JP3084961B2 - Halogen gas leak detector - Google Patents

Halogen gas leak detector

Info

Publication number
JP3084961B2
JP3084961B2 JP04252839A JP25283992A JP3084961B2 JP 3084961 B2 JP3084961 B2 JP 3084961B2 JP 04252839 A JP04252839 A JP 04252839A JP 25283992 A JP25283992 A JP 25283992A JP 3084961 B2 JP3084961 B2 JP 3084961B2
Authority
JP
Japan
Prior art keywords
electrode
voltage
power supply
gas leak
leak detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04252839A
Other languages
Japanese (ja)
Other versions
JPH06102135A (en
Inventor
順一 鈴木
高志 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP04252839A priority Critical patent/JP3084961B2/en
Publication of JPH06102135A publication Critical patent/JPH06102135A/en
Application granted granted Critical
Publication of JP3084961B2 publication Critical patent/JP3084961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はハロゲンガス漏洩検知器
に関し,更に詳しくは陽イオン放出型のアルカリ金属の
消費量を抑えることにより長寿命化を図ったハロゲンガ
ス漏洩検知器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a halogen gas leak detector and, more particularly, to a halogen gas leak detector which has a long life by suppressing the consumption of a cation-emitting alkali metal.

【0002】[0002]

【従来の技術】図3は従来から知られているハロゲンガ
ス漏洩検知器の一般的な構成例を示すものである。図3
において,20はセンサ(陽イオン放出型),21はマ
ニホールド,22は吸引ポンプ,24は流量低下検知
器,25はフィルター,26は演算部,27は表示部,
28はプローブ,30は収納ケースである。
2. Description of the Related Art FIG. 3 shows a general configuration example of a conventionally known halogen gas leak detector. FIG.
In the above, 20 is a sensor (cation release type), 21 is a manifold, 22 is a suction pump, 24 is a flow rate decrease detector, 25 is a filter, 26 is a calculation unit, 27 is a display unit,
28 is a probe and 30 is a storage case.

【0003】上記の構成において,吸引ポンプ22が駆
動するとプローブ28を介して測定すべきハロゲンガス
がマニホールド21に取り込まれ,フィルター25,流
量低下検知器24で構成されるループを循環する。そし
てその一部がセンサ20へ送られて濃度に応じた電気信
号に変換され,その電気信号は演算部26に送られて所
定の演算が行われガス濃度が表示部27に示される。
In the above configuration, when the suction pump 22 is driven, the halogen gas to be measured is taken into the manifold 21 via the probe 28, and circulates through a loop composed of the filter 25 and the flow rate decrease detector 24. Then, a part of the electric signal is sent to the sensor 20 and converted into an electric signal corresponding to the concentration. The electric signal is sent to the calculating section 26 to perform a predetermined calculation, and the gas concentration is displayed on the display section 27.

【0004】図4は前記センサ20の従来例の要部詳細
を示す構成図である。図において,1はフィラメントを
兼ねた第1電極であり,内部に空間を有するコイル状に
形成され,その両端には第1電源2が接続されている。
3は例えば白金棒5にアルカリ金属元素を含む耐熱性の
無機絶縁体6が塗布された第2電極であり,第1電極1
のコイルの中央付近にコイルとは非接触の状態で配置さ
れている。4は第2電源であり,負極側は接地され正極
側は抵抗Rsを介して第2電極3の一端に接続されてい
る。なお,上記第1電極1のフィラメントの径は例えば
40μm,コイル径は250μm,白金棒5の直径は5
0μm,無機絶縁体6の直径は150μm程度である。
次に上記陽イオン放出型センサの動作について説明す
る。一般にアルカリ金属は,周期律表でイオン化ポテン
シャルの最も小さな族にある。一方ハロゲン元素は電子
親和力が非常に強いため,この二つが接近するとそれぞ
れ正負の一価イオンが生成され易い。
FIG. 4 is a configuration diagram showing details of a main part of a conventional example of the sensor 20. As shown in FIG. In the figure, reference numeral 1 denotes a first electrode which also serves as a filament, is formed in a coil shape having a space inside, and a first power supply 2 is connected to both ends thereof.
Reference numeral 3 denotes a second electrode formed by applying a heat-resistant inorganic insulator 6 containing an alkali metal element to a platinum rod 5, for example.
Are arranged near the center of the coil in a non-contact state with the coil. Reference numeral 4 denotes a second power supply, the negative side of which is grounded and the positive side of which is connected to one end of the second electrode 3 via a resistor Rs. The filament diameter of the first electrode 1 is, for example, 40 μm, the coil diameter is 250 μm, and the diameter of the platinum rod 5 is 5 μm.
0 μm, and the diameter of the inorganic insulator 6 is about 150 μm.
Next, the operation of the cation emission type sensor will be described. In general, alkali metals are in the group having the lowest ionization potential in the periodic table. On the other hand, since the halogen element has a very strong electron affinity, when these two come close to each other, positive and negative univalent ions are easily generated.

【0005】上記第1電極1はフロンガスを分解するた
めの加熱される陽極であり,第2電極3は白金管の中に
陽イオン放出を促進するアルカリ金属を充填した陰極
(イオンコレクタ)として機能する。そして第1電極1
に電流を流し中心部を800℃程度に加熱させ,第1電
極1と第2電極3間に数10Vの直流電圧を印加する。
今,センサ内にフロンガスのようなハロゲン化合物が導
入されると,先ず高温下でフロンガスの分解が起こりハ
ロゲン元素(分子)と他のハロゲン化合物に分解され
る。
The first electrode 1 is a heated anode for decomposing CFC gas, and the second electrode 3 functions as a cathode (ion collector) in which a platinum tube is filled with an alkali metal for promoting cation release. I do. And the first electrode 1
, A central portion is heated to about 800 ° C., and a DC voltage of several tens of volts is applied between the first electrode 1 and the second electrode 3.
Now, when a halogen compound such as chlorofluorocarbon gas is introduced into the sensor, the chlorofluorocarbon gas is firstly decomposed at a high temperature to be decomposed into a halogen element (molecule) and another halogen compound.

【0006】一方,第2電極3に付着されたアルカリ金
属の一部は高温下で蒸発し,アルカリ金属蒸気となって
存在している。ここに上記フロンガスが混入するとハロ
ゲン元素がアルカリ金属より電子を奪うことにより正負
の一価イオンが生成される。これらのイオンは空間に印
加された高電界により移動し,正負それぞれの電極に到
達し出力電流を生じさせる。従ってこの出力電流を測定
することによりフロンガスのリーク量を測定することが
できる。
On the other hand, a part of the alkali metal attached to the second electrode 3 evaporates at a high temperature and exists as an alkali metal vapor. When the above-mentioned chlorofluorocarbon gas is mixed therein, positive and negative monovalent ions are generated by the halogen element taking away electrons from the alkali metal. These ions move due to the high electric field applied to the space, reach the positive and negative electrodes, and generate an output current. Therefore, by measuring the output current, it is possible to measure the amount of CFC gas leakage.

【0007】[0007]

【発明が解決しようとする課題】ところで,上記従来の
装置においては電源として乾電池を用い,第1電極には
2V程度の電圧を印加して第2電極には20V程度の電
圧を印加するが,センサが小さいため無機耐熱材料中に
保持されるアルカリ金属元素の量も非常に少ない。アル
カリ金属は,ハロゲン化炭化水素との反応によって消費
され,更に定電圧の駆動ではハロゲン化炭化水素の濃度
が上昇すると,出力電流が増加し,アルカリ金属の消費
量が大きくなるためセンサの寿命が極端に短くなるとい
う問題があった。本発明は上記従来の問題点を解決する
ためになされたもので,センサの長寿命化を図った検知
器を提供することを目的とする。
By the way, in the above-mentioned conventional apparatus, a dry battery is used as a power source, and a voltage of about 2 V is applied to the first electrode and a voltage of about 20 V is applied to the second electrode. Since the sensor is small, the amount of the alkali metal element held in the inorganic heat-resistant material is very small. The alkali metal is consumed by the reaction with the halogenated hydrocarbon. Furthermore, when the concentration of the halogenated hydrocarbon is increased at a constant voltage, the output current increases and the consumption of the alkali metal increases, so that the life of the sensor is extended. There was a problem that it became extremely short. SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a detector having a longer life of a sensor.

【0008】[0008]

【問題点を解決するための手段】上記課題を解決する為
に本発明は、加熱用のフィラメントを兼ねるコイル状の
第1電極と,前記コイル状の第1電極内に配設され,ア
ルカリ金属元素を含む耐熱性の無機絶縁体を塗布された
第2電極と,前記第1電極に電圧を印加する第1電源
と,前記第2電極に電圧を印加する第2電源と,前記第
1,第2電極間に直列に接続された抵抗と,前記第1電
極に流れる電流および所定の設定電流を入力してその偏
差を出力する偏差増幅器とからなり,前記偏差増幅器の
出力に基づいて前記第2電源の電圧を制御するハロゲン
ガス漏洩検知器であって、前記第2電源の電圧は同期信
号発生器の信号と,この同期信号発生器の出力により同
期検波された前記偏差増幅器の出力に基づいてパルス化
されたパルス電圧であることを特徴とものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a coil-shaped first electrode serving also as a heating filament, and an alkali metal disposed in the coil-shaped first electrode. A second electrode coated with a heat-resistant inorganic insulator containing an element, a first power supply for applying a voltage to the first electrode, a second power supply for applying a voltage to the second electrode, A resistor connected in series between the second electrodes and a deviation amplifier for inputting a current flowing through the first electrode and a predetermined set current and outputting a deviation thereof, and based on an output of the deviation amplifier, 2 Halogen controlling voltage of power supply
A gas leak detector, wherein the voltage of the second power supply is a synchronous signal.
Signal and the output of this synchronization signal generator.
Pulsing based on the output of the deviation amplifier detected
It is a characteristic that the pulse voltage is applied .

【0009】[0009]

【作用】はじめハロゲン化炭化水素がない状態で第1,
第2電極に所定の電圧を与え,第1電極と第2電極に直
列に接続された抵抗に流れる電流を測定する(ハロゲン
ガスはなくても少量の電流が流れる)。その電流を偏差
増幅器の設定入力とする。次にハロゲン化炭化水素雰囲
気中に配置すると抵抗Rsを流れる電流が増加しようと
するが偏差増幅器は第2電源の電圧を降下させるような
信号を出力し偏差が零になるように制御する。
[Action] First, in the absence of halogenated hydrocarbons,
A predetermined voltage is applied to the second electrode, and a current flowing through a resistor connected in series to the first electrode and the second electrode is measured (a small amount of current flows even without halogen gas). The current is used as a setting input of the deviation amplifier. Next, when the transistor is placed in a halogenated hydrocarbon atmosphere, the current flowing through the resistor Rs tends to increase, but the deviation amplifier outputs a signal to decrease the voltage of the second power supply and controls the deviation to be zero.

【0010】[0010]

【実施例】はじめに、図2を用いて本発明によるハロゲ
ンガス漏洩検知器の原理構成を説明する。図において図
4と同一要素には同一符号を付して重複する説明は省略
するが,この図においては,第1電源2と第1電極1が
接続された点とアース間に抵抗Rs’を接続し,その接
続した方の第1電極1の一端を偏差増幅器10の一方の
端子(非反転端子)に接続している。偏差増幅器10の
出力は第2電源4’に入力されている。なお,ここでは
第2電源4’としては電圧が可変なものを使用し,各電
極の寸法は図4で示したと同様のものを使用する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, referring to FIG.
The principle configuration of the gas leak detector will be described. In the figure, the same elements as those in FIG. 4 are denoted by the same reference numerals, and duplicate description is omitted. In this figure, a resistor Rs ′ is connected between the point where the first power supply 2 and the first electrode 1 are connected and the ground. One end of the connected first electrode 1 is connected to one terminal (non-inverting terminal) of the deviation amplifier 10. The output of the deviation amplifier 10 is input to the second power supply 4 '. Here, as the second power source 4 ′, one having a variable voltage is used, and the dimensions of each electrode are the same as those shown in FIG.

【0011】上記の構成においてハロゲン化炭化水素が
ない状態で第1電極に第1電源2から例えば2V程度の
電圧を印加すると第1電極1は800℃程度に加熱され
る。同時に第2電極3には第2電源4’から20V程度
の電圧を印加する。この場合抵抗Rs’には例えば0.
2μA程度の電流が流れる。偏差増幅器10の反転端子
にはこの0.2μAの電流を設定入力として入力する。
この状態では偏差増幅器10には偏差がないので第2電
源4’の電圧は一定に維持されている。
In the above configuration, when a voltage of, for example, about 2 V is applied to the first electrode from the first power supply 2 in the absence of a halogenated hydrocarbon, the first electrode 1 is heated to about 800.degree. At the same time, a voltage of about 20 V is applied to the second electrode 3 from the second power supply 4 '. In this case, for example, 0.
A current of about 2 μA flows. This 0.2 μA current is input to the inverting terminal of the deviation amplifier 10 as a setting input.
In this state, since there is no deviation in the deviation amplifier 10, the voltage of the second power supply 4 'is kept constant.

【0012】次にセンサをハロゲン化炭化水素雰囲気中
に配置すると,先に述べた原理により第1,第2電極
1,3間に出力電流が生じて抵抗Rs’に流れる電流が
増大する。この電流は偏差増幅器10の反転端子に入力
され,偏差増幅器10は設定入力との偏差に応じた信号
を出力する。この信号は第2電源4’に入力されて前記
偏差を零にするように第2電源4’の電圧を変化(低
下)させる。この電源電圧の変化はハロゲン化炭化水素
の濃度に関連したものとなる。なお,本発明者等の実験
によれば従来例における電極の寿命はおよそ15時間程
度であったが,この構成の装置では30時間程度に延長
することができた。
Next, when the sensor is placed in a halogenated hydrocarbon atmosphere, an output current is generated between the first and second electrodes 1 and 3 according to the principle described above, and the current flowing through the resistor Rs' increases. This current is input to the inverting terminal of the deviation amplifier 10, and the deviation amplifier 10 outputs a signal corresponding to the deviation from the setting input. This signal is input to the second power supply 4 'and changes (decreases) the voltage of the second power supply 4' so as to make the deviation zero. This change in the power supply voltage is related to the concentration of the halogenated hydrocarbon. According to experiments by the present inventors, the life of the electrode in the conventional example was about 15 hours, but it was possible to extend it to about 30 hours with the device having this configuration .

【0013】図2は本発明の実施例を示すもので基本構
成は図に示すものと同様である。ここでは図2に示す
第2電源4’の電圧を同期信号発生器20によりパルス
電圧に変換したものであり,この同期信号発生器20か
らの同期信号は偏差増幅器10の出力と重畳されて同期
検波器21に入力され同期検波が行われる。ローパスフ
ィルタ22は同期検波時に発生する高周波ノイズをカッ
トして第2電源4’に入力する。このように同期検波方
式を付加することによりS/Nを向上させることがで
き,その分電流を小さくすることができ,更に電流の流
れている時間が1/2になるので第1電極の寿命を更に
大幅に延長することができる。
[0013] Figure 2 is a basic structure in which indicating the actual施例of the present invention is similar to that shown in FIG. Here, the voltage of the second power supply 4 'shown in FIG. 2 is converted into a pulse voltage by the synchronization signal generator 20, and the synchronization signal from the synchronization signal generator 20 is superimposed on the output of the deviation amplifier 10 to synchronize. The signal is input to the detector 21 and synchronous detection is performed. The low-pass filter 22 cuts high-frequency noise generated at the time of synchronous detection and inputs the cut-off high-frequency noise to the second power supply 4 ′. By adding the synchronous detection method in this way, the S / N can be improved, the current can be reduced correspondingly, and the current flowing time is reduced by half, so that the life of the first electrode is reduced. Can be greatly extended.

【0014】[0014]

【発明の効果】以上実施例とともに具体的に説明した様
に本発明によれば,陽イオン放出型の検知器を定電流駆
動するようにしたので,アルカリ金属の消費量を抑える
ことができ,長寿命化を図ったハロゲンガス漏洩検知器
検知器を実現することができる。
According to the present invention, the cation emission type detector is driven at a constant current as described in detail with the above embodiments, so that the consumption of alkali metal can be reduced. A halogen gas leak detector having a longer life can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のハロゲンガス漏洩検知器を示す要部構
成図である。
FIG. 1 is a main part configuration diagram showing a halogen gas leak detector of the present invention.

【図2】本発明によるハロゲンガス漏洩検知器の原理構
成の説明図である。
FIG. 2 is a diagram showing a principle of a halogen gas leak detector according to the present invention .
FIG .

【図3】ハロゲンガス漏洩検知器の一般的な構成例を示
す図である。
FIG. 3 is a diagram showing a general configuration example of a halogen gas leak detector.

【図4】従来の検知器の構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional detector.

【符号の説明】[Explanation of symbols]

1 第1電極 2 第1電源 3 第2電極4,4’ 第2電源 5 白金 6 無機絶縁体 10 偏差増幅器 DESCRIPTION OF SYMBOLS 1 1st electrode 2 1st power supply 3 2nd electrode 4, 4 '2nd power supply 5 Platinum 6 Inorganic insulator 10 Deviation amplifier

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 27/62 - 27/70 G01M 3/00 - 3/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01N 27/62-27/70 G01M 3/00-3/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱用のフィラメントを兼ねるコイル状
の第1電極と,前記コイル状の第1電極内に配設され,
アルカリ金属元素を含む耐熱性の無機絶縁体を塗布され
た第2電極と,前記第1電極に電圧を印加する第1電源
と,前記第2電極に電圧を印加する第2電源と,前記第
1,第2電極間に直列に接続された抵抗と,前記第1電
極に流れる電流および所定の設定電流を入力してその偏
差を出力する偏差増幅器とからなり,前記偏差増幅器の
出力に基づいて前記第2電源の電圧を制御するハロゲン
ガス漏洩検知器であって、前記第2電源の電圧は同期信
号発生器の信号と,この同期信号発生器の出力により同
期検波された前記偏差増幅器の出力に基づいてパルス化
されたパルス電圧であることを特徴とするハロゲンガス
漏洩検知器。
A coil-shaped first electrode serving also as a heating filament, and disposed in the coil-shaped first electrode;
A second electrode coated with a heat-resistant inorganic insulator containing an alkali metal element; a first power supply for applying a voltage to the first electrode; a second power supply for applying a voltage to the second electrode; A resistor connected in series between the first and second electrodes, and a deviation amplifier for inputting a current flowing through the first electrode and a predetermined set current and outputting a deviation thereof, based on an output of the deviation amplifier. Halogen for controlling the voltage of the second power supply
A gas leak detector, wherein the voltage of the second power supply is a synchronous signal.
Signal and the output of this synchronization signal generator.
Pulsing based on the output of the deviation amplifier detected
A halogen gas leak detector characterized in that a pulse voltage is applied .
JP04252839A 1992-09-22 1992-09-22 Halogen gas leak detector Expired - Fee Related JP3084961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04252839A JP3084961B2 (en) 1992-09-22 1992-09-22 Halogen gas leak detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04252839A JP3084961B2 (en) 1992-09-22 1992-09-22 Halogen gas leak detector

Publications (2)

Publication Number Publication Date
JPH06102135A JPH06102135A (en) 1994-04-15
JP3084961B2 true JP3084961B2 (en) 2000-09-04

Family

ID=17242908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04252839A Expired - Fee Related JP3084961B2 (en) 1992-09-22 1992-09-22 Halogen gas leak detector

Country Status (1)

Country Link
JP (1) JP3084961B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493009A (en) * 2011-07-21 2013-01-23 Packtester Ltd Seal integrity detector for sealed packages

Also Published As

Publication number Publication date
JPH06102135A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
US5095247A (en) Plasma discharge apparatus with temperature sensing
Luhmann et al. Determination of HID electrode falls in a model lamp II: Langmuir-probe measurements
Prasad Measurement of ionization and attachment coefficients in dry air in uniform fields and the mechanism of breakdown
US3154680A (en) Gas analysis by measuring negative ions resulting from captured electrons
JP2001056395A (en) Minus ion radiation method and device
JP3084961B2 (en) Halogen gas leak detector
Zinn Low voltage positive ion source
Hansen et al. Computer controlled probe diagnostic system and applications in a magnetized laboratory plasma
US3634754A (en) Method and apparatus for linearly measuring electron capture with an electron capture detector
Jones Ionization coefficients in nitrogen
US2874304A (en) Ionization chamber
JPH10213509A (en) Pressure measuring device
US7800376B2 (en) Method and device for measuring ultrahigh vacuum
George et al. Electrode conduction processes in air plasmas
Schlager et al. A novel experimental method for in situ diagnostics of electrode workfunctions in high-pressure gas discharge lamps during operation
JPH06102136A (en) Halogen gas leak detector
JP2009244073A (en) Ionization type gas sensor
JPS6319550A (en) Method and device for analyzing effluent from gas chromatographic column
Bonifaci et al. Determination of charge mobility in He gas from current-voltage measurements in point-plane geometry
Glockler et al. THE ACTIVATION OF MOLECULAR HYDROGEN BY ELECTRON IMPACT
JP2813896B2 (en) Plasma discharge tube
Naidu et al. The ratio of diffusion coefficient to mobility for electrons in nitrogen and hydrogen
Goucher Ionization by Impact in Mercury Vapor and Other Gases. I. The Direct Measurement of the Ionizing Potentials
Collinson et al. The processing and some characteristics of coaxial cylinder, corona stabilizer tubes
Mariani et al. A simple unit with temperature control for simultaneous measurement of thermoluminescence and conductivity

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees