JPH10267896A - Electron capture type detector - Google Patents

Electron capture type detector

Info

Publication number
JPH10267896A
JPH10267896A JP9091498A JP9149897A JPH10267896A JP H10267896 A JPH10267896 A JP H10267896A JP 9091498 A JP9091498 A JP 9091498A JP 9149897 A JP9149897 A JP 9149897A JP H10267896 A JPH10267896 A JP H10267896A
Authority
JP
Japan
Prior art keywords
concentration
voltage
current
pulse
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9091498A
Other languages
Japanese (ja)
Inventor
Kazuya Nakagawa
一也 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP9091498A priority Critical patent/JPH10267896A/en
Publication of JPH10267896A publication Critical patent/JPH10267896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the need for switching operation of a range for concentration. SOLUTION: The output voltage of a differential amplifier 13 is inputted to a V/F converter 15 through a non-linear amplifier 14 of square characteristics. Then the taken-out output voltage of the differential amplifier 13 is corrected for non-linear characteristics using a calculation processing part 19, resulting in a direction signal. Thus, when the concentration of a target material introduced into a detection cell 10 is low, the fluctuation in output voltage of the deferential amplifier 13 against concentration changes is large, while higher the concentration of it smaller the fluctuation. Thus, a measurement of high sensitivity is performed given at low concentration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガスクロマトグラ
フ装置等の検出器として利用される電子捕獲形検出器
(以下「ECD(=Electron Capture Detector)」と
呼ぶ)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron capture detector (hereinafter, referred to as "ECD (Electron Capture Detector)") used as a detector of a gas chromatograph or the like.

【0002】[0002]

【従来の技術】ガスクロマトグラフ装置の検出器として
は種々のものが実用化されているが、その中で、ECD
はハロゲン化合物やニトロ化合物等の親電子性化合物の
測定に有用である。このため、有機水銀、農薬、PCB
等の残留測定、或いは、ステロイドやアミノ酸等を親電
子性の誘導体に変換しての極微量測定等に利用されてい
る。
2. Description of the Related Art Various types of detectors have been put into practical use in gas chromatography apparatuses.
Is useful for measuring electrophilic compounds such as halogen compounds and nitro compounds. Therefore, organic mercury, pesticides, PCB
Is used for the measurement of residual amounts of steroids, amino acids and the like, or the measurement of trace amounts of steroids and amino acids converted to electrophilic derivatives.

【0003】図3は、従来のECDの構成図である。検
出セル10内には、キャリアガス及びクロマトグラフの
カラムを通過した試料ガスが導入される。検出セル10
内に設置された電極11はトランス12の一方のコイル
L1に接続され、そのコイルL1を介して差分アンプ1
3に入力されている。差分アンプ13の出力電圧は反転
アンプ20を介して電圧/周波数(V/F)変換器15
に与えられ、V/F変換器15は入力電圧値に応じた周
波数のパルス信号を出力する。レンジ切換部21は1/
10分周を行なう分周器22及びスイッチ23から構成
され、スイッチ23により選択的に出力されたパルス信
号がパルス整形器16に与えられる。パルス整形器16
はパルス信号の周波数を保持したままパルス幅及びパル
ス高さを適当に変換し、ドライバ部17を介してトラン
ス12の他方のコイルL2へと送る。
FIG. 3 is a configuration diagram of a conventional ECD. Into the detection cell 10, a carrier gas and a sample gas that has passed through a column of a chromatograph are introduced. Detection cell 10
The electrode 11 installed in the inside is connected to one coil L1 of the transformer 12, and the difference amplifier 1 is connected through the coil L1.
3 has been entered. The output voltage of the difference amplifier 13 is supplied to a voltage / frequency (V / F) converter 15 via an inverting amplifier 20.
, And the V / F converter 15 outputs a pulse signal having a frequency corresponding to the input voltage value. The range switching section 21 is 1 /
It is composed of a frequency divider 22 that performs frequency division by 10 and a switch 23, and a pulse signal selectively output by the switch 23 is given to the pulse shaper 16. Pulse shaper 16
Converts the pulse width and the pulse height appropriately while maintaining the frequency of the pulse signal, and sends it to the other coil L2 of the transformer 12 via the driver unit 17.

