JPS63167255A - Electron counting device - Google Patents
Electron counting deviceInfo
- Publication number
- JPS63167255A JPS63167255A JP31123886A JP31123886A JPS63167255A JP S63167255 A JPS63167255 A JP S63167255A JP 31123886 A JP31123886 A JP 31123886A JP 31123886 A JP31123886 A JP 31123886A JP S63167255 A JPS63167255 A JP S63167255A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- anode
- counting
- anode voltage
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims description 21
- 239000000523 sample Substances 0.000 abstract description 25
- 238000010791 quenching Methods 0.000 abstract description 4
- 230000000171 quenching effect Effects 0.000 abstract description 4
- 239000013074 reference sample Substances 0.000 abstract description 3
- 238000007599 discharging Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 239000011440 grout Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of Radiation (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光エネルギーの照射で試料から放出される電
子の数を計数する電子計数装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electronic counting device that counts the number of electrons emitted from a sample upon irradiation with light energy.
(従来技術)
従来、例えば半導体等の試料表面に形成された酸化膜等
の膜厚を大気開放状態で計測する方法として、試料表面
に光を照射し、光の照射により試料上の薄膜を通って外
部に放出される電子を電子検出部に導入し、導入電子に
より引き起こされる気体放電現象を利用して放出電子の
数を計数し、この放出電子数に基づいて膜厚を計測する
方法が知られている・(特願昭59−118818号等
)。(Prior art) Conventionally, as a method for measuring the thickness of an oxide film formed on the surface of a sample such as a semiconductor in an open atmosphere, the sample surface is irradiated with light, and the light passes through the thin film on the sample. A known method is to introduce electrons emitted to the outside into an electron detection section, count the number of emitted electrons using the gas discharge phenomenon caused by the introduced electrons, and measure the film thickness based on the number of emitted electrons. (Japanese Patent Application No. 118818/1984, etc.).
(発明が解決しようとする問題点)
しかしながら、このような従来の電子計数装置にあって
は、電子検出部内に配置した陽極リングに高電圧を印加
して試料から放出された電子にょり気体放電を引き起こ
し、この気体放電による陽極電圧のパルス変化から電子
数を計数するようにしているが、陽極電圧の決め方がは
っきりしておらず、放出電子を導入したときに気体放電
を引き起こす適宜の陽極電圧、例えば3.4KVに設定
していたとしても、大気開放型であることから、気圧や
温度の変化により同じ試料でおっても電子計数率が異な
る結果を招いており、安定した電子の計数ができないと
いう問題があった。(Problem to be Solved by the Invention) However, in such a conventional electronic counting device, a high voltage is applied to the anode ring disposed in the electron detection section, and the electrons emitted from the sample are generated in a gas discharge. The number of electrons is counted from the pulse change in the anode voltage caused by this gas discharge, but it is not clear how to determine the anode voltage, and it is difficult to determine the appropriate anode voltage that causes the gas discharge when emitted electrons are introduced. For example, even if the voltage is set to 3.4 KV, since it is open to the atmosphere, the electron counting rate will vary even for the same sample due to changes in atmospheric pressure and temperature, making it difficult to stably count electrons. The problem was that I couldn't do it.
(問題点を解決するための手段)
本発明は、このような従来の問題点に鑑みてなされたも
ので、気圧や温度が変動しても常に安定した放出電子の
計数結果が得られる最適陽極電圧を設定できるようにし
た電子計数装置を提供することを目的とする。(Means for Solving the Problems) The present invention has been made in view of these conventional problems, and is an optimal anode that can always provide stable counting results of emitted electrons even when atmospheric pressure and temperature fluctuate. It is an object of the present invention to provide an electronic counting device that allows the voltage to be set.
この目的を達成するため本発明にあっては、電子検出部
内に配置した陽極の印加電圧を可変する電圧可変手段と
、陽極電圧の可変により気体放電が開始される放電開始
電圧を検出する電圧検出手段と、この放電開始電圧に陽
極電圧の変化に対し計数値が略一定となる予め定まった
プラトー電圧幅の略2分の1の電圧を加克して最適陽極
電圧として設定する電圧設定手段とを設けるようにした
ものである。In order to achieve this object, the present invention includes a voltage variable means for varying the voltage applied to the anode disposed in the electron detection unit, and a voltage detection unit for detecting the discharge starting voltage at which gas discharge is started by varying the anode voltage. means, and voltage setting means for setting the discharge starting voltage as an optimum anode voltage by adding a voltage approximately half of a predetermined plateau voltage width such that the count value remains approximately constant with respect to changes in the anode voltage. It is designed to provide a.
