JP3309491B2 - Fluorescent lamp inspection method - Google Patents

Fluorescent lamp inspection method

Info

Publication number
JP3309491B2
JP3309491B2 JP12393393A JP12393393A JP3309491B2 JP 3309491 B2 JP3309491 B2 JP 3309491B2 JP 12393393 A JP12393393 A JP 12393393A JP 12393393 A JP12393393 A JP 12393393A JP 3309491 B2 JP3309491 B2 JP 3309491B2
Authority
JP
Japan
Prior art keywords
fluorescent lamp
emission
wavelength
light
lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12393393A
Other languages
Japanese (ja)
Other versions
JPH06333502A (en
Inventor
靖人 吉井
実 立木
修治 田丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12393393A priority Critical patent/JP3309491B2/en
Publication of JPH06333502A publication Critical patent/JPH06333502A/en
Application granted granted Critical
Publication of JP3309491B2 publication Critical patent/JP3309491B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は蛍光ランプの良否を判定
する検査方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection method for judging the quality of a fluorescent lamp.

【0002】[0002]

【従来の技術】蛍光ランプの製造工程において、バルブ
の脱ガス加熱処理、電極コイルに塗布した熱電子放射物
質の活性化処理、排気処理等の処理が不十分であると、
ランプ内に不純ガスが残存することがあり、また封止不
良等によりランプ内に空気が侵入することもある。この
ようなランプは、正常な動作や性能を発揮できず始動不
良、発光不良、早期黒化や短寿命等の不具合を引き起こ
す。
2. Description of the Related Art In the process of manufacturing a fluorescent lamp, if processes such as degassing and heating of a bulb, activation of a thermoelectron emitting material applied to an electrode coil, and exhaustion are insufficient,
Impurity gas may remain in the lamp, and air may enter the lamp due to poor sealing or the like. Such a lamp cannot exhibit normal operation and performance, and causes problems such as poor starting, poor light emission, early blackening, and short life.

【0003】従来、このような不良ランプを発見し除去
するための方法として、ランプに高周波電力を加えてラ
ンプ内にグロー放電を起こさせ、ランプより放射される
光の強さやその光色を目視し、良品と比較してその良否
を判定する方法が知られている。しかし、このような目
視による良否判定は、個人差が大きく安定性に欠ける。
Conventionally, as a method for finding and removing such a defective lamp, high-frequency power is applied to the lamp to cause glow discharge in the lamp, and the intensity of light emitted from the lamp and its light color are visually observed. In addition, a method is known in which the quality is compared with a non-defective product. However, such a visual quality judgment has a large individual difference and lacks stability.

【0004】また、他の方法としては、300nm〜4
00nmの領域および550nm以上の可視領域のうち
いずれかの波長域の光強度と、波長405nm、波長4
36nmおよび波長546nmの各水銀輝線を含むスペ
クトルの放射強度との強度比を所定値と比較し良否を判
定する方法(特公昭63−32213号公報)や、水銀
スペクトルの405nmまたは436nmの波長と、4
60〜510nmの波長との光強度比を求め、光強度比
を所定値と比較し良否を判定する方法(特公平3−23
0453号公報)が知られている。
As another method, 300 nm to 4 nm
The light intensity in any one of the wavelength range of 00 nm and the visible range of 550 nm or more;
A method of comparing the intensity ratio of the spectrum including the mercury emission lines of 36 nm and the wavelength of 546 nm to the radiation intensity with a predetermined value to judge pass / fail (Japanese Patent Publication No. 63-213213), 4
A method of determining a light intensity ratio with respect to a wavelength of 60 to 510 nm and comparing the light intensity ratio with a predetermined value to judge pass / fail (Japanese Patent Publication No. 3-23)
No. 0453) is known.