【0004】上記ECDの動作は次の通りである。検出
セル10内には63Ni等の放射性同位元素が封入されて
おり、この放射線によりキャリアガスの分子はイオン化
される。パルス電圧が電極11に印加されると、キャリ
アガスのイオン化により発生した電子を取り込んでパル
ス電流が流れる。その雰囲気内へ電子捕獲性物質の分子
が侵入してくると、その分子は周囲の自由電子を容易に
吸収して負イオンとなる。このため、自由電子の密度が
減少し、また負イオンは自由電子よりも移動速度が遅い
ため正電極に到達する時間が長くなるので、1回のパル
ス電圧の印加により流れる電流は減少する。
The operation of the ECD is as follows. Detected in the cell 10 and radioactive isotopes, such as 63 Ni is sealed, the molecules of the carrier gas by the radiation is ionized. When a pulse voltage is applied to the electrode 11, electrons generated by ionization of the carrier gas are taken in and a pulse current flows. When molecules of the electron-capturing substance enter the atmosphere, the molecules easily absorb surrounding free electrons and become negative ions. For this reason, the density of free electrons decreases, and the moving speed of negative ions is slower than that of free electrons, so that the time to reach the positive electrode becomes longer. Therefore, the current flowing by one pulse voltage application is reduced.

【0005】差分アンプ13は、このパルス電流と目標
電流IRとの差電流を積分して電圧に変換する。これに
より、差分アンプ13の出力にはパルス電流の平均値
(単位時間当たりのパルス電流)と目標電流IRとの差
に応じた電圧が現われる。V/F変換器15はこの電圧
に応じた周波数のパルス信号を出力するから、例えば、
検出セル10内に電子捕獲性物質の分子が入ってきてパ
ルス電流が減少すると、差分アンプ13の出力電圧は大
きくなり、V/F変換器15の出力のパルス信号の周波
数は上昇する。すなわち、1個のパルス信号で取り込ま
れる電子数の減少を補うべく単位時間当たりに発生する
パルス数が増加する。このようなパルス信号がトランス
12に供給されると、パルス電流の平均値が上昇し差分
アンプ13の出力電圧は小さくなる。
The difference amplifier 13 integrates the difference current between the pulse current and the target current IR and converts it into a voltage. As a result, a voltage corresponding to the difference between the average value of the pulse current (the pulse current per unit time) and the target current IR appears at the output of the difference amplifier 13. Since the V / F converter 15 outputs a pulse signal having a frequency corresponding to this voltage, for example,
When the molecules of the electron-capturing substance enter the detection cell 10 and the pulse current decreases, the output voltage of the difference amplifier 13 increases, and the frequency of the pulse signal output from the V / F converter 15 increases. That is, the number of pulses generated per unit time increases to compensate for the decrease in the number of electrons captured by one pulse signal. When such a pulse signal is supplied to the transformer 12, the average value of the pulse current increases and the output voltage of the difference amplifier 13 decreases.

【0006】このように、電子数が減少した分だけ単位
時間内のパルス数を増加することにより単位時間当たり
の電子総数つまり電流を一定に維持するようにすると、
パルス数の変化Δfは電子捕獲性物質の濃度に比例する
ことになる。すなわち、次の(1)式が成立する。 Δf=f−f0=K・a …(1) f :パルス周波数 f0 :キャリアガスのみの場合のパルス周波数 K :電子捕獲速度等に依存する定数 a :電子捕獲性物質の濃度
As described above, if the total number of electrons per unit time, that is, the current, is kept constant by increasing the number of pulses in a unit time by an amount corresponding to the decrease in the number of electrons.
The change Δf in the number of pulses is proportional to the concentration of the electron-capturing substance. That is, the following equation (1) holds. Δf = f−f0 = K · a (1) f: pulse frequency f0: pulse frequency in the case of carrier gas only K: constant depending on electron capture speed, etc. a: concentration of electron-capturing substance

【0007】差分アンプ13の出力から取り出した検出
電圧Vはパルス電流の平均値の変動に応じたものとなる
から、この検出電圧Vを時間経過に従って記録すること
により、目的とする電子捕獲性物質の濃度に関するクロ
マトグラムが得られる。
Since the detection voltage V obtained from the output of the difference amplifier 13 depends on the fluctuation of the average value of the pulse current, the detection voltage V is recorded as time elapses, so that the target electron trapping substance can be obtained. A chromatogram for the concentration of is obtained.

