JPS61239184A - Low-speed electron measuring device - Google Patents

Low-speed electron measuring device

Info

Publication number
JPS61239184A
JPS61239184A JP8089185A JP8089185A JPS61239184A JP S61239184 A JPS61239184 A JP S61239184A JP 8089185 A JP8089185 A JP 8089185A JP 8089185 A JP8089185 A JP 8089185A JP S61239184 A JPS61239184 A JP S61239184A
Authority
JP
Japan
Prior art keywords
voltage
anode
low
discharge
speed electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8089185A
Other languages
Japanese (ja)
Other versions
JPH0616103B2 (en
Inventor
Masayuki Uda
応之 宇田
Tsunenori Shirohashi
白橋 典範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
RIKEN Institute of Physical and Chemical Research
Original Assignee
Riken Keiki KK
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK, RIKEN Institute of Physical and Chemical Research filed Critical Riken Keiki KK
Priority to JP60080891A priority Critical patent/JPH0616103B2/en
Priority to US06/819,226 priority patent/US4740730A/en
Publication of JPS61239184A publication Critical patent/JPS61239184A/en
Publication of JPH0616103B2 publication Critical patent/JPH0616103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To always detect a low-speed electron with prescribed sensitivity by varying an anode voltage in one direction in a state that the low-speed electron does not invade, and setting the anode voltage of the time when measuring the low-speed electron by using a voltage of the time point when a discharge state has been varied, as a parameter. CONSTITUTION:In the inside of a container-shaped cathode 1 in which an inflow port 1a of a low-speed electron has been formed in one end, an anode 2 and lattice electrodes 3, 4 for forming a non-uniform electric field are provided, and the anode 2 is connected to a voltage variable type high voltage generating device 5, and generates an electric field rough for generating the discharge, when the low-speed electron has flowed in. Also, a controlling circuit 10 varies an output voltage value from the device 5 in one direction in a state that no low speed electron flows in, detects a voltage of the time point when a discharge state of the anode 2 has been varied, and sets a voltage for generating the discharge of a prescribed level when the low-speed electron has been detected, to the device 5, based on this detected voltage. In this way, the low-speed electron can be detected with a prescribed sensitivity without using a special atmospheric state detecting means and an operating means.

Description

【発明の詳細な説明】 (技術分野) 本発明は、大気中における気体放電を利用して低速電子
を測定する装置の放電率、つまり基準点を補正する技術
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a technique for correcting the discharge rate, that is, the reference point, of a device that measures slow electrons using gas discharge in the atmosphere.

(従来技術) 試料表面から放出された光電子や熱電子、エキソ電子(
以下、低速電子と呼ぶ)の検出には、開口を介して大気
開放された導電性容器からなる陰極の内部にPA極を、
開口部に第1及び第2格子を配設するとともに、陰極と
陽極間に3 、4KV程度の電圧を印加し、また第1及
び第2の格子電極にはそれぞれ常時は100V及び80
V程度の電圧を印加するように構成された低速電子測定
装置が用いられる。
(Conventional technology) Photoelectrons, thermoelectrons, and exoelectrons (
To detect low-velocity electrons (hereinafter referred to as slow electrons), a PA electrode is placed inside a cathode made of a conductive container that is open to the atmosphere through an opening.
First and second grids are disposed in the opening, and a voltage of about 3 or 4 KV is applied between the cathode and the anode, and the first and second grid electrodes are normally 100V and 80V, respectively.
A low speed electronic measurement device configured to apply a voltage on the order of V is used.

この装置において、試料表面から放出された低速電子が
空間部を通過して開口部から陰極に侵入すると、この低
速電子をトリガとして陽極に放電が生じ、陽極からパル
ス信号を出力する。このパルス信号により計数手段を作
動させる一方、第1の格子電極の電位を上昇させて放電
の発達を防止し、同時に第2格子電極を負電位まで低下
させて放電中に生じた陽イオンを中和し、以後元の状態
に戻るという過程を繰返しながら低速電子の発生数を測
定する。
In this device, when low-speed electrons emitted from the sample surface pass through the space and enter the cathode through the opening, the low-speed electrons trigger a discharge at the anode, and a pulse signal is output from the anode. This pulse signal activates the counting means, while increasing the potential of the first grid electrode to prevent the development of discharge, and at the same time lowering the second grid electrode to a negative potential to neutralize the positive ions generated during the discharge. The number of low-speed electrons generated is measured while repeating the process of returning to the original state.