【0005】[0005]

【発明が解決しようとする課題】これら2つの方法は、
生産工程中に、空気を主体とする不純ガスが残存または
侵入している蛍光ランプに高周波等の電力を加えグロー
放電させた場合、水銀輝線の発光スペクトル特に、40
5nm、436nmまたは546nm等の波長の発光強
度が、他の波長の発光強度に比して弱くなることから、
検出器を用いて両者の発光強度を測定し、その比を所定
値と比較する理にかなった判定方法といえる。
SUMMARY OF THE INVENTION These two methods are:
During the production process, when glow discharge is performed by applying high-frequency power or the like to a fluorescent lamp in which an impurity gas mainly composed of air remains or has entered, the emission spectrum of the mercury emission line, particularly 40 g
Since the emission intensity at a wavelength such as 5 nm, 436 nm or 546 nm is weaker than the emission intensity at other wavelengths,
It can be said that it is a reasonable judgment method to measure the emission intensity of both using a detector and to compare the ratio with a predetermined value.

【0006】しかし、これらの方法は、近時、蛍光ラン
プに使用する蛍光体の種類も増加し、その種類によって
は強い発光を示す波長が異なり、上記した405nm、
436nmまたは546nm等の水銀輝線と上記した3
00〜400nm,550nm以上または460〜51
0nmの波長域の蛍光体の発光を使用して発光強度を測
定しようとしても、前記波長のうちどれか一つの蛍光体
の発光に固定すると、その部分に発光の主力が無いか、
または非常に弱いために、検出器の感度不足を生じる場
合があり、したがって、そのつど検出波長の違った検出
器を用意し、他の検出器に交換するという作業が必要と
なり、簡便性と精度に欠けるという問題があった。
However, these methods have recently increased the types of phosphors used in fluorescent lamps, and the wavelengths at which strong light is emitted differ depending on the types.
Mercury emission line such as 436 nm or 546 nm and 3
00 to 400 nm, 550 nm or more or 460 to 51
Even if the emission intensity is measured using the emission of the phosphor in the wavelength range of 0 nm, if the emission is fixed to the emission of any one of the above-mentioned wavelengths, there is no main light emission at that portion,
Alternatively, the detector may be too weak, resulting in a lack of sensitivity of the detector.Therefore, it is necessary to prepare a detector with a different detection wavelength and replace it with another detector each time. There was a problem that lacked.

【0007】本発明は、このような問題を解決するため
になされたもので、蛍光ランプの良否を簡便に正確に能
率良く判定することのできる蛍光ランプの検査方法を提
供するものである。
The present invention has been made to solve such a problem, and an object of the present invention is to provide a fluorescent lamp inspection method capable of easily and accurately determining the quality of a fluorescent lamp efficiently.

【0008】[0008]

【課題を解決するための手段】本発明の蛍光ランプの検
査方法では、蛍光ランプに高周波電力を加え、前記蛍光
ランプ内にグロー放電を発生させ、前記蛍光ランプ外に
放射された光のうち、水銀輝線の405nmまたは43
6nmまたは546nmの波長と、アルゴンガスの80
0nmまたは812nmまたは826nmまたは842
nmの波長との光強度比を所定値と比較し、その比較し
た値によって前記蛍光ランプの良否を判定するものであ
る。
According to the fluorescent lamp inspection method of the present invention, a high frequency power is applied to the fluorescent lamp to generate a glow discharge in the fluorescent lamp, and the light emitted out of the fluorescent lamp includes: 405 nm or 43 of mercury emission line
6 nm or 546 nm wavelength and 80 % of argon gas
0 nm or 812 nm or 826 nm or 842
The light intensity ratio with respect to the wavelength of nm is compared with a predetermined value, and the quality of the fluorescent lamp is determined based on the compared value.

【0009】[0009]

【作用】生産工程中に、空気を主体とする不純ガスが残
存または侵入している不良品の蛍光ランプに高周波電力
を加え、グロー放電をさせた場合、水銀輝線の発光スペ
クトル特に、405nm、436nmまたは546nm
の波長の発光強度が、他の波長の発光強度に比して弱く
なることが知られている。一方、いずれの光色の蛍光ラ
ンプにおいても封入されているアルゴンガスの発光スペ
クトルは上記蛍光ランプの水銀輝線の発光スペクトルと
異なり、かならず観測することができる。
In the production process, when high-frequency power is applied to a defective fluorescent lamp in which an impurity gas mainly composed of air remains or has entered to cause glow discharge, the emission spectrum of the mercury emission line, particularly, 405 nm, 436 nm Or 546 nm
It is known that the emission intensity at the wavelength of is weaker than the emission intensity at other wavelengths. On the other hand, the emission spectrum of the argon gas enclosed in the fluorescent lamp of any light color is different from the emission spectrum of the mercury emission line of the fluorescent lamp and can be always observed.

【0010】[0010]

【実施例】以下、本発明の一実施例について図面を用い
て説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0011】図4は3種類の光色を有する三波長型の蛍
光ランプに高周波電力を加えた場合のランプ外への放射
光の380nm〜850nmまでの分光分布特性を示
す。この分光分布特性を測定解析する過程において発明
者は、各種光色の蛍光ランプではそれぞれに使用されて
いる蛍光体の種類とその配合率がそれぞれ異なるため主
力の発光を示す波長が異なることや、その発光強度が異
なることを確認すると同時に、各種光色の蛍光ランプに
共通して安定に発光する800,812,826,84
2nm等の波長を見い出した。そしてその波長を検討し
た結果、いずれの蛍光ランプにおいても封入されている
アルゴンガスの発光波長であることが分かった。つま
り、ランプの良否判定に、いずれの光色の蛍光ランプに
おいても封入されているアルゴンガスの発光波長域の光
強度を使用することができることを見い出した。
FIG. 4 shows the spectral distribution characteristics from 380 nm to 850 nm of radiated light outside the lamp when high frequency power is applied to a three-wavelength fluorescent lamp having three types of light colors. In the process of measuring and analyzing the spectral distribution characteristics, the inventor found that in fluorescent lamps of various light colors, the types of phosphors used for each and the mixing ratio thereof are different, so that the wavelengths at which main light emission is different, At the same time as confirming that the emission intensities are different, 800, 812, 826, 84 that emit light stably in common to fluorescent lamps of various light colors
A wavelength such as 2 nm was found. As a result of examining the wavelength, it was found that the emission wavelength was that of the argon gas sealed in any of the fluorescent lamps. That is, it has been found that the light intensity in the emission wavelength region of the enclosed argon gas can be used for the determination of the quality of the lamp in the fluorescent lamp of any light color.

【0012】図1は本発明実施例の蛍光ランプの良品、
および不良品の各々のアルゴンガスの発光強度値を一定
にした三波長型蛍光ランプに高周波電力を加え、グロー
放電をさせた場合のランプ外への放射光の分光分布特性
を示す。図1において、曲線Aは良品の蛍光ランプを、
曲線Bは不良品の蛍光ランプをそれぞれ示している。
FIG. 1 shows a non-defective fluorescent lamp according to an embodiment of the present invention.
FIG. 9 shows the spectral distribution characteristics of emitted light to the outside of the three-wavelength fluorescent lamp in which glow discharge is performed by applying high-frequency power to a three-wavelength fluorescent lamp having a constant emission intensity value of each of the defective argon gas. In FIG. 1, a curve A represents a good fluorescent lamp,
Curve B shows defective fluorescent lamps.

【0013】図1から明らかなように、水銀輝線の発光
スペクトル特に、405nm,436nmまたは546
nmの波長の不良品での発光スペクトルが良品での発光
スペクトルに比して大幅に低下していることがわかる。
As is apparent from FIG. 1, the emission spectrum of the mercury emission line, particularly, 405 nm, 436 nm or 546 nm
It can be seen that the emission spectrum of a defective product having a wavelength of nm is significantly lower than the emission spectrum of a good product.

【0014】図2は本発明にかかる蛍光ランプの検査装
置の一例を示しており、この蛍光ランプの検査装置は、
被測定物である蛍光ランプ1と、蛍光ランプ1に高周波
電力を加えるための高周波発生装置2と、蛍光ランプ1
から放射される水銀輝線の発光スペクトルの発光強度を
検出するための受光装置3と、蛍光ランプ1に封入され
たアルゴンガスの発光の発光強度を検出するための受光
装置4とを備えている。受光装置3内に設けられた受光
素子(図示せず)の前方には、水銀輝線である436n
mの光を透過させる半値幅の狭いバンドパスフィルター
5を設け、一方受光装置4内に設けられた受光素子(図
示せず)の前方にはアルゴンガスの発光波長の812n
mの光を透過させる半値幅の狭いバンドパスフィルター
6を設けている。これらの受光素子には温度特性に優れ
たシリコン受光素子が用いられている。バンドパスフィ
ルター5,6と受光装置3,4からなる検出器はアルゴ
ンガスの発光波長の検出だけを行えば良いため、蛍光体
の種類ごとに検出器を交換する必要がない。受光装置
3,4で光電変換された電気出力は増幅器7,8でそれ
ぞれ増幅され、この増幅された各出力値は比較演算判定
装置9に送られる。比較演算判定装置9は、増幅器7,
8からの出力値を入力値として受け取る入力部と、増幅
器7からの出力値を増幅器8からの出力値で除算し比率
とする演算部と、この比率と設定値とを比較してその比
較した値によって蛍光ランプ別に良否を判定を行う判定
部と、不良ランプ排出装置10に信号を出力するための
出力部とを備えている。不良ランプ排出装置10は、判
定部での判定結果を表示し、不良ランプの排出を行う。
FIG. 2 shows an example of a fluorescent lamp inspection apparatus according to the present invention.
A fluorescent lamp 1 as an object to be measured, a high-frequency generator 2 for applying high-frequency power to the fluorescent lamp 1, and a fluorescent lamp 1
A light receiving device 3 for detecting the emission intensity of the emission spectrum of the mercury emission line emitted from the light source and a light receiving device 4 for detecting the emission intensity of the emission of argon gas sealed in the fluorescent lamp 1 are provided. In front of a light receiving element (not shown) provided in the light receiving device 3, 436n of mercury emission lines
m, and a band-pass filter 5 having a narrow half-value width for transmitting light of m is provided. On the other hand, in front of a light-receiving element (not shown) provided in the light-receiving device 4, the emission wavelength of argon gas is 812n
A band-pass filter 6 having a small half width and transmitting m light is provided. These light receiving elements use silicon light receiving elements having excellent temperature characteristics. The detector composed of the bandpass filters 5 and 6 and the light receiving devices 3 and 4 only needs to detect the emission wavelength of the argon gas, so that it is not necessary to replace the detector for each type of phosphor. The electrical outputs photoelectrically converted by the light receiving devices 3 and 4 are respectively amplified by the amplifiers 7 and 8, and the amplified output values are sent to the comparison operation determination device 9. The comparison operation determination device 9 includes an amplifier 7,
An input unit that receives an output value from the amplifier 8 as an input value, a calculation unit that divides an output value from the amplifier 7 by an output value from the amplifier 8 to obtain a ratio, compares the ratio with a set value, and compares them. The apparatus includes a determination unit that determines the quality of each fluorescent lamp based on the value, and an output unit that outputs a signal to the defective lamp discharging device 10. The defective lamp discharging device 10 displays the result of the determination by the determining unit and discharges the defective lamp.

【0015】図3は、同一蛍光ランプについて上記の装
置で測定した、水銀輝線の436nmの発光強度値をア
ルゴンガスの812nmの発光強度値で除算した比率R
と、蛍光ランプの始動電圧値との関係を示している。こ
の図3から明らかなように、比率Rと始動電圧との間に
相関関係があり、比率Rが15以下で、始動電圧が急激
に上昇していることがわかる。したがって、本発明によ
れば、比率Rと始動電圧との関係をみることによって、
蛍光ランプの良否の判定を従来の目視判定方法より高い
精度で行うことができるものである。
FIG. 3 shows a ratio R obtained by dividing the 436 nm emission intensity value of the mercury emission line by the 812 nm emission intensity value of the argon gas measured by the above apparatus for the same fluorescent lamp.
And the starting voltage of the fluorescent lamp. As is apparent from FIG. 3, there is a correlation between the ratio R and the starting voltage, and it can be seen that when the ratio R is 15 or less, the starting voltage sharply increases. Therefore, according to the present invention, by looking at the relationship between the ratio R and the starting voltage,
The quality of the fluorescent lamp can be determined with higher accuracy than the conventional visual determination method.

【0016】具体例を示せば、比率Rが15以下のもの
を不良品の判断基準として、1000本の蛍光ランプに
ついて、良否判定を行った後、同一蛍光ランプについて
目視判定方法による良否判定を行ったところ、本発明方
法による蛍光ランプの良否判定が正確に行われているこ
とが確認できた。また、目視判定方法に比し大幅に短時
間にしかも簡便に蛍光ランプの良否判定ができることが
確認できた。
As a specific example, with a ratio R of 15 or less as a defective product criterion, pass / fail judgment is performed on 1,000 fluorescent lamps, and then pass / fail judgment is performed on the same fluorescent lamp by a visual judgment method. As a result, it was confirmed that the quality of the fluorescent lamp was correctly determined by the method of the present invention. In addition, it was confirmed that the quality of the fluorescent lamp can be determined in a much shorter time and more easily than in the visual determination method.

【0017】上記実施例では、水銀輝線の436nmの
発光強度値とアルゴンガスの812nmの発光強度値を
用いた場合について説明したが、水銀輝線の405nm
または546nmのいずれかの波長の発光強度値とアル
ゴンガスの780nm〜850nmの範囲の例えば80
0nm,826nmまたは842nm等の波長域の発光
強度値とを適宜組合わせても上記と同様の効果が得られ
る。
In the above embodiment, the case where the emission intensity value of the mercury emission line at 436 nm and the emission intensity value of the argon gas at 812 nm are used has been described.
Alternatively, the emission intensity value at any wavelength of 546 nm and the emission intensity value of argon gas in the range of 780 nm to 850 nm, for example, 80
The same effects as described above can be obtained by appropriately combining the emission intensity values in the wavelength range of 0 nm, 826 nm, or 842 nm.

【0018】[0018]

【発明の効果】以上説明したように、本発明の蛍光ラン
プの検査方法は、蛍光ランプに高周波電力を加え、蛍光
ランプ内にグロー放電を発生させ、蛍光ランプ外に放射
された光のうち、水銀輝線の405nmまたは436n
mまたは546nmの波長と、アルゴンガスの800n
mまたは812nmまたは826nmまたは842nm
の波長との光強度比を所定値と比較し、その比較した値
によって蛍光ランプの良否を判定するため、蛍光ランプ
の良否判定を従来の目視判定方法より高い精度で行うこ
とができ、また良否判定を簡便化、さらには作業能率と
判定品質の大幅な向上を図ることができる。
As described above, according to the fluorescent lamp inspection method of the present invention, the high frequency power is applied to the fluorescent lamp to generate a glow discharge in the fluorescent lamp, and the light emitted out of the fluorescent lamp 405nm or 436n of mercury emission line
m or 546 nm, and 800 n of argon gas
m or 812 nm or 826 nm or 842 nm
Since the light intensity ratio with the wavelength is compared with a predetermined value, and the quality of the fluorescent lamp is determined based on the compared value, the quality of the fluorescent lamp can be determined with higher accuracy than the conventional visual determination method. The determination can be simplified, and the work efficiency and the determination quality can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蛍光ランプの良品および不良品の分光分布特性
FIG. 1 is a diagram showing spectral distribution characteristics of good and defective fluorescent lamps.

【図2】本発明実施例の蛍光ランプの検査方法の測定装
置のブロック図
FIG. 2 is a block diagram of a measuring device of the fluorescent lamp inspection method according to the embodiment of the present invention.

【図3】本発明実施例の蛍光ランプの検査方法における
蛍光ランプの始動電圧と水銀輝線の発光の436nmの
発光強度値をアルゴンガスの発光の812nmの発光強
度値で除算した比率Rとの相関図
FIG. 3 shows a correlation between a starting voltage of a fluorescent lamp and a ratio R obtained by dividing a 436 nm emission intensity value of mercury emission line by an 812 nm emission intensity value of argon gas emission in the fluorescent lamp inspection method according to the embodiment of the present invention. Figure

【図4】3種類の三波長型蛍光ランプの分光分布特性図FIG. 4 is a diagram showing spectral distribution characteristics of three types of three-wavelength fluorescent lamps.

【符号の説明】[Explanation of symbols]

1 蛍光ランプ 2 高周波発生装置 3,4 受光装置 5,6 バンドパスフィルター 7,8 増幅器 9 比較演算判定装置 DESCRIPTION OF SYMBOLS 1 Fluorescent lamp 2 High frequency generator 3, 4 Light receiving device 5, 6 Bandpass filter 7, 8 Amplifier 9 Comparison operation judgment device

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−213240(JP,A) 特開 昭57−3345(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 9/42 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-213240 (JP, A) JP-A-57-3345 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01J 9/42

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 蛍光ランプに高周波電力を加え、前記蛍
光ランプ内にグロー放電を発生させ、前記蛍光ランプ外
に放射された光のうち、水銀輝線の405nmまたは4
36nmまたは546nmの波長と、アルゴンガスの
00nmまたは812nmまたは826nmまたは84
2nmの波長との光強度比を所定値と比較し、その比較
した値によって前記蛍光ランプの良否を判定することを
特徴とする蛍光ランプの検査方法。
1. A high-frequency power is applied to a fluorescent lamp to generate a glow discharge in the fluorescent lamp, and of light emitted outside the fluorescent lamp, 405 nm or 4 nm of mercury emission line.
36 nm or 546 nm wavelength and 8
00 nm or 812 nm or 826 nm or 84
A method for inspecting a fluorescent lamp, comprising comparing a light intensity ratio with a wavelength of 2 nm with a predetermined value, and judging the quality of the fluorescent lamp based on the compared value.
JP12393393A 1993-05-26 1993-05-26 Fluorescent lamp inspection method Expired - Fee Related JP3309491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12393393A JP3309491B2 (en) 1993-05-26 1993-05-26 Fluorescent lamp inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12393393A JP3309491B2 (en) 1993-05-26 1993-05-26 Fluorescent lamp inspection method

Publications (2)

Publication Number Publication Date
JPH06333502A JPH06333502A (en) 1994-12-02
JP3309491B2 true JP3309491B2 (en) 2002-07-29

Family

ID=14872950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12393393A Expired - Fee Related JP3309491B2 (en) 1993-05-26 1993-05-26 Fluorescent lamp inspection method

Country Status (1)

Country Link
JP (1) JP3309491B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3042551B2 (en) * 1991-08-23 2000-05-15 三菱マテリアル株式会社 Superconducting wire manufacturing method
KR100530979B1 (en) * 1998-05-20 2006-02-28 삼성전자주식회사 Defective sorting method of lamp for backlight of LCD
KR100413681B1 (en) * 2001-02-24 2003-12-31 삼성전자주식회사 Apparatus for controlling lamp and method thereof

Also Published As

Publication number Publication date
JPH06333502A (en) 1994-12-02

Similar Documents

Publication Publication Date Title
JPH10513566A (en) Method and apparatus for measuring purity and / or pressure of gas for bulbs
JP3309491B2 (en) Fluorescent lamp inspection method
KR900005117B1 (en) Lamp quality judgement apparatus and jndgement method therefor
US3645629A (en) Apparatus for spectroscopic analysis with modulated electrodeless discharge tube
JP3221644B2 (en) Non-destructive inspection equipment for fluorescent lamps
JP3252629B2 (en) Non-destructive inspection equipment for fluorescent lamps
JPH03230453A (en) Method of inspecting fluorescent lamp
US4523096A (en) Liquid chromatography apparatus
JP3230130B2 (en) Non-destructive inspection equipment for fluorescent lamps
JPH0778564A (en) Fluorescent lamp inspection method
JPS6332214B2 (en)
JPS6140070B2 (en)
RU2687179C1 (en) Method of determining pressure in annular laser gyroscopes
JPS6332213B2 (en)
JPS6159834A (en) Detecting method of end point of etching
JPH01109643A (en) Quality judgment method for lamp
Nick et al. Xenon branching ratios in the 6s-6p'and 6s-7p transition array
JPS60239652A (en) Measurement of spectrum for spectrophotofluorometer
JPS63213240A (en) Detection of faulty exhaust of discharge lamp
JPS62198047A (en) Lamp screening
JPH11326217A (en) Glow discharge emission spectrochemical analysis device
JPH10500731A (en) Method and apparatus for selecting low pressure mercury discharge lamp
SU705565A1 (en) Method of determining thermoelectronic emission current in a-c low-pressure arc discharges
JPS599928A (en) Monitor device for plasma
JPS62119438A (en) Gaseous phase exciter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees