JPS61238323A - Adsorption type compressed air dehumidifying apparatus - Google Patents

Adsorption type compressed air dehumidifying apparatus

Info

Publication number
JPS61238323A
JPS61238323A JP60082077A JP8207785A JPS61238323A JP S61238323 A JPS61238323 A JP S61238323A JP 60082077 A JP60082077 A JP 60082077A JP 8207785 A JP8207785 A JP 8207785A JP S61238323 A JPS61238323 A JP S61238323A
Authority
JP
Japan
Prior art keywords
air
adsorption
valve
cooling
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60082077A
Other languages
Japanese (ja)
Inventor
Takashi Hirano
孝 平野
Ryoji Kobayashi
良二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP60082077A priority Critical patent/JPS61238323A/en
Publication of JPS61238323A publication Critical patent/JPS61238323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)

Abstract

PURPOSE:To reduce the loss of heating energy and the loss of air by purging, by using the heat energy generated in a cooling circuit in the regeneration of an adsorbing tower and using cooling energy in the dehumidification of air. CONSTITUTION:The high temp. air from a compressor 44 is flowed to an adsorbing tower B through a solenoid valve 46 to evaporate moisture from the adsorbent in the tower B. This air is sent to a precooler 43a through a solenoid valve 57 to be dehumidified and further dehumidified up to a dew point by a cooler 42 to be sent to an adsorbing tower A through a three-way valve 41 to be further dehumidified while dry air is sent out of the machine from a solenoid valve 47. Next, solenoid valves 46, 57 are closed and solenoid valves 55, 62, 68 are opened and the high temp. air from the compressor 44 is flowed in a precooler 60 through the valve 62 and a check valve 61 while a part of dry air from the adsorbing tower A is flowed into the adsorbing tower B through an orifice 51 to discharge the heat energy in the tower B to the outside.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、比較的低湿度の空気を必要とする工場、研究
所等に利用される吸着剤を利用した圧縮空気除湿装置に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a compressed air dehumidification device using an adsorbent, which is used in factories, research institutes, etc. that require air with relatively low humidity. .

(従  来  技  術) 従来の吸着剤を利用した圧縮空気除湿装置としては、第
4図乃至第7図示すようなタイプのものが知られている
(Prior Art) As a conventional compressed air dehumidifying device using an adsorbent, the types shown in FIGS. 4 to 7 are known.

第4図に示されるものは、吸着剤が充填された吸着塔4
,5と、該吸着塔4,5の空気吸入口と接続された三方
弁1と、吸着塔4,5の空気排出口がそれぞれ電磁弁8
.9及び逆止弁7を介して外部と接続し、さらに吸着塔
4,5が互いにオリフィス6を介して連通したものであ
る。
What is shown in FIG. 4 is an adsorption tower 4 filled with adsorbent.
, 5, the three-way valve 1 connected to the air inlet of the adsorption towers 4, 5, and the air outlet of the adsorption towers 4, 5 connected to the solenoid valve 8, respectively.
.. The adsorption towers 4 and 5 are connected to the outside through an orifice 6 and an orifice 6.

この装置の場合、低露点(−70″C)の圧縮乾燥空気
を得ようとすると、パージ量(電磁弁2,3から放出す
る空気量)が多くなりパージ率が15〜30%とニアロ
スが非常に多いといった不都合があった。
In the case of this device, when trying to obtain compressed dry air with a low dew point (-70"C), the purge amount (the amount of air released from the solenoid valves 2 and 3) increases and the purge rate is 15 to 30%, resulting in near loss. The problem was that there were too many.

第5図に示されるものは、前記第4図のものにそれぞれ
の吸着塔4,5の排出口に電磁弁11.12及び逆止弁
7を介して吸着塔の再生用の加熱器13及びプロワ14
を接続したものである。
What is shown in FIG. 5 is the same as that shown in FIG. Prowa 14
is connected.