ところで、この低速電子検出装置は、開口を介して大気
に連通されている関係上、第5図(イ)(ロ)の実線に
よりに示したように大気圧や温度、さらには湿度等の大
気条件の変動を直接量□    け、このため放電条件
が変動して同一陽極電圧に対する計数率が大幅に変化し
て測定結果に大きな測定誤差を生じるという不都合があ
った。
By the way, this low-speed electron detection device communicates with the atmosphere through an opening, so as shown by the solid lines in Fig. Variations in the conditions are directly measured, and as a result, the discharge conditions vary and the counting rate for the same anode voltage changes significantly, resulting in a large measurement error in the measurement results.

もとより、このような問題は、気圧センサや温度センサ
、湿度センサ等を用いて大気条件を検出し、この検出結
果に基づいて陽極電圧を調整することにより解消される
が、各種のセンサを必要するばかりでなく、大気条件を
支配する各パラメータが放電条件に及ぼす影響度の相違
や、これらの相互関連性を勘案して制御量を決定せねば
ならず、特別な演算手段が必要になるという新たな問題
を招く。
Of course, such problems can be solved by detecting atmospheric conditions using a barometric pressure sensor, temperature sensor, humidity sensor, etc., and adjusting the anode voltage based on the detection results, but this requires various sensors. In addition, the control amount must be determined by taking into consideration the differences in the degree of influence of each parameter that governs the atmospheric conditions on the discharge conditions and their interrelationships, which is a new problem that requires special calculation means. cause problems.

(目的) 本発明はこのような問題に鑑み、大気状態検出センサや
特別な演算手段を用いることなく、大気状態の変動に拘
りなく一定の感度により低速電子を検出することができ
る基準点補正手段を備えた低速電子測定装置を提供する
ことを目的とする。
(Objective) In view of these problems, the present invention provides a reference point correction means that can detect low-velocity electrons with constant sensitivity regardless of changes in atmospheric conditions without using an atmospheric condition detection sensor or special calculation means. The purpose of the present invention is to provide a low-speed electronic measurement device equipped with the following.

(構成) そこで、以下に本発明の詳細を図示した実施例に基づい
て説明する。
(Structure) Therefore, details of the present invention will be described below based on illustrated embodiments.

第1図は、本発明の一実施例を示すものであって、図中
符号lは、下部に形成された開口1aを介して大気に開
放された容器状の陰極で、内部空間に不平等電界を形成
する陽極2、及び放電を制御する第一格子電極3.第二
極子電極4が上下間1   係となるように配設されて
いる。この陽極2は、電圧可変型高電圧発生装置5に接
続して低速電子が流入したときに放電を生じるに足る電
界を発生させるように構成され、また直流阻止用コンデ
ンサ6を介して増幅器7に接続されている。
FIG. 1 shows an embodiment of the present invention, in which reference numeral l denotes a container-shaped cathode that is open to the atmosphere through an opening 1a formed at the bottom, and the internal space is unequal. An anode 2 for forming an electric field, and a first grid electrode 3 for controlling the discharge. The second pole electrode 4 is arranged so as to be spaced between the upper and lower parts. The anode 2 is connected to a variable voltage high voltage generator 5 to generate an electric field sufficient to cause a discharge when low-speed electrons flow in, and is connected to an amplifier 7 via a DC blocking capacitor 6. It is connected.