【0008】[0008]

【発明が解決しようとする課題】上記構成のECDで
は、レンジ切換部21のスイッチ23を切り換えること
により目的物質の濃度に応じたレンジの切換えを可能に
している。すなわち、目的物質が低濃度である場合には
スイッチ23を上側に倒し、分周器22の出力をパルス
整形器16に与えることによりパルス数を1/10にす
る。一方、目的物質が高濃度である場合にはスイッチ2
3を下側に倒し、V/F変換器15のパルス信号出力を
そのままパルス整形器16に与える。
In the ECD having the above structure, the range can be switched in accordance with the concentration of the target substance by switching the switch 23 of the range switching section 21. That is, when the target substance has a low concentration, the switch 23 is tilted upward and the output of the frequency divider 22 is supplied to the pulse shaper 16 to reduce the number of pulses to 1/10. On the other hand, if the target substance has a high concentration, switch 2
3 is tilted downward, and the pulse signal output of the V / F converter 15 is given to the pulse shaper 16 as it is.

【0009】V/F変換器15における入力電圧とパル
ス信号出力の周波数との関係が線形であると、検出電圧
Vと電子捕獲性物質の濃度との関係は(1)式より次のよ
うに求まる。スイッチ23を下側に倒した1倍レンジの
ときには、 C・V−C・V0=K・a …(2) スイッチ23を上側に倒した10倍レンジのときには、 C・V−C・V0=10・K・a …(3) ここで、V0はキャリアガスのみの場合の検出電圧、C
はV/F変換に依存する定数である。(2)、(3)式によ
る検出電圧Vと濃度K・aとの関係は、それぞれ図4に
示すように、レンジに応じて傾斜が異なる直線となる。
すなわち、10倍レンジでは濃度変化に対する検出電圧
の変化が相対的に大きく、1倍レンジでは濃度変化に対
する検出電圧の変化が相対的に小さくなる。従って、低
濃度のときには10倍レンジに切り換えることにより高
精度の測定が行なえ、高濃度のときには1倍レンジに切
り換えることにより出力の飽和を回避することができ
る。
If the relationship between the input voltage in the V / F converter 15 and the frequency of the pulse signal output is linear, the relationship between the detection voltage V and the concentration of the electron-capturing substance is as follows from equation (1). I get it. In the case of the 1 × range where the switch 23 is tilted downward, C · VC−V0 = K · a (2) In the case of the 10 × range where the switch 23 is tilted upward, C · VC−V0 = 10 · K · a (3) where V0 is the detection voltage when only the carrier gas is used, C
Is a constant depending on V / F conversion. The relationship between the detected voltage V and the concentration Ka based on the equations (2) and (3) is a straight line having a different slope depending on the range as shown in FIG.
That is, the change in the detection voltage with respect to the density change is relatively large in the 10-fold range, and the change in the detection voltage with respect to the density change is relatively small in the 1-fold range. Therefore, high-precision measurement can be performed by switching to the 10-fold range when the density is low, and output saturation can be avoided by switching to the 1-fold range when the density is high.

【0010】しかしながら、上記従来のECDでは、目
的物質の濃度に応じて測定者がレンジを切り換える必要
があるため操作が面倒であると共に、濃度が全く不明で
あるときにはレンジを切り換えて2回測定を行なわなけ
ればならないこともある。
However, in the above-mentioned conventional ECD, the operator has to switch the range in accordance with the concentration of the target substance, so that the operation is troublesome, and when the concentration is not completely known, the range is switched and the measurement is performed twice. Some things have to be done.

【0011】本発明は上記課題を解決するために成され
たものであり、レンジの切換え操作の不要な、広い入力
ダイナミックレンジを有するECDを提供することにあ
る。
An object of the present invention is to provide an ECD having a wide input dynamic range that does not require a range switching operation.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に成された本発明は、検出セル内にキャリアガスを導入
してイオン化し、該雰囲気中に試料ガスを送り検出セル
内に配設した電極に流れる電流を検出する電子捕獲形検
出器において、 a)前記電極にパルス電圧を印加し、電圧印加時に該電極
に流れる電流を検出する電流測定手段と、 b)該電流測定手段により測定された電流と所定電流との
差に応じた電圧を出力する差分検出手段と、 c)入力が大きいとき増幅率が大きくなる特性をもって前
記差分検出手段の出力電圧を増幅する増幅手段と、 d)該増幅手段の出力電圧に応じた周波数のパルス信号を
生成し前記電流測定手段に供給するパルス生成手段と、 e)前記差分検出手段の出力電圧を取り出して前記増幅手
段の特性を補正する補正手段と、 を備えることを特徴としている。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is directed to a method in which a carrier gas is introduced into a detection cell to be ionized, and a sample gas is sent into the atmosphere to be disposed in the detection cell. An electron capture detector for detecting a current flowing through the electrode, wherein a) a pulse voltage is applied to the electrode, and a current measuring means for detecting a current flowing through the electrode when the voltage is applied; and b) a current measured by the current measuring means. Difference detection means for outputting a voltage corresponding to the difference between the obtained current and the predetermined current; c) amplification means for amplifying the output voltage of the difference detection means with a characteristic that the amplification factor increases when the input is large; d) Pulse generating means for generating a pulse signal having a frequency corresponding to the output voltage of the amplifying means and supplying the pulse signal to the current measuring means; e) correcting means for taking out the output voltage of the difference detecting means and correcting the characteristics of the amplifying means When It is characterized in that it comprises.

【0013】[0013]

【発明の実施の形態】本発明に係る電子捕獲形検出器で
は、電流測定手段、差分検出手段、増幅手段及びパルス
生成手段によりフィードバックループが構成されてい
る。このフィードバックループでは、検出セル内に導入
された電子捕獲性物質の量が増加し電流測定手段により
測定された電流が減少すると、所定電流との差が広がる
ため、差分検出手段の出力電圧は大きくなる。パルス生
成手段は入力電圧が大きくなるとパルス信号の周波数を
高くするため、単位時間当たりのパルス数が増す。これ
により、検出セル内で電極が電子を取り込む機会が増え
るので、1回のパルス電圧に対応して流れる電流の減少
が補われ、単位時間当たりの電流は所定電流に近付く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In an electron capture detector according to the present invention, a feedback loop is formed by current measuring means, difference detecting means, amplifying means and pulse generating means. In this feedback loop, when the amount of the electron-capturing substance introduced into the detection cell increases and the current measured by the current measuring means decreases, the difference between the current and the predetermined current increases, so that the output voltage of the difference detecting means increases. Become. The pulse generating means increases the frequency of the pulse signal as the input voltage increases, so that the number of pulses per unit time increases. This increases the chances of the electrodes taking in electrons in the detection cell, thereby compensating for a decrease in the current flowing in response to one pulse voltage, so that the current per unit time approaches the predetermined current.

【0014】増幅手段は、例えば二乗特性を有するアン
プとすることができる。検出セル内に導入された電子捕
獲性物質の量が少なく(つまり濃度が低く)キャリアガ
スのみの場合に流れる電流との差が小さいとき、差分検
出手段の出力電圧は相対的に小さいので増幅手段の増幅
率も相対的に小さい。逆に、検出セル内に導入された電
子捕獲性物質の量が多く(つまり濃度が高く)キャリア
ガスのみの場合に流れる電流との差が大きいとき、差分
検出手段の出力電圧は相対的に大きいので増幅手段の増
幅率は相対的に大きくなる。従って、フィードバックル
ープが平衡状態を維持しようと動作するとき、電子捕獲
性物質の濃度が低いと濃度変化に対する差分検出手段の
出力電圧変化は大きくなり、逆に、電子捕獲性物質の濃
度が高いと濃度変化に対する出力電圧変化は小さくな
る。電子捕獲性物質の濃度変化に対する差分検出手段の
出力電圧変化は増幅手段の増幅率の変化特性に依存した
ものとなるから、補正手段はこの特性を補正する処理を
行なって、濃度と検出信号との関係が例えば直線となる
ようにする。
The amplification means may be, for example, an amplifier having a square characteristic. When the amount of the electron trapping substance introduced into the detection cell is small (that is, the concentration is low) and the difference from the current flowing when the carrier gas alone is small, the output voltage of the difference detection means is relatively small. Is also relatively small. Conversely, when the amount of the electron-capturing substance introduced into the detection cell is large (that is, the concentration is high) and the difference from the current flowing when the carrier gas alone is large, the output voltage of the difference detection means is relatively large. Therefore, the amplification factor of the amplification means becomes relatively large. Therefore, when the feedback loop operates to maintain the equilibrium state, when the concentration of the electron-capturing substance is low, the output voltage change of the difference detection means with respect to the concentration change becomes large, and conversely, when the concentration of the electron-capturing substance is high The output voltage change with respect to the density change becomes small. Since the change in the output voltage of the difference detecting means with respect to the change in the concentration of the electron-capturing substance depends on the change characteristic of the amplification factor of the amplifying means, the correcting means performs a process for correcting this characteristic, and obtains the concentration and the detection signal. Is made to be, for example, a straight line.

【0015】[0015]

【発明の効果】本発明の電子捕獲形検出器によれば、試
料の濃度が低い場合には検出感度が高くなり、試料の濃
度が高い場合には検出感度が低下する。このため、試料
の濃度が低い場合にも高精度の測定値が得られ、試料の
濃度が高い場合でも出力が飽和することがない。これに
より、従来のように測定者自らがレンジを切り換える煩
わしい操作を行なうことなく、試料の濃度に応じた最適
な測定が行なえる。
According to the electron capture detector of the present invention, the detection sensitivity increases when the concentration of the sample is low, and the detection sensitivity decreases when the concentration of the sample is high. Therefore, a highly accurate measurement value can be obtained even when the concentration of the sample is low, and the output does not saturate even when the concentration of the sample is high. Thereby, the optimum measurement according to the concentration of the sample can be performed without the troublesome operation of switching the range by the operator himself as in the related art.

【0016】[0016]

【実施例】本発明に係る電子捕獲形検出器の一実施例を
図1及び図2を参照して説明する。図1は、本実施例に
よるECDの構成図である。このECDでは、図3の従
来のECDにて設けられていたレンジ切換部に代わっ
て、差分アンプ13とV/F変換器15との間に二乗特
性を有する非線形アンプ14が設けられている。また、
差分アンプ13の出力から取り出した電圧を反転アンプ
18で極性を反転した後に演算処理部19に入力してい
る。非線形アンプ14は、入力電圧を二乗して(又は、
更に適当な定数を乗じて)出力する。従って、入力電圧
が大きくなるほど増幅率は大きくなり、その増幅率の増
加は急峻になる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the electron capture detector according to the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram of an ECD according to the present embodiment. In this ECD, a nonlinear amplifier 14 having a square characteristic is provided between a difference amplifier 13 and a V / F converter 15 in place of the range switching unit provided in the conventional ECD of FIG. Also,
The polarity of the voltage extracted from the output of the difference amplifier 13 is inverted by the inverting amplifier 18 and then input to the arithmetic processing unit 19. The nonlinear amplifier 14 squares the input voltage (or
The output is further multiplied by an appropriate constant). Therefore, the amplification factor increases as the input voltage increases, and the amplification factor increases sharply.

【0017】本実施例のECDにおいても、トランス1
2、差分アンプ13、非線形アンプ14、V/F変換器
15、パルス整形器16及びドライバ部17により構成
されているフィードバックループは、既述のように、電
極11に印加したパルス電圧によって流れるパルス電流
の平均値が目標電流IRとなるように動作する。従っ
て、検出電圧Vと電子捕獲性物質の濃度との関係は、上
記(1)式より、次のように求まる。 C・V2−C・V02=K・a …(4)
In the ECD of this embodiment, the transformer 1
2. The feedback loop including the difference amplifier 13, the non-linear amplifier 14, the V / F converter 15, the pulse shaper 16, and the driver unit 17, as described above, is a pulse flowing by the pulse voltage applied to the electrode 11. The operation is performed so that the average value of the current becomes the target current IR. Therefore, the relationship between the detection voltage V and the concentration of the electron-capturing substance is obtained from the above equation (1) as follows. C · V 2 -C · V0 2 = K · a ... (4)

【0018】上記(4)式より、 V2=(K・a/C)+V02 …(5) となるから、検出電圧Vと濃度K・aとの関係は、図2
に示すように平方根の特性となる。すなわち、電子捕獲
性物質の濃度が低いときには濃度変化に対する検出電圧
Vの変化率(つまり図2の曲線の傾き)は大きく、濃度
が高くなるほど濃度変化に対する検出電圧Vの変化率は
緩やかになる。従って、低濃度ほど検出感度が高くなる
一方、高濃度でも出力が飽和しないような特性が実現で
きる。
From the above equation (4), V 2 = (K · a / C) + V 0 2 (5) Therefore, the relationship between the detection voltage V and the concentration Ka is shown in FIG.
As shown in FIG. That is, when the concentration of the electron-capturing substance is low, the rate of change of the detection voltage V with respect to the concentration change (that is, the slope of the curve in FIG. 2) is large, and as the concentration increases, the rate of change of the detection voltage V with respect to the concentration change becomes gentle. Therefore, a characteristic can be realized in which the lower the density, the higher the detection sensitivity, but the output is not saturated even at a high density.

【0019】この検出電圧Vは演算処理部19に入力さ
れ、演算処理部19において濃度を算出する処理が行な
われる。例えば、検出電圧をA/D変換器によりディジ
タル値に変換した後、二乗演算を行なって出力信号を得
る。これにより、その出力信号は濃度K・aに対して比
例する特性となる。また、予め濃度が既知である標準試
料を用いて図2の如き濃度と検出電圧との関係を示す検
量線を作成して演算処理部19に記憶しておけば、二乗
演算を行なうことなく、非線形アンプ14の特性を補正
して濃度に比例する出力信号を取り出すことができる。
The detected voltage V is input to the arithmetic processing unit 19, and the arithmetic processing unit 19 performs a process of calculating the density. For example, after the detected voltage is converted into a digital value by an A / D converter, a square operation is performed to obtain an output signal. As a result, the output signal has a characteristic proportional to the density Ka. Also, if a calibration curve indicating the relationship between the concentration and the detection voltage as shown in FIG. 2 is created using a standard sample whose concentration is known in advance and stored in the arithmetic processing unit 19, the square calculation can be performed without performing By correcting the characteristics of the nonlinear amplifier 14, an output signal proportional to the density can be obtained.

【0020】上記実施例では非線形アンプ14が二乗特
性を有するものとしたが、特性はこれに限定されず、入
力電圧が大きいときに増幅率が大きくなるような特性で
ありさえすればよい。例えば、非線形アンプ14は、指
数特性や振幅伸張特性(折線特性)によるものとするこ
とができる。
In the above embodiment, the non-linear amplifier 14 has the square characteristic. However, the characteristic is not limited to this, and it is sufficient that the characteristic is such that the amplification factor increases when the input voltage is large. For example, the non-linear amplifier 14 can be based on an exponential characteristic or an amplitude extension characteristic (linear characteristic).

【0021】なお、上記実施例は一例であって、本発明
の趣旨の範囲で適宜変更や修正を行なえることは明らか
である。
The above embodiment is merely an example, and it is apparent that changes and modifications can be made within the spirit of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の電子捕獲形検出器の一実施例の構成
図。
FIG. 1 is a configuration diagram of an embodiment of an electron capture detector according to the present invention.

【図2】 本実施例の電子捕獲形検出器における電子性
捕獲物質の濃度と検出電圧との関係を示す図。
FIG. 2 is a diagram showing a relationship between the concentration of an electronic capture substance and a detection voltage in the electron capture type detector of the present embodiment.

【図3】 従来の電子捕獲形検出器の構成図。FIG. 3 is a configuration diagram of a conventional electron capture detector.

【図4】 従来の電子捕獲形検出器における電子性捕獲
物質の濃度と検出電圧との関係を示す図。
FIG. 4 is a diagram showing a relationship between the concentration of an electronic capture substance and a detection voltage in a conventional electron capture detector.

【符号の説明】[Explanation of symbols]

10…検出セル 11…電極 12…トランス 13…差分アンプ 14…非線形アンプ 15…電圧/周波数(V/F)変換器 16…パルス整形器 17…ドライバ部 DESCRIPTION OF SYMBOLS 10 ... Detection cell 11 ... Electrode 12 ... Transformer 13 ... Difference amplifier 14 ... Nonlinear amplifier 15 ... Voltage / frequency (V / F) converter 16 ... Pulse shaper 17 ... Driver part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検出セル内にキャリアガスを導入してイ
オン化し、該雰囲気中に試料ガスを送り検出セル内に配
設した電極に流れる電流を検出する電子捕獲形検出器に
おいて、 a)前記電極にパルス電圧を印加し、電圧印加時に該電極
に流れる電流を検出する電流測定手段と、 b)該電流測定手段により測定された電流と所定電流との
差に応じた電圧を出力する差分検出手段と、 c)入力が大きいとき増幅率が大きくなる特性をもって前
記差分検出手段の出力電圧を増幅する増幅手段と、 d)該増幅手段の出力電圧に応じた周波数のパルス信号を
生成し前記電流測定手段に供給するパルス生成手段と、 e)前記差分検出手段の出力電圧を取り出して前記増幅手
段の特性を補正する補正手段と、 を備えることを特徴とする電子捕獲形検出器。
1. An electron capture detector for introducing a carrier gas into a detection cell, ionizing the carrier gas, sending a sample gas into the atmosphere, and detecting a current flowing through an electrode provided in the detection cell. Current measuring means for applying a pulse voltage to the electrode and detecting a current flowing through the electrode when the voltage is applied; b) difference detection for outputting a voltage corresponding to a difference between the current measured by the current measuring means and a predetermined current C) amplifying means for amplifying the output voltage of the difference detecting means with a characteristic that the amplification factor increases when the input is large; d) generating a pulse signal having a frequency corresponding to the output voltage of the amplifying means, An electron capture type detector comprising: a pulse generation unit to be supplied to a measurement unit; and e) a correction unit that extracts an output voltage of the difference detection unit and corrects a characteristic of the amplification unit.
JP9091498A 1997-03-24 1997-03-24 Electron capture type detector Pending JPH10267896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9091498A JPH10267896A (en) 1997-03-24 1997-03-24 Electron capture type detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9091498A JPH10267896A (en) 1997-03-24 1997-03-24 Electron capture type detector

Publications (1)

Publication Number Publication Date
JPH10267896A true JPH10267896A (en) 1998-10-09

Family

ID=14028088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9091498A Pending JPH10267896A (en) 1997-03-24 1997-03-24 Electron capture type detector

Country Status (1)

Country Link
JP (1) JPH10267896A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244071A (en) * 2008-03-31 2009-10-22 Riken Keiki Co Ltd Ionizing type gas sensor
JP2015081785A (en) * 2013-10-21 2015-04-27 株式会社島津製作所 Electron capture detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244071A (en) * 2008-03-31 2009-10-22 Riken Keiki Co Ltd Ionizing type gas sensor
JP4713608B2 (en) * 2008-03-31 2011-06-29 理研計器株式会社 Ionized gas sensor
JP2015081785A (en) * 2013-10-21 2015-04-27 株式会社島津製作所 Electron capture detector

Similar Documents

Publication Publication Date Title
US5198771A (en) Potentiostatic apparatus and methods
US4117332A (en) Circuit for linearizing the response of an electron capture detector
JPS6054623B2 (en) electron capture detector
JPS6222098B2 (en)
JP3698760B2 (en) Electron capture detector with guard electrode
JPH10267896A (en) Electron capture type detector
US3634754A (en) Method and apparatus for linearly measuring electron capture with an electron capture detector
US4137453A (en) Methods and apparatus for improving electron capture detectors by collection of ions
US4538066A (en) Modulated voltage metastable ionization detector
US4193296A (en) Method and an instrument for the measurement of the flow rate of gases based on ionization
JP5829745B1 (en) Radiation measurement equipment
US20200209202A1 (en) Electric conductivity detector and method for determining phase adjustment value
CA1075304A (en) Vacuum tube gas test apparatus
US3277296A (en) Detection of electronegative compositions by means of electron capture detection
Taylor et al. Method of continuously measuring work function changes
US4705948A (en) Closed-loop pulsed helium ionization detector
JP6142767B2 (en) Electron capture detector
JPH09203724A (en) Hydrogen flame ionization sensor
KR970030035A (en) Improved Mass Spectrometry and Radical Measurement Methods
JPS6232419B2 (en)
GB1042409A (en) Method and means for detection of gases and vapors
JPH075266A (en) Proportional counter capable of correcting measurement error due to fluctuation of voltage between electrodes
US6134943A (en) Electron capture detector for gas chromatograph
JP2936821B2 (en) Mass spectrometer
JP4569606B2 (en) Electron capture detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050319

Effective date: 20050314

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070420

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7