(作用)
このような本発明の構成によれば、試料の測定に先立っ
て陽極電圧を可変することで放電開始電圧、例えば、電
子計数率がバックグラウトノイズに基づく閾値を越えた
ときの電圧を放電開始電圧ysとして検出し、この放電
開始電圧Vsに予め定まっているプラトー電圧幅Pwの
2分の1の電圧を加qした電圧(Vs +PW/2>を
最適陽極電圧として設定する。(Function) According to the configuration of the present invention, by varying the anode voltage prior to sample measurement, the discharge start voltage, for example, the voltage at which the electron count rate exceeds a threshold based on back grout noise, can be adjusted. The discharge starting voltage ys is detected, and a voltage (Vs + PW/2>) obtained by adding 1/2 of the predetermined plateau voltage width Pw to the discharge starting voltage Vs is set as the optimum anode voltage.
ここでプラトー電圧幅pwとは、放出電子を電子検出部
内に導入して陽極による高電界中で気体放電を引き起こ
したときに、気体放電のなだれ的な増幅を阻止するため
に第1格子電極の電圧を上昇させて電界を低下させる所
謂フェンチングミ圧の高さに等しい電圧幅であり、この
ように第1格子格子電極に印加するフェンチングミ圧の
高さからプラトー電圧pwが一義的に定まっていること
ら、放電開始電圧の検出に基づき直ちに最適陽極電圧を
設定することができる。Here, the plateau voltage width pw means that when emitted electrons are introduced into the electron detection section and a gas discharge is caused in a high electric field by the anode, the first grid electrode is used to prevent avalanche amplification of the gas discharge. The voltage width is equal to the height of the so-called Fenching pressure that increases the voltage and lowers the electric field, and the plateau voltage pw is uniquely determined from the height of the Fenching pressure applied to the first grid electrode. Therefore, the optimum anode voltage can be immediately set based on the detection of the discharge starting voltage.
このようにして設定された最適陽極電圧にあっては、気
圧や温度の変化により陽極電圧に対する電子計数率の特
性が変化しても、最適陽極電圧を中心とした±Pw/2
の範囲の変動であれば、電子計数率は略一定に保たれ、
安定した電子計数を行なうことができる。With the optimal anode voltage set in this way, even if the characteristics of the electron count rate with respect to the anode voltage change due to changes in atmospheric pressure or temperature, ±Pw/2 around the optimal anode voltage
If the fluctuation is within the range of , the electronic counting rate is kept approximately constant,
Stable electronic counting can be performed.
(実施例) 第1図は本発明の一実施例を示した説明図である。(Example) FIG. 1 is an explanatory diagram showing one embodiment of the present invention.
まず構成を説明すると、1は電子検出部であり、試料1
0をセットする試料台8側に検出窓2を開口した金属製
のケース3を有し、ケース3はアースされている。ケー
ス3内には陽極リング4が配置され、陽極リング4には
高圧電源23が接続され、高圧電源23により例えば3
.0〜4.0に■の範囲で陽極電圧を可変することがで
きる。陽極リング4に対する検出窓2側には順次第1格
子電極5と第2格子電極6が配@される。First, to explain the configuration, 1 is an electron detection section, and sample 1
It has a metal case 3 with a detection window 2 opened on the side of the sample stage 8 where 0 is set, and the case 3 is grounded. An anode ring 4 is disposed inside the case 3, and a high voltage power supply 23 is connected to the anode ring 4.
.. The anode voltage can be varied in the range of 0 to 4.0. A first grid electrode 5 and a second grid electrode 6 are sequentially arranged on the detection window 2 side with respect to the anode ring 4.