第一格子電極3は、第一パルス発生器8に接続゛   
 され、常時にはtoov程度の電圧を、また増幅、、
   器7からのパルス信号の出力により一定時間Te
1m・、   *ts”°°“1°′″0”′″′th
″5tt6.1=M子電極4は、第二パルス発生器9に
接続され、常時は80v程度の電圧を、また増幅器7か
らのパルス信号の出力により一定時間Te継続するマイ
ナ1..    ス30V程度の電圧が印加されるよう
に構成されている。10は、本発明の特徴部分をなす制
御図ソ1.    路で、低速電子の流入を阻止した状
態、つまり大゛゛    気状態検出モードにおいては
、電圧可変型高電圧□ □、   発生装置5の出力電圧を一方向に変化させ、
カウンタ11からの出力が予め設定された計数率になっ
た時点で電圧走査を中止してこの時の陽極電圧を制御パ
ラメータとして取込み、また測定モードにおいては走査
が中止されたときの電圧をパラメータとして−・定レベ
ルの放電を生じさせる電圧を電圧可変型高電圧発生装r
a5から出力させるように構成されている。なお、図中
符号12は、カウンタ11からの信号を処理して計数率
等に変換して表示するディスプレイ装置を示す。
The first grid electrode 3 is connected to the first pulse generator 8.
At normal times, the voltage is about toov, and the voltage is amplified.
Te for a certain period of time due to the output of the pulse signal from the device 7.
1m・, *ts"°°"1°'"0"'"'th
``5tt6.1=The M child electrode 4 is connected to the second pulse generator 9, and the voltage is normally about 80V, and the output of the pulse signal from the amplifier 7 continues the negative 1.. 30V for a certain period of time Te. 10 is a control diagram constituting a characteristic part of the present invention. In the state where the inflow of low-speed electrons is blocked, that is, in the large atmosphere state detection mode, , variable voltage high voltage □ □, changing the output voltage of the generator 5 in one direction,
When the output from the counter 11 reaches a preset counting rate, voltage scanning is stopped and the anode voltage at this time is taken in as a control parameter, and in measurement mode, the voltage at the time when scanning is stopped is taken in as a parameter. −・Variable high voltage generator that generates a constant level of discharge
It is configured to output from a5. Note that the reference numeral 12 in the figure indicates a display device that processes the signal from the counter 11, converts it into a counting rate, etc., and displays the converted signal.

つぎに、このように構成した装置の動作を第2    
′図に示した波形図に基づいて説明する。
Next, we will explain the operation of the device configured in this way in a second way.
The explanation will be based on the waveform diagram shown in the figure.

現在の大気状態は、第5図(イ)(ロ)■で示される状
態にあるとする。
It is assumed that the current atmospheric conditions are as shown in Fig. 5 (a), (b), and ■.

陰極開口部1aの下方に試料Sを配置して装置を作動す
ると、試料Sの表面から放出された低速電子は、陽極2
により形成された電界を受けて第二格子電極4及び第一
格子電極3を順次通り抜けて陽極2に引き寄せられて行
く、このようにして電子が陽極2の近傍に到達すると、
この電子は、ハh 陽極近傍に分布している強電界の作用を受けて急激に加
速され、周囲の大気を電離させて放電を引き起す、これ
により陽極2は、急激な電位降下を    ゛引き起す
。この電位降下は、直流阻止用コンデンサ6を介してパ
ルス信号となって増幅器7により増幅されてカウンタ1
1に入力し、低速電子の発生頻度や個数としてディスプ
レイ装置12に表示される。
When the apparatus is operated with the sample S placed below the cathode opening 1a, the low-speed electrons emitted from the surface of the sample S are transferred to the anode 2.
When the electrons reach the vicinity of the anode 2 in this way, they pass through the second grid electrode 4 and the first grid electrode 3 sequentially and are attracted to the anode 2 in response to the electric field formed by the electrons.
These electrons are rapidly accelerated by the strong electric field distributed near the anode, ionizing the surrounding atmosphere and causing a discharge.As a result, the anode 2 causes a rapid potential drop. cause. This potential drop becomes a pulse signal via the DC blocking capacitor 6, is amplified by the amplifier 7, and is sent to the counter 1.
1 and displayed on the display device 12 as the frequency and number of low-speed electrons.

一方、このパルス信号は、第−及び第二パルス発生器8
.9に入力して第一パルス発生器8から電圧が例えば3
00Vで時間幅Teのパルスを重畳出力させて第一格子
電極3の電位を400vに引き上げて放電を消滅させる
。また第二パルス゛発生器9からパルスを出力させて、
第二格子電極4の電位を陰極lに対して一30Vまで下
げ、上記放電により陰極l内に発生した陽イオンを消滅
させる0時間Teが経過すると、第−及び第二パルス発
生器8.9からのパルス出力が停止し、測定装置は初期
の状態に戻ってつぎの低速電子の流入を待つ。
On the other hand, this pulse signal is transmitted to the first and second pulse generators 8
.. 9 and the voltage from the first pulse generator 8 is e.g.
The electric potential of the first grid electrode 3 is raised to 400 V by superimposing a pulse with a time width Te of 00 V and extinguishing the discharge. In addition, a pulse is output from the second pulse generator 9,
When the potential of the second grid electrode 4 is lowered to -30 V with respect to the cathode 1 and the cations generated in the cathode 1 due to the discharge are extinguished, the second and second pulse generators 8.9 The pulse output from the detector stops, and the measuring device returns to its initial state and waits for the next influx of low-speed electrons.

このような状態において、大気圧や気温、湿度等の大気
状態が変化して陽極付近における電子移動度等の放電に
関わる条件に変動を来たし、放電条件が第5図(イ)(
ロ)の■に示された状態、つまり同一陽極電圧に対する
計数率が低下したとする。
In such a state, atmospheric conditions such as atmospheric pressure, temperature, and humidity change, causing fluctuations in conditions related to discharge such as electron mobility near the anode, and the discharge conditions change as shown in Figure 5 (a) (
Assume that the state shown in (ii) of b), that is, the counting rate for the same anode voltage has decreased.

そこで、まず陰極開口部1aから電子が入射できない状
態、例えば第二格子電極4を負電位に設定する。
Therefore, first, a state is set in which electrons cannot enter through the cathode opening 1a, for example, the second grid electrode 4 is set to a negative potential.

このような準備を終えた段階で、制御回路10を大気状
態検出モードに設定すると、制御回路10は、電圧可変
型高電圧発生装置5を作動して、一方向、例えば低電圧
側から高電圧側に向けて電圧走査を開始する。電圧走査
を開始した当初は、陽極2には気体放電を起すに足る電
圧が印加されていないので、無放電状態を維持する。こ
のような状態で電圧を上昇していくと、陽極2には放電
を開始するに足る電圧が印加され始めるや自続放電域に
入って(第5図点線により示された曲線)、増幅器7か
ら気体放電数に相畠するパルス信号が出力する。カウン
タ11は、このパルス信号を計数してその計数内容を制
御回路10に出力する。制御回路10は、カウンタ11
からの計数率が設定値と一致した時点で電圧可変型高電
圧発生装置5の電圧走査を中止し、同時に電圧可変型高
電圧発生装置5の出力電圧Vdを検出する。言うまでも
なく、この電圧Vdは、現在の大気圧、温度、湿度等の
相互的な関係に支配された大気状態、つまり第5図(イ
)(ロ)における■により示された放電条件を示すもの
である。
When the control circuit 10 is set to the atmospheric condition detection mode after completing such preparations, the control circuit 10 operates the variable voltage high voltage generator 5 to generate high voltage in one direction, for example, from the low voltage side. Start voltage scanning towards the side. At the beginning of voltage scanning, a voltage sufficient to cause a gas discharge is not applied to the anode 2, so a non-discharge state is maintained. When the voltage is increased in this state, as soon as a voltage sufficient to start discharge begins to be applied to the anode 2, it enters the self-sustaining discharge region (the curve shown by the dotted line in Figure 5), and the amplifier 7 A pulse signal corresponding to the number of gas discharges is output. The counter 11 counts this pulse signal and outputs the counted contents to the control circuit 10. The control circuit 10 includes a counter 11
At the point in time when the counting rate from 1 to 2 matches the set value, the voltage scanning of the variable voltage high voltage generator 5 is stopped, and at the same time, the output voltage Vd of the variable voltage high voltage generator 5 is detected. Needless to say, this voltage Vd indicates the atmospheric conditions that are governed by the mutual relationships between current atmospheric pressure, temperature, humidity, etc., that is, the discharge conditions indicated by ■ in Figure 5 (a) and (b). It is.

制御回路10は、放電変化時点の出力電圧Vdをパラメ
ータとして電圧可変型高電圧発生装置5の出力電圧をΔ
Vだけ高電圧側にシフトさせて放電条件を調整する。こ
れにより、放電条件は、大気状態変動以前の状態、つま
り第5図IIと同一の条件に引戻され、以後、低速電子
1個に対する計数率に変化を来たすことなく低速電子を
検出する。
The control circuit 10 adjusts the output voltage of the variable voltage high voltage generator 5 by using the output voltage Vd at the time of discharge change as a parameter.
The discharge conditions are adjusted by shifting V to the high voltage side. As a result, the discharge conditions are returned to the conditions before the change in atmospheric conditions, that is, the same conditions as in FIG. 5 II, and thereafter, slow electrons are detected without any change in the counting rate for one slow electron.

第3図は、本発明の第2実施例を示すものであって、図
中符号工3は、容器状の陰極lの内部に配設された陽極
で、導線をループ状に形成し、後述する陽極温度制御回
路15からの電力を受けてジュール熱により昇温するよ
うに構成されてl/Xる。この陽極13は、電圧可変型
高電圧発生装置14に接続して低速電子が流入したとき
に放電を生じるに足る電界を発生させるように構成され
、また直流阻止用コンデンサ6を介して増幅器7に接続
されている。15は、本発明の特徴部分をなす陽極温度
制御回路で、大気状態検出モード時に予め設定された計
数率になった時点の電圧をパラメータとして一定レベル
の放電を生じさせるに足る温度になるように加熱電力を
供給するように構成されている。
FIG. 3 shows a second embodiment of the present invention, in which reference numeral 3 is an anode disposed inside a container-shaped cathode 1, and a conductive wire is formed into a loop shape, which will be described later. The anode temperature control circuit 15 receives electric power from the anode temperature control circuit 15 to raise the temperature by Joule heat. The anode 13 is connected to a variable voltage high voltage generator 14 to generate an electric field sufficient to cause a discharge when low-speed electrons flow in, and is connected to an amplifier 7 via a DC blocking capacitor 6. It is connected. Reference numeral 15 denotes an anode temperature control circuit which is a characteristic part of the present invention, and uses the voltage at the time when a preset counting rate is reached in the atmospheric condition detection mode as a parameter to maintain a temperature sufficient to cause a certain level of discharge. The heating power supply is configured to provide heating power.

コ つぎに、このように構成した装置の動作を第4図に示し
た波形図に基づいて説明する。
Next, the operation of the apparatus configured as described above will be explained based on the waveform diagram shown in FIG.

大気圧や気温、湿度等の大気状態が変化して陽極13の
付近における電子移動度等の放電に関わる条件に変動を
来たし、放電条件が第5図(イ)(ロ)のIIにより示
される状態から同図■に示された状態、つまり計数率が
低下する状態に変化したとする。
Atmospheric conditions such as atmospheric pressure, temperature, and humidity change, causing fluctuations in conditions related to discharge such as electron mobility near the anode 13, and the discharge conditions are shown by II in Figure 5 (a) and (b). Assume that the state changes to the state shown in (■) in the same figure, that is, the state in which the counting rate decreases.

そこで、まず陰極開口部1aから電子が入射できない状
態、例えば第二格子電極4を負電位に設定する。
Therefore, first, a state is set in which electrons cannot enter through the cathode opening 1a, for example, the second grid electrode 4 is set to a negative potential.

このような準備を終えた段階で、陽極温度制御回路15
を大気状態検出モードに設定すると、電圧可変型高電圧
発生装置14の出力電圧を低電圧側から高電圧側に向け
て電圧走査を開始する。このような状態で陽極電圧を上
昇していくと、陽極13は、放電を開始するに足る電圧
が印加され始めるや自続放電域に入って、増幅器7から
気体放電数に相当するパルス信号が出力する。カウンタ
11は、このパルス信号を計数してその計数内容を陽極
温度制御回路15に出力する。陽極温度制御回路15は
、カウンタ11からの計数率が設定値と一致した時点で
電圧可変型高電圧発生装置14の電圧走査を中止して、
その出力電圧Vd’を検出する。同時に、放電変化時点
の出力電圧Vd’をパラメータとして陽極への加熱電力
を増加させ、陽極13の温度をΔTだけ高温側にシフト
させる。これにより陽極13の近傍の気体の温度が上昇
して電子の移動度が大きくなる。これ“により放電条件
は、大気状態変動以前の状態、つまり第5図(イ)(ロ
)においてIIで示された条件に引戻され、以後、低速
電子1個に対する計数率、つまり検出感度に変化を来た
すことなく低速電子を検出する。なお1周囲温度が余り
にも上昇したり、下降している場合には、陽極への加熱
電力を初期の状態にまで一旦戻してから大気状態を検出
するようにすると、測定誤差を可及的に小さくすること
ができる。
After completing such preparations, the anode temperature control circuit 15
When set to the atmospheric condition detection mode, voltage scanning of the output voltage of the variable voltage high voltage generator 14 is started from the low voltage side to the high voltage side. When the anode voltage is increased in this state, the anode 13 enters the self-sustaining discharge region as soon as a voltage sufficient to start discharge begins to be applied, and the amplifier 7 generates a pulse signal corresponding to the number of gas discharges. Output. The counter 11 counts this pulse signal and outputs the counted contents to the anode temperature control circuit 15. The anode temperature control circuit 15 stops the voltage scanning of the variable voltage high voltage generator 14 when the counting rate from the counter 11 matches the set value, and
Its output voltage Vd' is detected. At the same time, the heating power to the anode is increased using the output voltage Vd' at the time of discharge change as a parameter, and the temperature of the anode 13 is shifted to the high temperature side by ΔT. This increases the temperature of the gas near the anode 13 and increases the mobility of electrons. As a result of this, the discharge conditions are returned to the conditions before the atmospheric state change, that is, the conditions indicated by II in Figure 5 (a) and (b), and from then on, the counting rate for one slow electron, that is, the detection sensitivity, Detects slow electrons without causing any change. Note: 1. If the ambient temperature rises or falls too much, the heating power to the anode is returned to its initial state before detecting the atmospheric condition. By doing so, the measurement error can be made as small as possible.

なお、上述した実施例においては、低電圧側から電圧走
査を行なうようにしているが、高電圧側から走査を行な
って計数率が設定値まで低下した時点の陽極電圧に基づ
いて電圧可変型高電圧発生装W15の出力電圧を制御し
たり、陽極温度制御回路15からの加熱電力を制御して
も同様の作用を奏することは明らかである。
In the above-mentioned embodiment, voltage scanning is performed from the low voltage side, but scanning is performed from the high voltage side and the voltage variable type high voltage It is clear that the same effect can be obtained by controlling the output voltage of the voltage generator W15 or by controlling the heating power from the anode temperature control circuit 15.

また、上述した実施例においては、大気状態検出モード
時における放電状態検知を計数率の変化により行なって
いるが、増幅器7から出力されたパルス信号の波高値や
、陽極負荷電流の大きさに基づいて検出できることは言
うまでもない。
In addition, in the embodiment described above, the discharge state is detected in the atmospheric state detection mode by changing the counting rate, but it is also based on the peak value of the pulse signal output from the amplifier 7 and the magnitude of the anode load current. Needless to say, it can be detected by

さらに、上述した実施例では陽極に電流を流して直接加
熱するようにしているが、陽極近傍にヒータを配設して
間接的に加熱するようにしても同様の作用を奏する。
Further, in the above-described embodiments, a current is passed through the anode to directly heat the anode, but a heater may be disposed near the anode to heat the anode indirectly, with the same effect.

さらに、上述した実施例においては、測定モードと大気
状態検出モードを手動により選択するようにしているが
、タイマー等を用いることにより一定周期で各モードを
自動的に交互に切換えることができる。
Further, in the embodiments described above, the measurement mode and the atmospheric condition detection mode are manually selected, but by using a timer or the like, each mode can be automatically switched alternately at a fixed period.

−(効果) 以上、説明したように本発明によれば、低速電子が侵入
しない状態で陽極電圧を一方向に変化させて放電状態が
変化した時点の電圧をパラメータとして低速電子測定時
の陽極電圧もしくは陽極温度を設定するようにしたので
、特別な大気状態検出手段や演算手段を使用することな
く、常に一定の感度で低速電子を検出することができる
- (Effects) As explained above, according to the present invention, the anode voltage is changed in one direction in a state where slow electrons do not enter, and the voltage at the time when the discharge state changes is used as a parameter to determine the anode voltage when measuring slow electrons. Alternatively, since the anode temperature is set, low-speed electrons can always be detected with constant sensitivity without using special atmospheric condition detection means or calculation means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、玉完明の一実施例を示す装置の構成図、第2
図は、同上装置の動作を示す波形図、第3図は、本発明
の他の実施例を示す装置の構成図、第4図は、第3図に
示した装置の動作を示す波形図、第5図(イ)(ロ)は
、それぞれ低速電子測定装置における大気状態と計数率
の関係を示す特性図である。 !・・・・陰極 2,13・・・・陽極3.4・・・・
格子電極 出願人 理研計器株式会社(+5yis)代理人′ 弁
理士 西 川 慶 治 同 木村勝彦 第1図 第3図 第4図 第5図 (イ) (ロ) 剛I五(7cV)        、。 手  続  補  正  書 (几処)昭和60年8月
%30日 。 特許庁長官 宇 賀 道 部 殿 。 1、事件の表示 昭和60年特許願第80891号 2、発明の名称 低速電子測定装置 3、補正をする者 事件との関係  特許出願人 埼玉県和光市広沢2番1号 理化学研究所 代表者 宮 島 龍 興 4 、代  理  人      〒112  電03
(815)flloO東京都文京区小石川2丁目1番2
号 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書第13頁第9行目と同第1O行目の間に    
。 下記の文章を加入する。
Fig. 1 is a configuration diagram of a device showing one embodiment of Tama Kanmei;
3 is a waveform diagram showing the operation of the device shown in the above, FIG. 3 is a configuration diagram of the device showing another embodiment of the present invention, and FIG. 4 is a waveform diagram showing the operation of the device shown in FIG. FIGS. 5(a) and 5(b) are characteristic diagrams showing the relationship between the atmospheric condition and the counting rate in the low-speed electronic measuring device, respectively. ! ...Cathode 2,13...Anode 3.4...
Grid electrode applicant Riken Keiki Co., Ltd. (+5yis) Agent Patent attorney Keiji Nishikawa Katsuhiko Kimura Figure 1 Figure 3 Figure 4 Figure 5 (a) (b) Tsuyoshi Igo (7cV). Procedural amendment (written) August 30, 1985. Mr. Michibu Uga, Commissioner of the Patent Office. 1. Indication of the case 1985 Patent Application No. 80891 2. Name of the invention Low-speed electronic measuring device 3. Person making the amendment Relationship to the case Patent applicant 2-1 Hirosawa, Wako City, Saitama Prefecture Representative of RIKEN Miya Ryuko Shima 4, Agent 〒112 Telephone 03
(815) flloO 2-1-2 Koishikawa, Bunkyo-ku, Tokyo
No. 5, Detailed explanation of the invention column 6 of the specification subject to amendment, between line 9 and line 10 of page 13 of the specification of contents of the amendment
. Add the following text.

Claims (2)

【特許請求の範囲】[Claims] (1)一端に低速電子の流入口が形成された容器状の陰
極と、該陰極の内部に配設された陽極と、前記陽極に対
して少なくとも放電を生じさせるに足る電圧を出力する
電圧可変型高電圧発生手段と、低速電子の流入がない状
態で前記高電圧発生手段からの出力電圧値を一方向に変
化させて前記陽極の放電状態が変化した時点の電圧を検
出し、この検出電圧に基づいて低速電子検出時に一定レ
ベルの放電を生じさせる電圧を前記高電圧発生手段に設
定する制御手段とからなる低速電子測定装置。
(1) A container-shaped cathode with an inlet for slow electrons formed at one end, an anode disposed inside the cathode, and a variable voltage that outputs at least enough voltage to cause discharge to the anode. type high voltage generating means, and detecting the voltage at the time when the discharge state of the anode changes by changing the output voltage value from the high voltage generating means in one direction in a state where there is no inflow of slow electrons, and detecting the detected voltage. a control means for setting the high voltage generating means to a voltage that causes a certain level of discharge when low speed electrons are detected, based on the above.
(2)一端に低速電子の流入口が形成された容器状の陰
極と、該陰極の内部に配設された陽極と、前記陽極に対
して少なくとも放電を生じさせるに足る電圧を出力する
電圧可変型高電圧発生手段と、低速電子の流入がない状
態で前記高電圧発生手段からの出力電圧値を一方向に変
化させて前記陽極の放電状態が変化した時点の電圧を検
出し、この検出電圧に基づいて低速電子検出時に一定レ
ベルの放電を生じさせる温度に前記陽極を加熱する陽極
温度制御手段とからなる低速電子測定装置。
(2) A container-shaped cathode with an inlet for slow electrons formed at one end, an anode disposed inside the cathode, and a variable voltage that outputs at least enough voltage to cause discharge to the anode. type high voltage generating means, and detecting the voltage at the time when the discharge state of the anode changes by changing the output voltage value from the high voltage generating means in one direction in a state where there is no inflow of slow electrons, and detecting the detected voltage. and an anode temperature control means for heating the anode to a temperature that causes a constant level of discharge during low-speed electron detection based on the following.
JP60080891A 1985-01-16 1985-04-15 Low speed electronic measuring device Expired - Fee Related JPH0616103B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60080891A JPH0616103B2 (en) 1985-04-15 1985-04-15 Low speed electronic measuring device
US06/819,226 US4740730A (en) 1985-01-16 1986-01-15 Apparatus for detecting low-speed electrons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60080891A JPH0616103B2 (en) 1985-04-15 1985-04-15 Low speed electronic measuring device

Publications (2)

Publication Number Publication Date
JPS61239184A true JPS61239184A (en) 1986-10-24
JPH0616103B2 JPH0616103B2 (en) 1994-03-02

Family

ID=13730976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60080891A Expired - Fee Related JPH0616103B2 (en) 1985-01-16 1985-04-15 Low speed electronic measuring device

Country Status (1)

Country Link
JP (1) JPH0616103B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823368A (en) * 1987-06-30 1989-04-18 Rikagaku Kenkyujyo Open counter for low energy electron detection with suppressed background noise

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544219U (en) * 1978-09-14 1980-03-22
JPS59195177A (en) * 1983-04-20 1984-11-06 Rikagaku Kenkyusho Counting method of photoelectron

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544219U (en) * 1978-09-14 1980-03-22
JPS59195177A (en) * 1983-04-20 1984-11-06 Rikagaku Kenkyusho Counting method of photoelectron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4823368A (en) * 1987-06-30 1989-04-18 Rikagaku Kenkyujyo Open counter for low energy electron detection with suppressed background noise

Also Published As

Publication number Publication date
JPH0616103B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
JP3587755B2 (en) Particle measuring apparatus and method
US3493753A (en) Ultraviolet detection system using uv detector tube with d-c biased nonsymmetrical electrode configuration
JPS61239184A (en) Low-speed electron measuring device
US3439261A (en) Combustible gas detector using a corona discharge
US4740730A (en) Apparatus for detecting low-speed electrons
He et al. Trichel pulses in a negative corona discharge in air at low pressure
US3872377A (en) Cold cathode ionization gauge
JPS61239185A (en) Low-speed electron measuring device
US2766440A (en) Flame detector
JP2553556B2 (en) Impurity doping method and apparatus
US4101823A (en) Method and apparatus for measuring cathode emission slump
JP3153337B2 (en) Inductively coupled plasma mass spectrometer
JPS61145452A (en) Apparatus for detecting gas
JPS61164177A (en) Slow electron measuring instrument
JP2002350552A (en) Radiation detector
JPH075265A (en) Gas flow type proportional counter tube correcting measurement error due to fluctuation of gas pressure
JP3084961B2 (en) Halogen gas leak detector
JPS63167255A (en) Electron counting device
Celani et al. Study of deuterium charging behaviour in palladium and palladium alloy plates, changing surface treatments. by ms pulsed electrolysis
Pal Stabilization of Breakdown Voltage and Measurement of Some Critical Currents in a Glow Tube
JP2003279540A (en) Aerial ion measuring apparatus
JPH01163631A (en) Weak light measuring instrument with mode switching function
JPS57101326A (en) Electron beam device
SU59741A1 (en) The method of registration of short-term voltage pulses
JPH10267896A (en) Electron capture type detector

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees