気で気流の方向は(a>の場合とは逆]又は第11図
の(ロ)の状態[減速吸気で気流の方向は(a>と逆]
又は第11図の(ニ)の状態[減速排気で気流の方向は
(a)の場合と同じ]に保持される。この操作即ちヘッ
ド側ポート4及びロッド側ボート5の少なくとも一方の
ボートの空気流の方向をピストンロッド3の高速行程の
時のヘッド側ポート4及びロッド側ボート5の空気流の
方向と逆にすることは短い時間性なわれ、この操作によ
り、減速が達成される。2個の切換弁7.7の前述の作
動態様の組合せ及び作動時間をどのように選ぶかは負荷
Wの運動のエネルギの大小により決められる。例えば負
荷の運動のエネルギが大きい時はヘッド側ポート4の切
換弁7を第11図の(ハ)の状態に、ロッド側ボート5
の切換弁7を第11図の(イ)の状態に短い時間保持さ
れる。なお、減速の割合を大きく又減速時間を短くする
とショックが発生するので注意が必要である。
(b) FIG. 2 shows the deceleration stroke of the piston rod 3. During the deceleration stroke, the switching valve 7 of the head side port 4 is in the state shown in (c) in Fig. 11 [the direction of airflow is opposite to that in (a) due to rapid exhaust] or the state in (b) in Fig. 11 [During deceleration intake, the direction of airflow is the same as in (a) or (d) in Figure 11.
Condition @ [The direction of airflow is opposite to the case (a) with deceleration exhaust]
Corresponding to each of these states, the switching valve 7 of the lot-side boat 5 is set to the state of (a) in Fig. 11 [with rapid intake, the direction of airflow is opposite to (a>)] or Condition (b) in Figure 11 [The direction of airflow is opposite to (a> with deceleration intake)]
Alternatively, the state shown in (d) in FIG. 11 is maintained [the direction of the airflow is the same as in (a) with deceleration exhaust]. This operation is to reverse the direction of air flow in at least one of the head side port 4 and rod side boat 5 to the direction of air flow in the head side port 4 and rod side boat 5 during high-speed stroke of the piston rod 3. This is only for a short period of time, and this operation achieves deceleration. The combination of the above-mentioned operating modes and operating times of the two switching valves 7.7 are determined depending on the magnitude of the kinetic energy of the load W. For example, when the kinetic energy of the load is large, the switching valve 7 of the head side port 4 is set to the state shown in (c) in Fig. 11, and the rod side boat 5
The switching valve 7 is held in the state shown in FIG. 11(a) for a short time. Note that if the deceleration rate is increased or the deceleration time is shortened, a shock will occur, so care must be taken.

(C)第3図はピストンロッド3の低速行程を示す。低
速行程ではヘッド側ポート4の切換弁7は第11図の(
ロ)の状態に保持され、ロッド側ポート5の切換弁7は
第11図の(ニ)の状態に保持される。卯ち空気シリン
ダ1のヘッド側に空気が減速供給され、ロッド側から空
気が減速排出されるのでピストンロッド3は低速で移動
する。
(C) FIG. 3 shows the low speed stroke of the piston rod 3. In the low-speed stroke, the switching valve 7 of the head side port 4 is operated as shown in Fig. 11 (
The switching valve 7 of the rod side port 5 is maintained in the state shown in (d) in FIG. 11. Air is decelerated and supplied to the head side of the air cylinder 1, and air is decelerated and discharged from the rod side, so the piston rod 3 moves at a low speed.

第4〜6は第2実施例で、空気シリンダ1が上下方向に
配置され、ピストンロッド3の下端に負荷Wが取り付け
られ、負荷Wを下方に移動させる場合を示し、第4図は
高速行程を、第5図は減速行程を、第6図は低速行程を
それぞれ示す。各行程における切換弁7の切替操作は第
1実施例の場合と同じである。なお、第4〜6図におい
て第10図と同じように上側の切換弁7を省略してもよ
い。
4 to 6 are the second embodiment, in which the air cylinder 1 is arranged vertically, a load W is attached to the lower end of the piston rod 3, and the load W is moved downward; FIG. , FIG. 5 shows the deceleration stroke, and FIG. 6 shows the low speed stroke. The switching operation of the switching valve 7 in each stroke is the same as in the first embodiment. In addition, in FIGS. 4 to 6, the upper switching valve 7 may be omitted as in FIG. 10.

第7〜9は第3実施例で、空気シリンダ1が上下方向に
配置され、ピストンロッド3の下端に負荷Wが取り付け
られ、負荷Wを上方に移動させる場合を示し、第7図は
高速行程を、第8図は減速行程を、第9図は低速行程を
それぞれ示す。第7図ではロッド側ポート5の切換弁7
が第11図の(イ)の状態に、又ヘッド側ポート4の切
換弁7が第11図の(ハ)の状態にそれぞれ保持され、
第1実施例の第1図とは空気の流れは逆になる。
7 to 9 are the third embodiment, in which the air cylinder 1 is arranged vertically, a load W is attached to the lower end of the piston rod 3, and the load W is moved upward; FIG. , FIG. 8 shows the deceleration stroke, and FIG. 9 shows the low speed stroke. In Fig. 7, the switching valve 7 of the rod side port 5
is held in the state shown in FIG. 11 (A), and the switching valve 7 of the head side port 4 is held in the state shown in FIG. 11 (C), respectively.
The air flow is opposite to that in FIG. 1 of the first embodiment.

同様に第8.9図も第1実施例の第2.3図とは空気の
流れは逆になる。なお、第7〜9図において第10図と
同じように上側の切換弁7を省略してもよい。
Similarly, the air flow in FIG. 8.9 is opposite to that in FIG. 2.3 of the first embodiment. In addition, in FIGS. 7 to 9, the upper switching valve 7 may be omitted as in FIG. 10.

上記の各実施例において、空気シリンダ7のヘッド側ポ
ート4及びロッド側ポート5に接続する切換弁は前記切
換弁7の型式のものに限定されないことは勿論である。
In each of the above embodiments, the switching valves connected to the head side port 4 and rod side port 5 of the air cylinder 7 are of course not limited to the type of the switching valve 7 described above.

「効果] この発明は上述のように負荷に連結された空気シリンダ
のピストンロッドの速度を高速行程から低速行程に移行
させる際の減速行程において、空気シリンダの吸、排気
ポートの少なくとも一方のボートの空気流の方向を、ピ
ストンロッドの高速行程時の空気流の方向と逆にし、逆
流空気の圧力及び流動時間を負荷の運動エネルキ量に対
応させて設定するので従来困難であった空気回路におい
て空気シリンダのピストンロッドの減速か極めて容易と
なり、かつ減速ショックの小さい空気シリンダを提供す
る。
``Effects'' As described above, the present invention provides that during the deceleration stroke when the speed of the piston rod of the air cylinder connected to the load is transferred from the high-speed stroke to the low-speed stroke, at least one of the intake and exhaust ports of the air cylinder is closed. The direction of the air flow is reversed to the direction of the air flow during the piston rod's high-speed stroke, and the pressure and flow time of the backflow air are set in accordance with the amount of kinetic energy of the load. To provide an air cylinder in which deceleration of a piston rod of the cylinder is extremely easy and the deceleration shock is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2.3図はそれぞれ第1実施例の高速行程、減速
行程、低速行程の空気シリンダの動作図を示す。第4.
5.6図はそれぞれ第2実施例の高速行程、減速行程、
低速行程の空気シリンダの動作図を示す。第7.8.9
図はそれぞれ第3実施例の高速行程、減速行程、低速行
程の空気シリンダの動作図を示す。第10図は上記の各
実施例に使用された切換弁の一例を示す。第11図は第
10図の切換弁の作動状態を示す模式図である。 卿O図 1・・・空気シリンダ 2・・・ピストン 3・・・ピストンロッド 4−・・ヘッド側ポート(吸、排気ポート)5・・・ロ
ッド側ポート(吸、排気ポート〉7・・・空気シリンダ
切換弁
Figures 1, 2 and 3 show operation diagrams of the air cylinder during the high speed stroke, deceleration stroke and low speed stroke of the first embodiment, respectively. 4th.
5.6 shows the high-speed stroke, deceleration stroke, and deceleration stroke of the second embodiment, respectively.
The operation diagram of the air cylinder in the low speed stroke is shown. Section 7.8.9
The figures show operation diagrams of the air cylinder in the high speed stroke, deceleration stroke, and low speed stroke of the third embodiment, respectively. FIG. 10 shows an example of the switching valve used in each of the above embodiments. FIG. 11 is a schematic diagram showing the operating state of the switching valve shown in FIG. 10. Figure 1...Air cylinder 2...Piston 3...Piston rod 4-...Head side port (suction, exhaust port) 5...Rod side port (suction, exhaust port) 7... air cylinder switching valve

Claims (1)

【特許請求の範囲】[Claims] 負荷に連結された空気シリンダのピストンロッドの速度
を高速行程から低速行程に移行させる際の減速行程にお
いて、空気シリンダの吸、排気ポートの少なくとも一方
のポートの空気の流れを、ピストンロッドの高速行程時
の空気の流れと逆にし、逆流空気の圧力及び流動時間を
負荷の運動エネルギ量に対応させて設定することを特徴
とする空気シリンダにおけるピストンロッドの減速制御
方法。
During the deceleration stroke when the speed of the piston rod of the air cylinder connected to the load is transferred from a high-speed stroke to a low-speed stroke, the air flow in at least one of the intake and exhaust ports of the air cylinder is changed to the speed of the piston rod during the high-speed stroke of the piston rod. 1. A method for controlling deceleration of a piston rod in an air cylinder, characterized by setting the pressure and flow time of backflow air in a manner that corresponds to the amount of kinetic energy of a load by reversing the flow of air.
JP10087890A 1990-04-17 1990-04-17 Deceleration controlling method for piston rod in pneumatic cylinder Pending JPH045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10087890A JPH045A (en) 1990-04-17 1990-04-17 Deceleration controlling method for piston rod in pneumatic cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10087890A JPH045A (en) 1990-04-17 1990-04-17 Deceleration controlling method for piston rod in pneumatic cylinder

Publications (1)

Publication Number Publication Date
JPH045A true JPH045A (en) 1992-01-06

Family

ID=14285586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10087890A Pending JPH045A (en) 1990-04-17 1990-04-17 Deceleration controlling method for piston rod in pneumatic cylinder

Country Status (1)

Country Link
JP (1) JPH045A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346102A (en) * 1992-06-11 1993-12-27 Sailor Pen Co Ltd:The Control method for vertical air cylinder
US6285060B1 (en) * 1999-12-30 2001-09-04 Siliconix Incorporated Barrier accumulation-mode MOSFET
US6348705B1 (en) * 1999-12-22 2002-02-19 Advanced Technology Materials, Inc. Low temperature process for high density thin film integrated capacitors and amorphously frustrated ferroelectric materials therefor
US6404024B1 (en) * 1999-08-30 2002-06-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6603203B2 (en) * 1998-03-04 2003-08-05 Nec Electronics Corporation Semiconductor device having capacitive element structure and multilevel interconnection structure and method of fabricating the same
US6611015B2 (en) * 2000-09-20 2003-08-26 Kabushiki Kaisha Toshiba Semiconductor device including dummy upper electrode
US6630721B1 (en) * 2000-05-16 2003-10-07 Advanced Micro Devices, Inc. Polysilicon sidewall with silicide formation to produce high performance MOSFETS
US6638803B2 (en) 2000-01-18 2003-10-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115176A (en) * 1974-07-29 1976-02-06 Sumitomo Electric Industries Shasuikozoojusuru gomu purasuchitsukudenryokukeeburuno seizohoho
JPS51141974A (en) * 1975-06-02 1976-12-07 Fuji Electric Co Ltd Control process of double motion of air pressure cylinder
JPS58644A (en) * 1981-06-22 1983-01-05 Japan Steel Works Ltd:The Cushion circuit of air cylinder for moving high speed large inertia object

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5115176A (en) * 1974-07-29 1976-02-06 Sumitomo Electric Industries Shasuikozoojusuru gomu purasuchitsukudenryokukeeburuno seizohoho
JPS51141974A (en) * 1975-06-02 1976-12-07 Fuji Electric Co Ltd Control process of double motion of air pressure cylinder
JPS58644A (en) * 1981-06-22 1983-01-05 Japan Steel Works Ltd:The Cushion circuit of air cylinder for moving high speed large inertia object

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346102A (en) * 1992-06-11 1993-12-27 Sailor Pen Co Ltd:The Control method for vertical air cylinder
US6603203B2 (en) * 1998-03-04 2003-08-05 Nec Electronics Corporation Semiconductor device having capacitive element structure and multilevel interconnection structure and method of fabricating the same
US6404024B1 (en) * 1999-08-30 2002-06-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US6348705B1 (en) * 1999-12-22 2002-02-19 Advanced Technology Materials, Inc. Low temperature process for high density thin film integrated capacitors and amorphously frustrated ferroelectric materials therefor
US6285060B1 (en) * 1999-12-30 2001-09-04 Siliconix Incorporated Barrier accumulation-mode MOSFET
US6638803B2 (en) 2000-01-18 2003-10-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method for manufacturing the same
US6630721B1 (en) * 2000-05-16 2003-10-07 Advanced Micro Devices, Inc. Polysilicon sidewall with silicide formation to produce high performance MOSFETS
US6611015B2 (en) * 2000-09-20 2003-08-26 Kabushiki Kaisha Toshiba Semiconductor device including dummy upper electrode

Similar Documents

Publication Publication Date Title
KR101215986B1 (en) variable valve actuator with a pneumatic booster
AU645293B2 (en) Hybrid pneumatic percussion rock drill
US5085124A (en) Directional control valve for pneumatic cylinder
GB1338864A (en) Air pressure actuator
JPH045A (en) Deceleration controlling method for piston rod in pneumatic cylinder
US4889036A (en) Speed reducer for pneumatic actuator
JPS63130904A (en) Hydraulic piston engine
JP3466121B2 (en) Pneumatic cylinder with cushion mechanism
JP2955220B2 (en) In-line pressure booster
JPH07259518A (en) Variable valve system of internal combustion engine
US5261314A (en) Directional control valve for pneumatic cylinder
JP4117636B2 (en) Solenoid valve for energy saving drive
JPH0133841Y2 (en)
JPS639609A (en) Valve device for valve driving system
JP2002224897A (en) Die cushioning device
JPH078605U (en) Control valve
CN1315718C (en) Air balance device
JPS6016480Y2 (en) pneumatic press equipment
JP2543531Y2 (en) Pressure control valve for pneumatic cylinder lift
JPS59155603A (en) Hydraulic driving apparatus
JPS6026074Y2 (en) hydraulic lift
JPH09296802A (en) Raising and lowering hydraulic circuit
JPH034802Y2 (en)
CN117532380A (en) Cylinder control system and machine tool
SU1486252A1 (en) Vertically driven pneumatic forging hammer