一方、電子検出部1の側方には光源装置9が配置され、
試料台8にセットした試料10の表面に対し斜め上方よ
り所定波長の単波長光を照射している。光源装置9は重
水素ランプ等の光源11と、光源11からの光を所定波
長の単波長光に変換するためのモノクロメータ12を有
し、さらにモノクロメータ12の前後に光強度を調整す
るためのスリット13.14を設けている。モノクロメ
ータ12は所定の波長域、例えば150nm〜600n
mの範囲で単波長を走査する機能を有する。On the other hand, a light source device 9 is arranged on the side of the electron detection section 1,
The surface of a sample 10 set on a sample stage 8 is irradiated with single wavelength light of a predetermined wavelength obliquely from above. The light source device 9 has a light source 11 such as a deuterium lamp, a monochromator 12 for converting the light from the light source 11 into single wavelength light of a predetermined wavelength, and further has a monochromator 12 for adjusting the light intensity before and after the monochromator 12. slits 13 and 14 are provided. The monochromator 12 has a predetermined wavelength range, for example, 150nm to 600nm.
It has the function of scanning a single wavelength in a range of m.
更に、電子検出部1による試料放出電子の計数回路とし
て、陽極リング4をコンデンサCを介して接続した増幅
器18と、電子検出部1に導入した電子による気体放電
現象に生ずる増幅器18を介して得られる陽極リング4
の電圧パルスを入力した第1パルス発生器20と第2パ
ルス発生器22が設けられ、第1パルス発生器20の出
力は第1格子電極5に接続され、また、第2パルス発生
器22の出力は第2格子電極6に接続される。Furthermore, as a counting circuit for electrons emitted from the sample by the electron detection section 1, an amplifier 18 connected to the anode ring 4 via a capacitor C, and an amplifier 18 for counting electrons emitted from the sample by the electrons introduced into the electron detection section 1 are used. Anode ring 4
The output of the first pulse generator 20 is connected to the first grid electrode 5, and the output of the second pulse generator 22 is connected to the first grid electrode 5. The output is connected to the second grid electrode 6.
ここで、増幅器18より導入電子による気体放電で陽極
リング4からの電圧パルスが出力されたときの第1パル
ス発生器20及び第2パルス発生器22の出力波形は次
のようになる。Here, the output waveforms of the first pulse generator 20 and the second pulse generator 22 when a voltage pulse is output from the anode ring 4 due to the gas discharge caused by the electrons introduced from the amplifier 18 are as follows.
初期状態において第2図(b)(c)に示すように、第
1パルス発生器20による第1格子電極5の電圧は例え
ば100Vであり、また第2格子電極6の電圧は第2パ
ルス発生器22の出力により例えば80Vとなっており
、光源装置9からの光の照射で試料10から放出された
電子は第2格子電極6及び第1格子電極5を通過して陽
極リング4に引き寄せられる。陽極リング4の近傍に放
出電子が近づくと陽極リング4による高電界を受けた電
子の加速で気体放電現象が引き起こされ、このため陽極
電圧は第2図(a)に示すようにパルス的な立ら下がり
変化を起こす。この陽極電圧の変化に対し第1のパルス
発生器20はそれまでの第1格子電極5の印加電圧を、
例えば300V高い400Vに予め定めたクエンチング
時間Teに亘ってアップする。このため陽極リング4と
第1格子電極5の電位差は300V低下し、陽極リング
4の近傍の電界強度が下がることで気体放電により生じ
た光や陽イオンによる2次電子は放電電圧に達すること
ができず、なだれ的な放電が阻止される。In the initial state, as shown in FIGS. 2(b) and 2(c), the voltage of the first grid electrode 5 generated by the first pulse generator 20 is, for example, 100V, and the voltage of the second grid electrode 6 is set to 100V when the second pulse is generated. The output of the device 22 is, for example, 80 V, and the electrons emitted from the sample 10 by the light irradiation from the light source device 9 pass through the second grid electrode 6 and the first grid electrode 5 and are attracted to the anode ring 4. . When the emitted electrons approach the vicinity of the anode ring 4, a gas discharge phenomenon is caused by the acceleration of the electrons under the high electric field of the anode ring 4, and as a result, the anode voltage rises in a pulsed manner as shown in Fig. 2(a). It causes a downward change. In response to this change in anode voltage, the first pulse generator 20 changes the voltage applied to the first grid electrode 5 up to that point,
For example, the voltage is increased by 300V to 400V over a predetermined quenching time Te. Therefore, the potential difference between the anode ring 4 and the first grid electrode 5 decreases by 300V, and the electric field strength near the anode ring 4 decreases, so that the light generated by the gas discharge and secondary electrons due to cations cannot reach the discharge voltage. This prevents an avalanche of discharge.
一方、気体放電による陽極電圧の立ち下がりに同期して
第2パルス発生器22は、それまでの第2格子電極6の
電圧80Vを例えば110V低い一30Vに所定のクエ
ンチング時間Teに亘って下げる。この第2格子電極2
の一30Vへの低下により増幅作用を伴う気体放電によ
って生じた陽イオンが第2格子電極6で補足されて中和
され、これによって陽イオンが試料10に到達して光電
子の放出に影響を及ぼすことを防ぐと同時に、外部から
の電子の導入を遮断する。On the other hand, in synchronization with the fall of the anode voltage due to the gas discharge, the second pulse generator 22 lowers the voltage of the second grid electrode 6, which had been 80V, to, for example, 110V lower to -30V over a predetermined quenching time Te. . This second grid electrode 2
- As the voltage decreases to 30 V, the cations generated by the gas discharge accompanied by the amplification effect are captured and neutralized by the second grid electrode 6, whereby the cations reach the sample 10 and affect the emission of photoelectrons. At the same time, it blocks the introduction of electrons from the outside.
この第2図の信号波形図に示したように、試料10から
電子が放出される毎に同様な動作が繰り返され、放出電
子1個に対応して増幅器18より電圧パルスが1つ出力
される。As shown in the signal waveform diagram of FIG. 2, the same operation is repeated every time an electron is emitted from the sample 10, and one voltage pulse is output from the amplifier 18 in response to one emitted electron. .
このようにして増幅器18より出力される電圧パルスは
計数手段24で計数され、例えば単位時間当りの計数率
N (cps)を出力するようになる。The voltage pulses outputted from the amplifier 18 in this manner are counted by the counting means 24, and a counting rate N (cps) per unit time is output, for example.
計数手段24に続いては陽極電圧を最適電圧に設定する
ための演算手段26が設けられる。Following the counting means 24, a calculating means 26 is provided for setting the anode voltage to an optimum voltage.
この演算手段26は、装置の使用に先立って所定の基準
試料を試お1台8にセットした状態で光源9より単波長
光を照射した状態で次の陽極最適電圧の設定処理を行な
う。The calculation means 26 performs the next process of setting the optimum anode voltage while a predetermined reference sample is set in the test unit 8 and single wavelength light is irradiated from the light source 9 prior to use of the apparatus.
(A>まず、高圧電源23に対し陽極電圧を例えば3.
0KVから4.0KVに可変させるための制御信号を出
力する。(A> First, set the anode voltage to the high voltage power supply 23, for example, 3.
Outputs a control signal to vary from 0KV to 4.0KV.
(B)前記(A>の高圧電源23に対する陽極電圧の可
変状態で計数手段24を介して得られる計数率Nを監視
しており、試料10からの電子放出が無いときのバック
グラウンドノイズに基づいて定まる閾値NO1例えばN
o−10(cps)以上となる計数率が19られたとき
に、このときの陽極印加電圧を放電開始電圧vSとして
検出する。(B) The counting rate N obtained through the counting means 24 is monitored while the anode voltage to the high voltage power supply 23 of (A> is varied), and is based on the background noise when there is no electron emission from the sample 10. Threshold value NO1 determined by, for example, N
When the counting rate of o-10 (cps) or more is 19, the voltage applied to the anode at this time is detected as the discharge starting voltage vS.
(C)前記(B)で検出された放電開始電圧VSに、第
2図(b)に示した第1格子電極5に印加する気体放電
素子のためのフェンチングミ圧の高さに相当するプラト
ー電圧幅pwの2分の1の電圧を加えた電圧(Vs+P
w/2>を演算し、この電圧を最適陽極電圧Vaoとし
て高圧電源23に設定する。(C) A plateau voltage corresponding to the height of the fencing pressure for the gas discharge element applied to the first grid electrode 5 shown in FIG. 2(b) in the discharge starting voltage VS detected in (B) above. The voltage (Vs+P
w/2> is calculated, and this voltage is set in the high voltage power supply 23 as the optimum anode voltage Vao.
更に、演算手段26は前述した陽極最適電圧の設定は能
に加えて、例えば試料10の表面に形成された酸化膜等
の膜厚を計測する場合には、計数手段24から1qられ
た計数率Nに基づいて膜厚Tを演算する手段を要し、こ
の膜厚演算手段は、I ogN= I oqNl−T/
2.30λ但し、λ:薄膜内の電子平均自由工程
(オングストローム)
N1 :膜厚が零のときの計数率
として膜厚Tを演算する。勿論、計数手段24で得られ
た電子h1数率Nをそのまま出力するようにしても良い
。また波長を可変させ、その計数率を出力させ、金属等
の仕事関数を演算させるようにしてもよい。Furthermore, in addition to the above-mentioned setting of the optimum anode voltage, the calculating means 26 calculates the counting rate obtained by calculating 1q from the counting means 24 when measuring the thickness of an oxide film formed on the surface of the sample 10, for example. A means for calculating the film thickness T based on N is required, and this film thickness calculation means calculates I ogN=I ogNl−T/
2.30λ However, λ: Electron mean free path in the thin film (Angstrom) N1: The film thickness T is calculated as the counting rate when the film thickness is zero. Of course, the electron h1 number rate N obtained by the counting means 24 may be output as is. Alternatively, the wavelength may be varied, the counting rate thereof may be outputted, and the work function of metal etc. may be calculated.
演算手段26の出力は表示手段28に与えられており、
表示手段28において演算された膜厚、電子計数率、仕
事関数を表示するようになる。The output of the calculation means 26 is given to the display means 28,
The calculated film thickness, electron count rate, and work function are displayed on the display means 28.
次に、第1図の実施例の作用を説明する。Next, the operation of the embodiment shown in FIG. 1 will be explained.
第3図は第1図の実施例に設けた演算手段26による最
適陽極電圧の設定処理を示したフローヂV−トであり、
装置の使用に先立って最適陽極電圧の設定処理を行なう
ようになる。FIG. 3 is a flowchart showing the optimum anode voltage setting process by the calculation means 26 provided in the embodiment of FIG.
Before using the device, the optimum anode voltage is set.
即ら、最適陽極電圧の設定処理に際しては、図示のよう
に試料台8に適宜の基準試料10をセットし、光源装置
9より所定の単波長光を照射して試料10より電子を放
出させる。または、光を照射せず微弱な放射線源を置い
て電子を放出させても良い。That is, when setting the optimum anode voltage, an appropriate reference sample 10 is set on the sample stage 8 as shown in the figure, and a predetermined single wavelength light is irradiated from the light source device 9 to cause the sample 10 to emit electrons. Alternatively, electrons may be emitted by placing a weak radiation source without irradiating light.
初期状態において演算手段26は高圧電源23に対し電
圧可変範囲の最低電圧、例えば3.0KVを初期値とし
て設定しており、ブロック30に示すように初期設定し
た陽極電圧Vaを例えば段階的に上昇させ、陽極電圧■
aを上昇する毎に計数手段24を介して得られる計数率
Nをバックグラウンドノイズに基づく閾値NOと判別ブ
ロック32で比較し、計数率Nが閾値Noに達するまで
ブロック30の陽極電圧Vaの上昇を繰り返す。In the initial state, the calculation means 26 sets the lowest voltage in the voltage variable range for the high voltage power supply 23 as an initial value, for example 3.0 KV, and increases the initially set anode voltage Va in steps, for example, as shown in block 30. and anode voltage■
Each time a increases, the counting rate N obtained through the counting means 24 is compared with a threshold value NO based on background noise in a discrimination block 32, and the anode voltage Va of the block 30 is increased until the counting rate N reaches the threshold value No. repeat.
判別ブロック32で計数率Nの閾値Noへの到達を判別
すると次のブロック34に進み、計数率Nが閾値Noを
越えたときの陽極電圧を放電開始電圧Vsとして検出す
ると共に、この放電開始電圧Vsに予め定まったプラト
ー電圧幅Pwの半分の電圧を加え合わせて最適陽極電圧
Vaoを演算し、次のブロック36で演算した最適陽極
電圧Vaoとなるように高圧電源23を制御し、最適陽
極電圧の設定処理を終了する。When the determination block 32 determines that the counting rate N has reached the threshold value No, the process proceeds to the next block 34, where the anode voltage when the counting rate N exceeds the threshold value No is detected as the discharge starting voltage Vs, and this discharge starting voltage The optimum anode voltage Vao is calculated by adding a voltage half the predetermined plateau voltage width Pw to Vs, and the high voltage power supply 23 is controlled so that the optimum anode voltage Vao calculated in the next block 36 is obtained, and the optimum anode voltage is calculated. Finish the setting process.
ここで、陽極電圧Vaの変化に対する計数率Nの関係は
第4図に示す特性となる。Here, the relationship between the counting rate N and the change in the anode voltage Va has the characteristics shown in FIG.
即ち、陽極電圧Vaを増加していくと、ある陽極電圧に
達したときに導入電子による気体放電によって電子計数
率Nが得られるようになり、バックグラウンドノイズに
基づく閾値Noを越える計数率Nが得られたときの陽極
電圧を放電開始電圧VSとする。更に陽極電圧を増加さ
せると、ある電圧を越えるまでは計数率Nが略一定に保
たれる状態が続き、この電圧を越えると計数率Nが急激
に増加して計数不能な状態となる。That is, as the anode voltage Va increases, when a certain anode voltage is reached, an electron counting rate N will be obtained by gas discharge due to the introduced electrons, and the counting rate N will exceed the threshold No based on background noise. The anode voltage obtained is defined as the discharge starting voltage VS. When the anode voltage is further increased, the counting rate N remains approximately constant until a certain voltage is exceeded, and when this voltage is exceeded, the counting rate N rapidly increases and becomes impossible to count.
ここで、陽極電圧の変化に対し計数率Nが略一定となる
範囲がプラトー電圧幅Pwと定義され、このプラトー電
圧幅Pwは、第2図(b)に示した第11j8子電極5
に印加するフェンチングミ圧の高さに一致するようにな
る。Here, the range in which the counting rate N is approximately constant with respect to changes in the anode voltage is defined as the plateau voltage width Pw, and this plateau voltage width Pw is the same as that of the 11j8 child electrode 5 shown in FIG. 2(b).
It will match the height of the pressure applied to the pressure.
具体的に説明すると、例えば第1格子電極5が100V
、第2格子電極6を80Vに設定し、クエンチングパル
スがない状態で電子を計数した場合、陽極電圧が3.4
KVでなだれ的な放電現象の増幅作用が発生したとする
と、その電位差は3゜3KVである。いま、フェンチン
グミ圧の高さが300Vであることから、陽極リング4
と第1格子電(Φ5との電位差が3.0〜3.3KVに
あるとき、なだれ的な放電現象の増幅作用を阻止するこ
とができる。このため第4図のフェンチングミ圧の高さ
に対応したプラトー幅pwの間においては、略一定の電
子計数率Nが得られる特性となる。To explain specifically, for example, the first grid electrode 5 has a voltage of 100V.
, when the second grid electrode 6 is set to 80 V and electrons are counted without a quenching pulse, the anode voltage is 3.4
If an amplification effect of an avalanche-like discharge phenomenon occurs at KV, the potential difference is 3°3KV. Now, since the height of the pressure is 300V, the anode ring 4
When the potential difference between the lattice voltage and the first grid voltage (Φ5) is 3.0 to 3.3 KV, the amplification effect of the avalanche-like discharge phenomenon can be prevented. Therefore, it corresponds to the height of the fenching pressure shown in Figure 4. During the plateau width pw, a substantially constant electron counting rate N is obtained.
このような陽極電圧に対する計数率Nの特性に対し、本
発明にあっては、放電開始電圧vSにプラトー電圧幅P
wの半分の電圧を加えた電圧を陽極最適電圧vaOとし
て設定していることから、最適陽極電圧Vaoは計数率
が略一定となるプラトー幅Pwの中心に設定されること
となる。Regarding the characteristics of the counting rate N with respect to the anode voltage, in the present invention, the plateau voltage width P is set to the discharge starting voltage vS.
Since the optimum anode voltage vaO is set as the voltage obtained by adding half the voltage of w, the optimum anode voltage Vao is set at the center of the plateau width Pw where the counting rate is approximately constant.
このように陽極最適電圧yaoがプラトー幅Pwの中心
に設定された場合、気圧や温度の変化に対し第4図に示
す特性曲線は破線で示すようにシフトする変動を生ずる
が、この変動幅が±PW/2以内にある限り、最適陽極
電圧yaoはプラトー幅pwの中に納まっており、気圧
や温度が変動しても計数率Nはほとんど変動せず、気圧
や温度の変動に対し安定したh1数結果を得ることがで
きる。When the anode optimum voltage yao is set at the center of the plateau width Pw in this way, the characteristic curve shown in Figure 4 shifts as shown by the broken line due to changes in atmospheric pressure and temperature, but this fluctuation range is As long as it is within ±PW/2, the optimal anode voltage yao is within the plateau width pw, and the counting rate N hardly changes even if the atmospheric pressure or temperature changes, so it is stable against changes in the atmospheric pressure or temperature. h1 number results can be obtained.
(発明の効果)
以上説明してぎたように本発明によれば、電圧可変手段
により陽極電圧を可変して放電開始電圧を検出し、この
放電開始電圧に陽極電圧の変化に対し電子計数値が略一
定となる予め定まったプラトー電圧幅の略2分の1の電
圧を加えて最適陽極電圧として設定するようにしたため
、気圧や温J3iの変化により陽極電圧に対する計数率
の特性が変動しても、常に安定した放出電子の計数状態
を得ることができ、この点は気圧や温度の変動のみなら
ず、電子検出部に対する試料までの距離の変動に依存し
た陽極電圧に対する計数率Nの特性の変化についても全
く同様に、安定で且つ効率の良い電子計数を行なうこと
ができる。(Effects of the Invention) As described above, according to the present invention, the anode voltage is varied by the voltage variable means to detect the discharge starting voltage, and the electronic count value is added to the discharge starting voltage with respect to the change in the anode voltage. Since the optimum anode voltage is set by applying a voltage that is approximately half of the predetermined plateau voltage width, which is approximately constant, even if the characteristics of the count rate with respect to the anode voltage vary due to changes in atmospheric pressure or temperature J3i, , it is possible to always obtain a stable counting state of emitted electrons, and this point is due to changes in the characteristics of the counting rate N with respect to the anode voltage, which depend not only on changes in atmospheric pressure and temperature, but also on changes in the distance from the electron detection unit to the sample. In the same way, stable and efficient electronic counting can be performed.
第1図は本発明の一実施例を示した説明図、第2図は電
子検出部における陽極電圧、第1及び第2格子電極電圧
の変化を示した信号波形図、第3図は本発明による最適
陽極電圧の設定処理を示したフローチャート、第4図は
陽極電圧に対する電子計数率の関係を示したグラフ図で
ある。
1:電子検出部
2:検出窓
3:ケース
4:陽極リング
5:第1格子電極
6:第2格子電極
8:試料台
9:光源装置
10:試料
11:光源
12:モノクロメータ
13.14ニスリツト
18:増幅器
20:第1パルス発生器
22:第2パルス発生器
23:高圧電源
24:計数手段
26:演算手段
28:表示手段Fig. 1 is an explanatory diagram showing an embodiment of the present invention, Fig. 2 is a signal waveform diagram showing changes in anode voltage and first and second grid electrode voltages in the electron detection section, and Fig. 3 is an explanatory diagram showing an embodiment of the present invention. FIG. 4 is a flowchart showing the optimum anode voltage setting process according to the method, and FIG. 4 is a graph showing the relationship between the electron count rate and the anode voltage. 1: Electron detection unit 2: Detection window 3: Case 4: Anode ring 5: First grid electrode 6: Second grid electrode 8: Sample stage 9: Light source device 10: Sample 11: Light source 12: Monochromator 13.14 Nislit 18: Amplifier 20: First pulse generator 22: Second pulse generator 23: High voltage power supply 24: Counting means 26: Arithmetic means 28: Display means
Claims (1)
極リングを配置すると共に該陽極リングの検出窓側に第
1格子電極及び第2格子電極を順次配置した電子検出部
を有し、光を照射した試料から放出される電子を前記電
子検出部内に導入し、該導入電子により生ずる気体放電
に基づいて電子の数を計数する電子計数装置に於いて、 前記陽極の印加電圧を可変する電圧可変手段と、該電圧
可変手段により陽極電圧を可変したときの放電開始電圧
を検出する電圧検出手段と、該電圧検出手段で検出した
放電開始電圧に陽極電圧の変化に対し電子計数値が略一
定となる予め定まったプラトー電圧幅の略2分の1の電
圧を加えて陽極最適電圧として設定する電圧設定手段と
を設けたことを特徴とする電子計数装置。[Claims] Electron detection in which an anode ring to which a high voltage is applied is arranged in a case with a detection window on one side, and a first grid electrode and a second grid electrode are sequentially arranged on the detection window side of the anode ring. In an electronic counting device which has a part and which introduces electrons emitted from a sample irradiated with light into the electron detection part and counts the number of electrons based on a gas discharge generated by the introduced electrons, a voltage variable means for varying the applied voltage; a voltage detection means for detecting a discharge starting voltage when the anode voltage is varied by the voltage variable means; 1. An electronic counting device comprising voltage setting means for setting an anode optimum voltage by applying a voltage approximately half of a predetermined plateau voltage width so that an electronic count value is approximately constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31123886A JPS63167255A (en) | 1986-12-27 | 1986-12-27 | Electron counting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31123886A JPS63167255A (en) | 1986-12-27 | 1986-12-27 | Electron counting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63167255A true JPS63167255A (en) | 1988-07-11 |
JPH0573190B2 JPH0573190B2 (en) | 1993-10-13 |
Family
ID=18014753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31123886A Granted JPS63167255A (en) | 1986-12-27 | 1986-12-27 | Electron counting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63167255A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110672001A (en) * | 2019-10-24 | 2020-01-10 | 中航通飞华南飞机工业有限公司 | Method and device for measuring thickness of non-ferromagnetic material on surface of ferromagnetic material |
-
1986
- 1986-12-27 JP JP31123886A patent/JPS63167255A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110672001A (en) * | 2019-10-24 | 2020-01-10 | 中航通飞华南飞机工业有限公司 | Method and device for measuring thickness of non-ferromagnetic material on surface of ferromagnetic material |
Also Published As
Publication number | Publication date |
---|---|
JPH0573190B2 (en) | 1993-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Coates | The origins of afterpulses in photomultipliers | |
JPH01171225A (en) | Apparatus and method for plasma treatment | |
US20100231194A1 (en) | Method and device for monitoring plasma discharges | |
US4721910A (en) | High speed circuit measurements using photoemission sampling | |
US4554455A (en) | Potential analyzer | |
De Martini et al. | Photomultiplier Gate for Stimulated‐Spontaneous Light Scattering Discrimination | |
Karstensen et al. | Absolute cross sections for single and double ionisation of Mg atoms by electron impact | |
JPS63167255A (en) | Electron counting device | |
JP2723215B2 (en) | Method and apparatus for monitoring the function of an integrated circuit during operation | |
US5760594A (en) | Contamination monitoring using capacitance measurements on MOS structures | |
Chen et al. | Excitation of the B Π g 3 states of N 2 by electron impact | |
Lo et al. | Performance studies of prototype microchannel plate photomultipliers | |
Golden et al. | Role of resonances in the electron-impact excitation functions of the C Π u 3 and E Σ g+ 3 states of N 2 | |
RU2737511C1 (en) | Method of controlling winding insulation defectiveness | |
JPH0789148B2 (en) | Electronic counter | |
Ballantine | Fluctuation noise due to collision ionization in electronic amplifier tubes | |
GB2466198A (en) | Spark generator for optical emission spectroscopy | |
Haydon et al. | Time-resolved studies of the electrical breakdown of a gas at radio frequencies | |
JP3309491B2 (en) | Fluorescent lamp inspection method | |
JPH0376841B2 (en) | ||
Chakravarti et al. | Determination of electron energy distribution in a plasma | |
JPH02171644A (en) | Electron counter | |
JPH0786347A (en) | Testing device for charged particle beam | |
JPH0547041B2 (en) | ||
SU1274028A1 (en) | Device for measuring surface potential in scanning electron microscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |