JPS61238904A - Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation - Google Patents

Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation

Info

Publication number
JPS61238904A
JPS61238904A JP8026585A JP8026585A JPS61238904A JP S61238904 A JPS61238904 A JP S61238904A JP 8026585 A JP8026585 A JP 8026585A JP 8026585 A JP8026585 A JP 8026585A JP S61238904 A JPS61238904 A JP S61238904A
Authority
JP
Japan
Prior art keywords
distribution
furnace
ratio
layer thickness
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8026585A
Other languages
Japanese (ja)
Inventor
Toshiro Sawada
沢田 寿郎
Yasubumi Serizawa
芹沢 保文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8026585A priority Critical patent/JPS61238904A/en
Publication of JPS61238904A publication Critical patent/JPS61238904A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To adjust the distribution of the gaseous flow in a blast furnace exactly and quickly and to stabilize the operation of the blast furnace by determining the layer thickness ratio of a furnace wall part after the change of an operation from the flow rate of the air passing in the furnace and a heat flow ratio in the stage of said changing and controlling a charge distribution so as to attain said ratio. CONSTITUTION:The layer thickness ratio of the furnace wall part after the change of the operation of the blast furnace is determined from the predetermined relation among the flow rate of the air passing in the furnace, the heat flow ratio and the layer thickness layer of the furnace wall part in the stage of changing said operation. The predicted value of the layer thickness ratio of the furnace wall part which is the index for the target gaseous distribution ratio is determined as the target and the distribution of the charge such as coke and ore is controlled in such a manner that the above-mentioned layer thickness ratio of the furnace wall part is obtd. The exact and quick adjustment of the distribution of the gaseous flow in the stage of changing the operation is thus made possible and the stable blast furnace operation is executed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、いわゆる高炉の操業方法の分野に属するもの
であって、高炉の操業変更時に行うガス流分布調整を、
装入物分布制御とくに炉壁部層厚比の調整によって実現
するようにした方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention belongs to the field of so-called blast furnace operating methods, and includes gas flow distribution adjustment performed when changing the operation of a blast furnace.
This invention relates to a method of controlling the burden distribution, particularly by adjusting the layer thickness ratio of the furnace wall.

(従来の技術) 高炉操業変更時等に行うガス流分布調整を目的とした装
入物分布制御は、炉半径方向の鉱石およびコークスの層
厚分布を調整する方法が一般的な方法であり、これによ
って炉内ガス流れを適正にすることにより、原料の荷下
り状況や炉熱状態を正常にするために行うものである。
(Prior art) A common method for controlling charge distribution for the purpose of adjusting gas flow distribution when changing blast furnace operations is to adjust the layer thickness distribution of ore and coke in the radial direction of the furnace. This is done to normalize the unloading of raw materials and the furnace heat by optimizing the gas flow in the furnace.

そして通常かかる装入物分布の制御は、炉頂装入装置で
あるベルレストツブやムーバブルアーマ−等ヲ使って行
っている。
Such control of the charge distribution is normally performed using a bell rest tube, a movable armor, etc., which are top charging devices.

従来そうしたガス流分布調整ないしは装入物分布調整の
ための方法としては、特開昭58−87209号や特開
昭56−163205号で開示されている。そのうち最
も代表的な方法として、ガスサンプラーの分析に基づ(
炉内ガス分布調整法について以下にのべる。
Conventional methods for adjusting gas flow distribution or charge distribution have been disclosed in Japanese Patent Application Laid-Open No. 58-87209 and Japanese Patent Application Laid-open No. 56-163205. The most typical method is based on gas sampler analysis (
The method for adjusting the gas distribution in the furnace is described below.

第4図は代表的な操業悪化時の炉内ガス流分布を示す。Figure 4 shows the gas flow distribution in the furnace during a typical operational deterioration.

線(a)は過中心流のガス分布であり、炉壁不活性によ
るスリップ頻発や還元不足により鉱石が羽目部まで落下
して羽目曲損を生じた待期である。一方vA(b)は、
過周辺流のガス流分布であり、炉壁部の熱負荷が高く、
ステーブ破損や羽目が溶損した時期である。このように
中心流、周辺流がどちらかでも強すぎる場合には、何ら
かの炉況異常が生じる。そこで、これらトラブルを生じ
ないガス流分布として上記(a) 、 (b)の中間の
ガス分布を目標としてかかげ、これを満足するように装
入物の分布を調整すべくベルレスパターンやムーバブル
アーマ−を動かす方法である。
Line (a) shows the gas distribution of a hypercentral flow, and is a waiting period in which ore falls to the siding part due to frequent slips due to inactivity of the furnace wall and insufficient reduction, causing damage to the siding. On the other hand, vA(b) is
The gas flow distribution is excessively peripheral, and the heat load on the furnace wall is high.
This is the time when the stave is damaged or the siding is melted. In this way, if either the central flow or the peripheral flow is too strong, some type of furnace condition abnormality will occur. Therefore, as a gas flow distribution that does not cause these troubles, we aim for a gas distribution between the above (a) and (b), and in order to adjust the charge distribution to satisfy this goal, we use bellless patterns and movable armor. It is a way to move.

次に、他の既知炉内ガス流分布調整の方法について述べ
る。すなわち、第2の方法は炉体冷却のステーブ給排水
の温度差と流量がらステーブ熱負荷(炉壁流の指標)を
測定し、これがいつも一定になるように装入物分布調整
を行う方法である。
Next, other known methods for adjusting the gas flow distribution in the furnace will be described. That is, the second method is to measure the stave heat load (an index of furnace wall flow) from the temperature difference and flow rate of the stave water supply and drainage for cooling the furnace body, and adjust the charge distribution so that this is always constant. .

第5図は、高炉の出銑量を次第に増加させる操業変更を
行う時のステーブ熱負荷と分布調整の経過を示した。例
えば、図中においてコークスの装入条件を一定にし鉱石
パターンを■−■に変更する;すなわち炉壁部への鉱石
装入量を増加する操業変更を行って周辺流抑制形のガス
流分布になるように操業した例であるが、フィードバッ
クの時間遅れのために操業が安定しない。
Figure 5 shows the progress of stave heat load and distribution adjustment when changing the operation to gradually increase the amount of iron tapped in the blast furnace. For example, in the figure, the coke charging condition is kept constant and the ore pattern is changed to This is an example of a system that was operated as expected, but the operation was unstable due to the time delay in feedback.

なお、上述した2つの例は、従来のガス流分布調整の代
表的な方法であるが、ガスサンプラーを用いずに、固定
ゾンデ温度分布やプロフィール計を使って実施しても、
またステーブ熱負荷のかわりに炉体温度レベルや、スキ
ンフロ一温度計、シャフト圧等のセンサーを用いても結
果は同じである。
The above two examples are typical methods of conventional gas flow distribution adjustment, but even if carried out using a fixed sonde temperature distribution or a profile meter without using a gas sampler,
The same results can be obtained even if sensors such as the furnace body temperature level, skin flow thermometer, shaft pressure, etc. are used instead of the stave heat load.

(発明が解決しようとする問題点) しかるに、上述の従来方法では以下のような重大な問題
点が残されていた。
(Problems to be Solved by the Invention) However, the above-mentioned conventional method still has the following serious problems.

■ 第1例に示すようなガス流分布による制御は、操業
のレベル(たとえば、燃料比を低下させるか燃料比を上
昇させる場合あるいは増産や減産を行う時等)で目標の
ガス分布が変化するから、いつも同じ目標ガス流分布で
はなく、常に試行錯誤で行っているため、特に急激な操
業変化に対しては追従できないという問題点があり、操
業変更に対熱しきれない。
■ Control based on gas flow distribution as shown in the first example requires that the target gas distribution changes depending on the operational level (for example, when decreasing or increasing the fuel ratio, or when increasing or decreasing production). Therefore, the target gas flow distribution is not always the same, and the process is always carried out by trial and error, so there is a problem that it is not possible to follow particularly sudden changes in operation, and it is difficult to respond to changes in operation.

■ 第2例に示すようなステーブ熱負荷を指標とする調
整方法は、あくまでも試行錯誤を繰返す方法であり、結
果が出てからの後追いの調整方法である。したがってア
クションのとりすぎや不足が生じ、安定なガス流分布を
得るまで時間がかかるという問題点があった。
■ The adjustment method using the stave heat load as an index as shown in the second example is a method of repeating trial and error, and is a follow-up adjustment method after the results are obtained. Therefore, there is a problem in that too much or not enough action is taken, and it takes time to obtain a stable gas flow distribution.

(問題点を解決するための手段) 本発明は、上述のような問題点を関係するために、操業
変更時の目標層厚比を予め予測し、それに沿って装入物
分布制御を行うという従来とは全く違った方法により、
好適炉内ガス流分布を導く方法である。すなわち、その
要旨とするところは、操業変更時に装入物分布を制御す
ることによって目標とする高炉内ガス流分布を導くよう
にする方法において、炉内通過風量、熱流比および炉壁
部層厚比の予定された関係から、変更後の炉壁部層厚比
を決定し、目標とする炉壁部層厚比となるように装入物
分布制御を行うことを特徴とする操業変更時の高炉内ガ
ス流分布調整法にある。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention predicts the target layer thickness ratio at the time of operational change in advance and controls the burden distribution accordingly. By a completely different method than before,
This is a method to derive a suitable gas flow distribution in the furnace. In other words, the gist is that in a method of guiding the target gas flow distribution in the blast furnace by controlling the charge distribution during operational changes, At the time of operational change, the furnace wall thickness ratio after the change is determined from the planned relationship of the ratio, and the burden distribution is controlled so that the target furnace wall thickness ratio is achieved. It is in the gas flow distribution adjustment method in a blast furnace.

(作 用) 以下、本発明にかかる着想の背景について本発明者らの
知見をもとに説明する。高炉の操業形態には、生産量の
違いである増産や減産、燃料比の違う高コークス比、低
コークス比、燃料吹込み、酸素冨化等種々の方法がある
が、これらの違いは、熱流比と炉内通過風量という2つ
の物理的指数で分類されることが判った。
(Function) Hereinafter, the background behind the idea of the present invention will be explained based on the knowledge of the present inventors. There are various ways to operate a blast furnace, such as increased or decreased production, different fuel ratios such as high coke ratio, low coke ratio, fuel injection, and oxygen enrichment. It was found that they can be classified based on two physical indices: ratio and air flow rate inside the furnace.

ここで熱流比とは、ボッシュガスの熱容量と降下する原
料の熱容量の比であり、これが1.0に近ずくほど熱交
換が良いことを示している。また炉内通過風量は単位時
間に発生する炉内ガス量であり、炉容量の異なる高炉で
も統一して評価できるようにl m 2あたりの単位時
間通風量で定義されるものである。
Here, the heat flow ratio is the ratio of the heat capacity of the Bosch gas to the heat capacity of the descending raw material, and the closer this is to 1.0, the better the heat exchange is. Further, the amount of air passing through the furnace is the amount of gas inside the furnace generated per unit time, and is defined as the amount of air passing per unit time per l m 2 so that blast furnaces with different furnace capacities can be evaluated uniformly.

さて第2図は、横軸を熱流比とし、縦軸を炉内通過風量
とした場合の操業概念図を示し、第1象限は、高燃料比
で高出銑比、第2象限は低燃料比で高出銑比、第3象限
は低燃料比で低出銑比、第4象限は高燃料比で低出銑比
を示している。このように熱流比と炉内通過風量をパラ
メータとして高炉の操業を評価すると、各炉の操業を変
更時でも同一の判断基準で比較できるようになる。
Now, Figure 2 shows a conceptual diagram of the operation when the horizontal axis is the heat flow ratio and the vertical axis is the air flow rate through the furnace. The third quadrant shows a low pig iron production ratio with a low fuel ratio, and the fourth quadrant shows a low pig iron production ratio with a high fuel ratio. If blast furnace operation is evaluated using the heat flow ratio and the amount of air passing through the furnace as parameters in this way, it becomes possible to compare the operations of each furnace using the same criteria even when the operation of each furnace is changed.

さて、操業形態は上述の2つのパラメータで表わすこと
ができるが、操業変更のためにはガス流の分布調整が必
要であり、そのためには通常装入物分布を制御する方法
を採用する。しかしながら、この装入物分布を制御する
手段も、ベルレスシュートあるいはムーバブルアーマと
いう炉頂装入設備の違いによる誤差があるし、層厚分布
の測定に当ってもその測定点によって誤差が生じるので
、ガス流分布についての統一した評価ができない一面も
ある。
Now, the operation mode can be expressed by the above two parameters, but in order to change the operation, it is necessary to adjust the gas flow distribution, and for this purpose, a method of controlling the charge distribution is usually adopted. However, this means of controlling the charge distribution also has errors due to differences in the furnace top charging equipment, such as a bellless chute or a movable armor, and errors also occur depending on the measurement point when measuring the layer thickness distribution. In one aspect, it is not possible to make a unified evaluation of gas flow distribution.

そこで本発明者らは、炉壁部の層厚比について着目した
。すなわち、チャージ毎に装入されるコークスと鉱石の
層厚を計算機により読みとり、炉壁部層厚比(LO/L
C)との関連で該ガス流分布について評価することとし
たのである。
Therefore, the present inventors focused on the layer thickness ratio of the furnace wall. That is, the layer thickness of coke and ore charged for each charge is read by a computer, and the furnace wall layer thickness ratio (LO/L
We decided to evaluate the gas flow distribution in relation to C).

すなわち、前述の熱流比および炉内通過風量と、該炉壁
部層厚比(LO/LC)とは強い相関関係があることが
判った。第1図はこれらの関係を3元状態図としてまと
めたものである。この図かられかるように、熱流比が高
ければ高いほど炉壁部層厚比(LO/LC)は低(、ま
た炉内通過風量が高いほど炉壁部層厚比(LO/LC)
が高い結果となる。従って、低燃料比のように熱流比の
高い操業を志向する場合には(LO/l、c )を低く
する周辺流化の方向へ、また出銑比が高い操業を志向す
る場合にはLo/Lcを高くする周辺流抑制の方向へと
操業すれば、所定のガス流分布が得られる。いわゆる操
業変更時の目標ガス流分布もこの図から定量的に推認で
きるのである。
That is, it has been found that there is a strong correlation between the heat flow ratio and the amount of air passing through the furnace, and the furnace wall layer thickness ratio (LO/LC). FIG. 1 summarizes these relationships as a ternary phase diagram. As can be seen from this figure, the higher the heat flow ratio, the lower the furnace wall layer thickness ratio (LO/LC).
results in a high result. Therefore, if you want to operate with a high heat flow ratio such as a low fuel ratio, you should go for peripheral flow, which lowers (LO/l, c), and if you want to operate with a high pig iron production ratio, you should go for low A predetermined gas flow distribution can be obtained by operating in the direction of suppressing the peripheral flow by increasing /Lc. The so-called target gas flow distribution during operational changes can also be estimated quantitatively from this diagram.

例えば、第1図を利用すれば、A点での操業からB点へ
の操業へ変更する場合には、高炉の物質熱収支の理論計
算から炉内通過風量で0.1 Na+1/min、n+
’上昇し熱流比で0.1低下することになるから、炉壁
部0/Cは、0.65−0.80へ上昇させればよいこ
とが予測できる。本発明はこのように操業変更時の目標
ガス流分布の1つの指標である炉壁部層厚比(LO/L
C)を、炉内通過風量と熱流比によって、予測できると
いう点に特色があり、この方法に従って装入物分布調整
を行えば、従来のようにアクションのとりすぎ、不足等
の不都合も解消することができる。
For example, using Figure 1, when changing from operation at point A to operation at point B, from the theoretical calculation of the material heat balance of the blast furnace, the flow rate of air passing through the furnace is 0.1 Na+1/min, n+
' and the heat flow ratio will decrease by 0.1, so it can be predicted that the furnace wall 0/C should be raised to 0.65-0.80. In this way, the present invention utilizes the furnace wall layer thickness ratio (LO/L
C) can be predicted based on the air flow rate and heat flow ratio in the furnace, and if the burden distribution is adjusted according to this method, problems such as taking too much action or not taking enough action as in the past can be resolved. be able to.

(実施例) 本発明法を用いて、内容積4500 m ’の高炉でコ
ークス比470 kg/l−p、送風量650ONm”
/lll1n 、出銑比2.Ot/d、−の低燃料比低
出銑比の操業(a)から、コークス比490 kg/l
−p、送風量625ONm”/min 、出銑比1.7
 t/d、m’の高燃料比低出銑比の操業(b)へ変更
する場合の装入物分布制御を行う方法を示す。
(Example) Using the method of the present invention, a coke ratio of 470 kg/l-p and an air flow rate of 650 ONm were produced in a blast furnace with an internal volume of 4500 m'.
/lll1n, iron tap ratio 2. Ot/d, - from operation (a) with low fuel ratio and low output ratio, coke ratio 490 kg/l
-p, air flow rate 625ONm”/min, iron tap ratio 1.7
A method of controlling the charge distribution when changing to operation (b) with a high fuel ratio and low iron output ratio of t/d, m' will be shown.

高炉の物質熱収支に基づ(理論計算から、前者(a)は
熱流比0.85、炉内通過風量2.0 Nm37m1n
、m3であり、後者(b)は熱流比0.83、炉内通過
風量1.90 Nm″/min、m3であることが予測
される。
Based on the material heat balance of the blast furnace (from theoretical calculations, the former (a) has a heat flow ratio of 0.85 and a flow rate of air passing through the furnace of 2.0 Nm37m1n
, m3, and the latter (b) is predicted to have a heat flow ratio of 0.83, an air flow rate of 1.90 Nm''/min, and m3.

従って、上記第1図によると、層厚比L O/ L C
は0点(0,75)からD点(0,78)へ変更すれば
よいことがわかる。そこで第3図に示すように、操業の
変更とともに、ベルレスパターンを(イ)、(ロ)。
Therefore, according to FIG. 1 above, the layer thickness ratio L O / L C
It can be seen that it is sufficient to change from point 0 (0,75) to point D (0,78). Therefore, as shown in Figure 3, we changed the operation and adopted bellless patterns (a) and (b).

(ハ)に変更する調整を段階的に行い、層厚比Lo/L
cを0.03上昇させる周辺流化の方法をとったところ
、予想どおりの高燃料比低出銑比操業へトラブルな(変
更できた。
Adjustment to change to (c) is carried out step by step, layer thickness ratio Lo/L
When we adopted a method of peripheral flow that increased c by 0.03, we were able to change to high fuel ratio and low iron production ratio operation as expected (although it was difficult to do so).

(発明の効果) 以上説明したように本発明によれば、従来のように直接
ガス流分布を測定してその都度試行錯誤しながら分布制
御を行ったり、ステーブ熱負荷のような測定結果からト
ラアンドエラーにより分布調整する必要がなくなり、予
め操業変更に伴う炉壁側の適正な層厚比が予測できて装
入物分布制御調整し得るので、操業変更時に適確かつ迅
速な装入物分布調整ひいてはガス流分布調整が可能とな
り、円滑かつ安定した高炉操業を行うことができる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to directly measure the gas flow distribution and control the distribution through trial and error each time as in the past, or to control the distribution based on the measurement results such as the stave heat load. There is no need to adjust the distribution due to error and error, and since the appropriate layer thickness ratio on the furnace wall side can be predicted in advance due to changes in operation, the burden distribution control can be adjusted, allowing for appropriate and quick burden distribution when changing operations. This makes it possible to adjust the gas flow distribution, allowing for smooth and stable blast furnace operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、熱流比、炉内通過風量および炉壁部層厚比の
3元状態図、 第2図は、熱流比と炉内通過風量をパラメータとした操
業状態の説明図、 第3図は、本発明実施例による高炉操業データの推移図
、 第4図は、炉半径方向のガス流分布を示すグラフ、 第5図は、装入物分布調整によるステーブ熱負荷コント
ロールのもようを示すグラフである。 特許出願人  川崎製鉄株式会社 第1図 第2図
Figure 1 is a ternary state diagram of heat flow ratio, air flow rate through the furnace, and furnace wall layer thickness ratio. Figure 2 is an explanatory diagram of the operating state using the heat flow ratio and air flow rate through the furnace as parameters. Figure 3 4 is a graph showing the gas flow distribution in the radial direction of the furnace. FIG. 5 is a graph showing the stave heat load control by adjusting the charge distribution. It is a graph. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、操業変更時に装入物分布を制御することによつて目
標とする高炉内ガス流分布を導くようにする方法におい
て、炉内通過風量、熱流比および炉壁部層厚比の予定さ
れた関係から、変更後の炉壁部層厚比を決定し、目標と
する炉壁部層厚比となるように装入物分布制御を行うこ
とを特徴とする操業変更時の高炉内ガス流分布調整法。
1. In a method of guiding the target gas flow distribution in the blast furnace by controlling the burden distribution at the time of operational changes, Gas flow distribution in a blast furnace during operational changes characterized by determining the furnace wall layer thickness ratio after the change from the relationship and controlling the charge distribution so as to achieve the target furnace wall layer thickness ratio. Adjustment method.
JP8026585A 1985-04-17 1985-04-17 Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation Pending JPS61238904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8026585A JPS61238904A (en) 1985-04-17 1985-04-17 Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8026585A JPS61238904A (en) 1985-04-17 1985-04-17 Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation

Publications (1)

Publication Number Publication Date
JPS61238904A true JPS61238904A (en) 1986-10-24

Family

ID=13713473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8026585A Pending JPS61238904A (en) 1985-04-17 1985-04-17 Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation

Country Status (1)

Country Link
JP (1) JPS61238904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525854A (en) * 2014-09-03 2017-09-07 江▲蘇▼省沙▲鋼鋼鉄▼研究院有限公司Institute Of Research Of Iron And Steel, Jiangsu Province/Sha−Steel, Co.Ltd Blast furnace gas flow distribution detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776108A (en) * 1980-10-28 1982-05-13 Sumitomo Metal Ind Ltd Operation of blast furnace
JPS5993809A (en) * 1982-11-18 1984-05-30 Sumitomo Metal Ind Ltd Operating method of blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776108A (en) * 1980-10-28 1982-05-13 Sumitomo Metal Ind Ltd Operation of blast furnace
JPS5993809A (en) * 1982-11-18 1984-05-30 Sumitomo Metal Ind Ltd Operating method of blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525854A (en) * 2014-09-03 2017-09-07 江▲蘇▼省沙▲鋼鋼鉄▼研究院有限公司Institute Of Research Of Iron And Steel, Jiangsu Province/Sha−Steel, Co.Ltd Blast furnace gas flow distribution detection method

Similar Documents

Publication Publication Date Title
US3561743A (en) Use of stack gas as oxygen potential measurements to control the bof process
KR20150079971A (en) Method and device for predicting, controlling and/or regulating steelworks processes
JPH02115311A (en) Method for controlling heat of blast furnace
JPS61238904A (en) Method for adjusting distribution of gaseous flow in blast furnace in stage of changing operation
JPS61508A (en) Operating method of blast furnace
US4227921A (en) Method of controlling a blast furnace operation
JP4140939B2 (en) Converter blowing method
JP2001254111A (en) Method of controlling furnace heat in blast furnace and guidance device
JPH0248196B2 (en) KOOKUSURONOHIOTOSHIJIKANSEIGYOHOHO
Bay et al. Dynamic control of the cement process with a digital computer system
JPS6055561B2 (en) How to operate a blast furnace
SU1562646A1 (en) Device for controlling iron-melting in cupola furnace
KR20010049082A (en) Direct pressure equalizing method of hopper using in blast furnace rising gas
JP3874696B2 (en) Converter pressure control method and apparatus for converter
SU1604858A1 (en) Method of controlling distribution and use of gas in blast furnace
SU1093706A1 (en) Device for controlling metal blowing
JPH01191751A (en) Operating method of sintering machine
KR100423454B1 (en) Method for controlling the temperature of center portion of burden materials in blast furnace
RU2106411C1 (en) System of automatic regulation of pressure of blast-furnace gas
JPH01162707A (en) Method for operating blast furnace
JPH04103703A (en) Method and device for controlling heat of blast furnace
JPH0128803B2 (en)
JPH04165009A (en) Method for operating blast furnace
SU624944A1 (en) Method of control of agglomeration process
SU771432A1 (en) Device for regulating cupola thermal mode