しかしながら、この装置の場合には低露点(−70°C
以下)の圧縮空気を得ようとする時には、ゼオライト等
の吸着剤を充填した2基の吸着塔の一方を用いて圧縮空
気を乾燥しその間他方の吸着塔にプロワ14を設は熱風
を通し、吸着剤中の水分を蒸散させ再生し、ついで吸着
塔出口からの比較的冷えた空気を電磁弁10、オリフィ
ス6を介して再生塔に送り電磁弁3を開弁きせ熱気を吸
着塔外に逃がし、吸着塔を冷却賦活させている。しかし
ながらこの圧縮空気除湿装置の場合には、吸着塔外に逃
がしている量は、全人気量に対するパージ率が約10〜
15%位とパージによるニアロスが太きいといった不都
合があった。
However, this device has a low dew point (-70°C).
When trying to obtain compressed air (below), one of two adsorption towers filled with adsorbent such as zeolite is used to dry the compressed air, while a blower 14 is installed in the other adsorption tower to pass hot air through. The moisture in the adsorbent is evaporated and regenerated, and then relatively cool air from the outlet of the adsorption tower is sent to the regeneration tower via the solenoid valve 10 and orifice 6, and the solenoid valve 3 is opened to release hot air to the outside of the adsorption tower. , the adsorption tower is activated by cooling. However, in the case of this compressed air dehumidifier, the amount released to the outside of the adsorption tower has a purge rate of about 10 to
There was an inconvenience that the near loss due to purge was around 15%.

次に第6図に示されるものは、充填剤が充填された乾燥
器21 、22と、四方弁を介して接続された水冷式ク
ーラー23と、乾燥器21.22と四方弁及び三方弁を
介して接続されたアフタークーラー24とからなり乾燥
器21.22を交互に除湿または再生に使用する方式の
ものである(特開昭56−136619)。
Next, what is shown in FIG. 6 includes dryers 21 and 22 filled with filler, a water-cooled cooler 23 connected via a four-way valve, and a dryer 21 and 22 connected to the four-way valve and the three-way valve. This is a system in which the dryers 21 and 22 are alternately used for dehumidification or regeneration (Japanese Patent Application Laid-Open No. 136619/1983).

しかしながらかかる方式のものは、クーラーが水冷式で
あって、冷凍器を使用していないので低露点−70℃の
乾燥空気を連続して得ることは不可能であった。また再
生中の乾燥器の冷却賦活について、圧縮空気吐出管に設
けたアフタークーラーにより冷やした空気を当該乾燥器
に送り込んでいるが、アフタークーラーからでる空気が
低露点のものではないために、かえって冷却工程中に吸
着剤に水分が付着してしまうため、充分に再生すること
が出来ないといった不都合があった。
However, since the cooler of this type is water-cooled and does not use a refrigerator, it has been impossible to continuously obtain dry air with a low dew point of -70°C. Regarding the cooling activation of the dryer during regeneration, air cooled by an aftercooler installed in the compressed air discharge pipe is sent into the dryer, but since the air coming out of the aftercooler is not of a low dew point, Since moisture adheres to the adsorbent during the cooling process, it is inconvenient that it cannot be regenerated sufficiently.

(発明が解決しようとする問題点) 以上のように従来の、吸着式圧縮空気除湿装置について
は、消費される加熱エネルギーが無駄になるといった不
都合があり、また吸着塔を再生する際にパージするため
のニアロスが極めて大きいといった不都合があった。
(Problems to be Solved by the Invention) As mentioned above, the conventional adsorption type compressed air dehumidifier has the disadvantage that the consumed heating energy is wasted, and the purge is required when regenerating the adsorption tower. There was an inconvenience that the near loss caused by this method was extremely large.

そこでかかる従来技術のもつ不都合を是正するべく加熱
エネルギーの損失が少なくかつ、パージによるニアロス
の少ないものを提供することを目的とする。
Therefore, in order to correct the disadvantages of the prior art, it is an object of the present invention to provide a method with less loss of heating energy and less near loss due to purging.

(問題を解決するための手段) 即ち本発明は、吸着剤が内部に充填された吸着れた三方
弁41と、該三方弁41の入口と連通ずる冷却・除湿手
段と、該冷却・除湿手段と接続された空気圧縮機44と
からなり、前記吸着塔A、Bの空気排出口がそれぞれ電
磁弁45,46を介して空気圧縮機と接続され、また吸
着塔A、Bの排出口がそれぞれ電磁弁47.48及び逆
止弁49,50を介して外部と連通ずると共に、吸着塔
A、Bそれぞれが互いにオリフィス51 、52、逆止
弁53,54及び電送弁55.56を介して連通し、さ
らに吸着塔A、Bの空気吸入口がそれぞれ電磁弁57.
58及び逆止弁57a、58aを介して前記冷却・除湿
手段に接続きれていることを特徴とする吸着式圧縮空気
除湿装置である。
(Means for Solving the Problem) That is, the present invention provides an adsorbed three-way valve 41 filled with an adsorbent, a cooling/dehumidifying means communicating with an inlet of the three-way valve 41, and the cooling/dehumidifying means. The air outlet ports of the adsorption towers A and B are connected to the air compressor via electromagnetic valves 45 and 46, respectively, and the air outlet ports of the adsorption towers A and B are connected to the air compressor 44, respectively. The adsorption towers A and B communicate with each other via orifices 51 and 52, check valves 53 and 54, and electric transmission valves 55 and 56. Furthermore, the air intake ports of adsorption towers A and B are each connected to a solenoid valve 57.
58 and check valves 57a and 58a, the adsorption type compressed air dehumidifier is connected to the cooling/dehumidifying means.

(作   用) 本発明にかかる装置は、吸着塔Aを吸湿に、また吸着塔
Bを再生に使用する場合には、一方の電磁弁を閉じ他方
のt磁片を開放する。すると空気圧縮機44から高温の
熱風が吸着塔Bに送り込まれる。その際吸着塔B内の吸
着剤に付いた水分はその熱により蒸散する。そしてこの
熱風は吸着剤と熱交換して若干冷やされて冷却・除湿手
段に送られる。そこで再び空気は冷やされると共に更に
除湿され、三方弁を介して吸着塔Aに送られる。この送
られた乾燥空気はさらに吸着剤により露点−70℃まで
除湿される。除湿された空気は電磁弁を介して外部に供
給される。再生する吸着塔Bの水分の蒸散が終了した後
は、電磁弁を切り替えて熱風が直接に冷却・除湿手段に
送られるようにすると共に、再生する吸着塔Bには該吸
着塔を賦活許せるために吸着塔Aの空気排出口からオリ
フィスを介して乾燥冷却空気が送り込まれ、吸着塔B内
の水分がパージされる。
(Function) In the apparatus according to the present invention, when the adsorption tower A is used for moisture absorption and the adsorption tower B is used for regeneration, one solenoid valve is closed and the other t-magnetic valve is opened. Then, high-temperature hot air is sent into the adsorption tower B from the air compressor 44. At this time, the moisture adhering to the adsorbent in the adsorption tower B is evaporated by the heat. Then, this hot air exchanges heat with the adsorbent to be slightly cooled and sent to the cooling/dehumidifying means. There, the air is cooled again, further dehumidified, and sent to adsorption tower A via the three-way valve. This sent dry air is further dehumidified by an adsorbent to a dew point of -70°C. The dehumidified air is supplied to the outside via a solenoid valve. After the moisture evaporation in the adsorption tower B to be regenerated is completed, the solenoid valve is switched so that the hot air is sent directly to the cooling/dehumidifying means, and the adsorption tower B to be regenerated can be activated. Dry cooling air is sent from the air outlet of adsorption tower A through an orifice to purge moisture in adsorption tower B.

(実 施 例) 以下に本発明を図面に示された実施例に従って詳細に説
明する。
(Embodiments) The present invention will be described in detail below according to embodiments shown in the drawings.

第1図は、無給油形の空気圧縮機を利用した場合の実施
例を示す概略図であり、A及びBは吸着剤が充填された
吸着塔であり、それらの空気吸入口は三方弁41に接続
されている。三方弁41の入口は、冷却器42に接続さ
れ、きらに予備冷却器60、逆止弁61及び電磁弁62
を介して空気圧縮機44と連通する。また空気圧縮機4
4は、吸着塔A、Bの空気排出口とそれぞれ電磁弁45
,46を介して接続されている。さらに吸着$A、Bの
空気排出口は、それぞれ電磁弁47.48及び逆止弁4
9,50を介して外部と連通ずると共に、互いにオリフ
ィス51,52、逆止弁53.54及び電磁弁55.5
6を介して連通している。一方吸着塔A、Bの空気吸入
口はそれぞれ電磁弁57.58及び逆止弁57a 、 
58aを介して予備冷却器43aと接続され、その予備
冷却器43aは、冷却器42の入口と接続されている。
FIG. 1 is a schematic diagram showing an embodiment in which an oil-free air compressor is used. A and B are adsorption towers filled with adsorbent, and their air inlets are connected to a three-way valve 41. It is connected to the. The inlet of the three-way valve 41 is connected to the cooler 42, and is connected to the precooler 60, the check valve 61, and the solenoid valve 62.
It communicates with the air compressor 44 via. Also air compressor 4
4 are air outlet ports of adsorption towers A and B, and electromagnetic valves 45, respectively.
, 46. Furthermore, the air exhaust ports of suction $A and B are connected to solenoid valves 47 and 48 and check valve 4, respectively.
The orifices 51, 52, the check valves 53, 54, and the solenoid valves 55, 5 communicate with the outside via the
It communicates via 6. On the other hand, the air intake ports of adsorption towers A and B are provided with solenoid valves 57, 58 and check valves 57a, respectively.
It is connected to a precooler 43a via 58a, and the precooler 43a is connected to the inlet of the cooler 42.

尚42a 、 43c 、 60aはそれぞれ冷却器の
ドレンを分離するドレン分離器であり、67.68は、
吸着塔内の熱をパージするための電磁弁である。
Note that 42a, 43c, and 60a are drain separators that separate the drain of the cooler, and 67.68 is
This is a solenoid valve for purging the heat inside the adsorption tower.

以上述べた構成において本発明にかかる実施例では、吸
着塔Aを吸着に、また吸着塔Bを再生に使用する場合に
は、まず電磁弁45.48.55.56゜58.62を
閉し、電磁弁46,47.57を開放する。すると空気
圧縮機44から約250〜300℃高温の空気が吸着塔
Bに電磁弁46を介して流れ込み、吸着塔B内の吸着剤
に付いた水分を蒸散させる。このとき高温の空気は充填
剤と熱交換され若干冷やされる。この冷やされた空気は
電磁弁57、逆止弁57aを介して予備冷却器43aに
流れる。そして予備冷却器43aにおいて除湿され、凝
縮した水分は、ドレン分離器43cに溜り器外に放出き
れる。この予備冷却器43aを経て露点の下がった空気
は更に、冷却器42に行き露点−17℃程度まで除湿さ
れ三方弁41を介して吸着塔Aに入り露点−70℃以下
にまで水分は吸湿される。充分に吸湿された乾燥空気は
、電磁弁47.逆止弁49を介して機外に送られる。 
一方加熱きれ水分を放出した再生塔B内の吸着剤は、そ
の吸着能力を賦活させるために約50〜60℃まで冷却
させなければならないが、この場合は電磁弁46.57
を開から閉に切り替えると共に、電磁弁55,62.6
8を閉から開に切り替える。
In the embodiment according to the present invention with the configuration described above, when adsorption tower A is used for adsorption and adsorption tower B is used for regeneration, first close the solenoid valves 45.48.55.56°58.62. , the solenoid valves 46, 47, and 57 are opened. Then, air at a high temperature of about 250 to 300° C. flows from the air compressor 44 into the adsorption tower B via the electromagnetic valve 46, and evaporates the water attached to the adsorbent in the adsorption tower B. At this time, the high temperature air exchanges heat with the filler and is slightly cooled. This cooled air flows to the precooler 43a via the electromagnetic valve 57 and the check valve 57a. The water is dehumidified in the preliminary cooler 43a and the condensed water is discharged to the outside of the reservoir in the drain separator 43c. The air whose dew point has been lowered through the precooler 43a further goes to the cooler 42, where it is dehumidified to a dew point of about -17°C, and then enters the adsorption tower A via the three-way valve 41, where moisture is absorbed until the dew point is below -70°C. Ru. The dry air that has sufficiently absorbed moisture is passed through the solenoid valve 47. It is sent outside the machine via the check valve 49.
On the other hand, the adsorbent in the regeneration tower B, which has been heated and released moisture, must be cooled to approximately 50 to 60°C in order to activate its adsorption ability, but in this case, the solenoid valve 46.57
At the same time as switching from open to closed, the solenoid valves 55, 62.6
Switch 8 from closed to open.

すると今まで吸着塔B内に流れていた高温空気は、流れ
なくなり電磁弁62.逆止弁61、予備冷却器60を介
して冷却器42へ流れるようになる。そして吸着塔Aで
乾燥された空気は、オリフィス51゜逆止弁53.電磁
弁55を介して吸着塔B内に流れ吸着塔B内の熱エネル
ギーを洛外に放出する。この放出量は、空気圧縮機44
から本装置に圧送される全量の約3〜4%で非常に少な
くて済む。実際には加熱と冷却の工程の時間が半分ずつ
なので放出量は1.5〜2%で済む。
Then, the high-temperature air that had been flowing inside the adsorption tower B stops flowing, and the solenoid valve 62. The water flows to the cooler 42 via the check valve 61 and the precooler 60. The air dried in the adsorption tower A is then passed through the orifice 51° check valve 53. It flows into the adsorption tower B through the electromagnetic valve 55, and the thermal energy inside the adsorption tower B is released to the outside. This emission amount is the same as the air compressor 44
This amount is very small, about 3-4% of the total amount pumped into the device. In reality, the heating and cooling steps take half the time, so the amount released is only 1.5 to 2%.

次に第2図に示された実施例は、アフタークーラーが内
蔵されたタイプの空気圧縮機に応用した例である。この
実施例では、前述の第1図の実施例のものの空気取入口
の直後に冷却器42、膨張弁63、凝縮器64、圧縮機
69からなる冷却回路の凝縮器64を装着し、きらに凝
縮器64と電磁弁45.46との間に加熱器65を装着
すると共に、冷却器42と凝縮器64との間を予備冷却
器43b、逆止弁66及び電磁弁59で接続したものか
らなる。
Next, the embodiment shown in FIG. 2 is an example in which the present invention is applied to an air compressor having a built-in aftercooler. In this embodiment, a condenser 64 of a cooling circuit consisting of a cooler 42, an expansion valve 63, a condenser 64, and a compressor 69 is installed immediately after the air intake port of the embodiment shown in FIG. A heater 65 is installed between the condenser 64 and the solenoid valves 45 and 46, and the cooler 42 and the condenser 64 are connected by a precooler 43b, a check valve 66, and a solenoid valve 59. Become.

尚、本実施例では、予備冷却器43bを用いたが冷却器
42と凝縮器64との間を予備冷却器43a5逆止弁6
6及び電磁弁59で接続したものでもよい。
In this embodiment, the precooler 43b is used, but the precooler 43a5 and the check valve 6 are connected between the cooler 42 and the condenser 64.
6 and a solenoid valve 59 may be used.

以上述べたような構成において本発明にかかる実施例の
ものでは、吸着@Aを除湿に、吸着塔Bを再生に使用す
る時電磁弁59を閉じ、他の電磁弁につい工は前述の第
1図の実施例のように電磁弁を開閉すると、吸着塔Bで
は吸着剤に付着した水分が蒸発すると共に、吸着@Aで
は、露点−70°C以下の乾燥空気を機外に排出する。
In the embodiment according to the present invention with the configuration described above, when the adsorption @A is used for dehumidification and the adsorption tower B is used for regeneration, the solenoid valve 59 is closed, and the other solenoid valves are operated as described in the first step. When the electromagnetic valve is opened and closed as in the embodiment shown in the figure, moisture adhering to the adsorbent in adsorption tower B evaporates, and in adsorption @A, dry air with a dew point of -70°C or less is discharged outside the machine.

モして、吸着塔Bの吸着剤に付着した水分の蒸散が終了
した後は、1を磁片59を開放し電磁弁46を閉じ、吸
着塔Bに高温空気が流れないようにして前述第1図の実
施例のように吸着塔B内の吸着剤を賦活させる。
After the moisture adhering to the adsorbent in the adsorption tower B has finished evaporating, the magnetic piece 59 is opened and the solenoid valve 46 is closed to prevent high-temperature air from flowing into the adsorption tower B. The adsorbent in adsorption tower B is activated as in the embodiment shown in FIG.

尚、第1図及び第2図に示す装置はタイマー及びシーケ
ンサ等により第3図に示すように電磁弁を切り替えるこ
とにより、吸着、再生作業を自動的に且つ連続的に使用
することが出来る。
The apparatus shown in FIGS. 1 and 2 can perform adsorption and regeneration operations automatically and continuously by switching the solenoid valve as shown in FIG. 3 using a timer, sequencer, etc.

(発明の効果) 以上述べたように本発明にかかる装置は、冷却器を用い
て圧縮空気を冷却・除湿しているが、冷却回路で発生す
る熱エネルギーを吸着塔の再生に使用すると共に、冷却
エネルギーは空気の除湿に使用しているので冷却回路に
使用されるエネルギーを有効に利用することが出来、経
済的である。
(Effects of the Invention) As described above, the apparatus according to the present invention uses a cooler to cool and dehumidify compressed air, and the thermal energy generated in the cooling circuit is used to regenerate the adsorption tower. Since the cooling energy is used to dehumidify the air, the energy used in the cooling circuit can be used effectively, which is economical.

また本発明の装置は、吸着塔内で吸着させる前に予め予
備冷却器及び冷却器によって除湿・冷却しているため、
使用する吸着剤の量が少なくて済む。
In addition, since the device of the present invention is dehumidified and cooled in advance using a precooler and a cooler before adsorption in the adsorption tower,
Less amount of adsorbent is needed.

きらに再生吸着塔はその賦活の時にかぎり吸着塔で製造
された製品乾燥空気を利用しているので冷却時に吸着剤
に水分が付着するおそれがなく、パージ量も165〜2
.0%と少なくて済む。
Since the Kirani regenerated adsorption tower uses the product dry air produced in the adsorption tower only during activation, there is no risk of moisture adhering to the adsorbent during cooling, and the purge amount is also 165 to 2.
.. It can be as small as 0%.

さらにまた、本発明の装置は、使用する吸着剤に付着す
る水分の量が比較的少なくて済むので吸着剤の寿命が従
来のものよりも長くなる。
Furthermore, the device of the present invention requires a relatively small amount of moisture to adhere to the adsorbent used, resulting in a longer adsorbent life than conventional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明にがかる一実施例を示す装置の概略図
、第2図は他の実施例を示す装置の概略図、第3図は電
磁弁の切り替えと装置の作動状態を示すゲイムチヤード
、第4図から第6図は従来技術を示す装置の概略図であ
る。 A、B   ・・・吸着塔   41   ・・・三方
弁42     ・・・冷却器   43a、43b・
・・予備冷却器44     ・・・圧縮機   45
゜46.47.48・・・電磁弁49、50.53.5
4.57a、 58g、 66・・・逆止弁51、52
   ・・・オリフィス 55.56.57.58・・
・電磁弁特許出願人 才り才ン機械株式会社 代理人弁理士 稲  木  次  之 代理人弁理士 押  本  泰  彦 第1図 第2図 第3図  山 第4図
Fig. 1 is a schematic diagram of a device showing one embodiment of the present invention, Fig. 2 is a schematic diagram of a device showing another embodiment, and Fig. 3 is a game chart showing switching of a solenoid valve and the operating state of the device. , FIGS. 4 to 6 are schematic diagrams of devices illustrating the prior art. A, B...Adsorption tower 41...Three-way valve 42...Cooler 43a, 43b.
...Precooler 44 ...Compressor 45
゜46.47.48... Solenoid valve 49, 50.53.5
4.57a, 58g, 66...Check valves 51, 52
...Orifice 55.56.57.58...
・Solenoid valve patent applicant Tsugu Inagi, agent patent attorney for Saisai Kikai Co., Ltd. Yasuhiko Oshimoto, agent agent Figure 1 Figure 2 Figure 3 Mountain Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)吸着剤が内部に充填された吸着塔A、Bと、吸着
塔A、Bの空気吸入口と連結された三方弁41と、該三
方弁41の入口と連通する冷却・除湿手段と、該冷却・
除湿手段と接続された空気圧縮機44とからなり、前記
吸着塔A、Bの空気排出口がそれぞれ電磁弁45、46
を介して空気圧縮機44と接続され、また吸着塔A、B
の排出口がそれぞれ電磁弁47、48及び逆止弁49、
50を介して外部と連通すると共に、吸着塔A、Bそれ
ぞれが互いにオリフィス51、52、逆止弁53、54
及び電磁弁55、56を介して連通し、さらに吸着塔A
、Bの空気吸入口がそれぞれ電磁弁57、58及び逆止
弁57a、58aを介して前記冷却・除湿手段に接続さ
れていることを特徴とする吸着式圧縮空気除湿装置。
(1) Adsorption towers A and B filled with adsorbent, a three-way valve 41 connected to the air intake ports of the adsorption towers A and B, and a cooling/dehumidifying means communicating with the inlet of the three-way valve 41. , the cooling
It consists of an air compressor 44 connected to a dehumidifying means, and the air outlet ports of the adsorption towers A and B are connected to solenoid valves 45 and 46, respectively.
is connected to the air compressor 44 via the adsorption towers A and B.
The discharge ports are respectively electromagnetic valves 47, 48 and check valves 49,
50, and adsorption towers A and B each have orifices 51, 52 and check valves 53, 54.
and communicates via electromagnetic valves 55 and 56, and further adsorption tower A
, B are connected to the cooling/dehumidifying means via electromagnetic valves 57, 58 and check valves 57a, 58a, respectively.
(2)冷却・除湿手段が冷却器42および予備冷却器か
らなることを特徴とする特許請求の範囲第1項記載の吸
着式圧縮空気除湿装置。
(2) The adsorption compressed air dehumidifier according to claim 1, wherein the cooling/dehumidifying means comprises a cooler 42 and a preliminary cooler.
(3)予備冷却器と空気圧縮機44とを逆止弁61及び
電磁弁62で接続したことを特徴とする特許請求の範囲
第2項記載の吸着式圧縮空気除湿装置。
(3) The adsorption type compressed air dehumidifier according to claim 2, wherein the precooler and the air compressor 44 are connected by a check valve 61 and a solenoid valve 62.
(4)空気圧縮機44と電磁弁45、46との間に凝縮
器64、加熱器65を接続したことを特徴とする特許請
求の範囲第1項、第2項又は第3項記載の吸着式圧縮空
気除湿装置。
(4) Adsorption according to claim 1, 2 or 3, characterized in that a condenser 64 and a heater 65 are connected between the air compressor 44 and the solenoid valves 45 and 46. Type compressed air dehumidifier.
(5)装置の冷却器42及び凝縮器64が圧縮機67、
冷却器42、膨張弁63、凝縮器からなる一つの冷凍回
路のものを使用することを特徴とする特許請求の範囲第
4項記載の吸着式圧縮空気除湿装置。
(5) The cooler 42 and condenser 64 of the device are the compressor 67,
The adsorption type compressed air dehumidifier according to claim 4, characterized in that a single refrigeration circuit consisting of a cooler 42, an expansion valve 63, and a condenser is used.
JP60082077A 1985-04-17 1985-04-17 Adsorption type compressed air dehumidifying apparatus Pending JPS61238323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60082077A JPS61238323A (en) 1985-04-17 1985-04-17 Adsorption type compressed air dehumidifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60082077A JPS61238323A (en) 1985-04-17 1985-04-17 Adsorption type compressed air dehumidifying apparatus

Publications (1)

Publication Number Publication Date
JPS61238323A true JPS61238323A (en) 1986-10-23

Family

ID=13764400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60082077A Pending JPS61238323A (en) 1985-04-17 1985-04-17 Adsorption type compressed air dehumidifying apparatus

Country Status (1)

Country Link
JP (1) JPS61238323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298425A (en) * 1986-06-16 1987-12-25 Nichie Kk Reversible heating regeneration type dehumidifier for pressurized gas
JPH01299622A (en) * 1988-05-30 1989-12-04 Mitsubishi Electric Corp Air drying apparatus
US5925169A (en) * 1996-04-02 1999-07-20 Altas Copco Airpower, Naamloze Vennootschap Method and device for drying a gas which has been compressed by a compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109667A (en) * 1978-02-16 1979-08-28 Daido Steel Co Ltd Pressurized gas dehumidifier
JPS5551703A (en) * 1978-10-06 1980-04-15 Toshiba Corp Feed air dehumidifier for ozonizer
JPS55140701A (en) * 1979-04-17 1980-11-04 Toshiba Corp Air dehumidifier for ozonizer
JPS5721914A (en) * 1980-07-15 1982-02-04 Toshiba Corp Air drying equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109667A (en) * 1978-02-16 1979-08-28 Daido Steel Co Ltd Pressurized gas dehumidifier
JPS5551703A (en) * 1978-10-06 1980-04-15 Toshiba Corp Feed air dehumidifier for ozonizer
JPS55140701A (en) * 1979-04-17 1980-11-04 Toshiba Corp Air dehumidifier for ozonizer
JPS5721914A (en) * 1980-07-15 1982-02-04 Toshiba Corp Air drying equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298425A (en) * 1986-06-16 1987-12-25 Nichie Kk Reversible heating regeneration type dehumidifier for pressurized gas
JPH01299622A (en) * 1988-05-30 1989-12-04 Mitsubishi Electric Corp Air drying apparatus
US5925169A (en) * 1996-04-02 1999-07-20 Altas Copco Airpower, Naamloze Vennootschap Method and device for drying a gas which has been compressed by a compressor

Similar Documents

Publication Publication Date Title
KR100943285B1 (en) Hybrid desiccant dehumidification apparatus and threrof control method
US4197713A (en) Process and plant for the recovery of water from humid air
US20090139254A1 (en) Thermodynamic closed loop desiccant rotor system and process
JPS63283721A (en) Regeneration of dryer and apparatus therefore
JP2005525528A (en) Sorptive heat exchanger and associated cooling sorption method
JPH1028832A (en) Method and apparatus for drying gas compressed by compressor
JP5588163B2 (en) Solvent recovery device
JP2006326504A (en) Dehumidifier
JP3762138B2 (en) Dry dehumidification system
CN208626969U (en) A kind of freezing-micro-heat regeneration absorbent combination drying device
US3766660A (en) Adsorption gas drying method and apparatus
JPH08141353A (en) Dehumidifier
JP3881067B2 (en) Low dew point air supply system
JPS61238323A (en) Adsorption type compressed air dehumidifying apparatus
JPS63135731A (en) Dehumidifier device
JPS607524B2 (en) Dehumidification device
JPS61238321A (en) Adsorption type compressed air dehumidifying apparatus
JPS61192324A (en) Apparatus for dehumidifying compressed gas
JP3282225B2 (en) Adsorption type air conditioner
JPH0574405B2 (en)
JPS607523B2 (en) Dehumidification device
EP1163947A1 (en) Desiccant drying apparatus and method for controlling the airflow in the apparatus
JP3302833B2 (en) Dehumidification method and dehumidification system
JP2505640B2 (en) Dehumidifier
JPS6125623A (en) Method of dehumidifying compressed gas