JP5588163B2 - Solvent recovery device - Google Patents

Solvent recovery device Download PDF

Info

Publication number
JP5588163B2
JP5588163B2 JP2009284242A JP2009284242A JP5588163B2 JP 5588163 B2 JP5588163 B2 JP 5588163B2 JP 2009284242 A JP2009284242 A JP 2009284242A JP 2009284242 A JP2009284242 A JP 2009284242A JP 5588163 B2 JP5588163 B2 JP 5588163B2
Authority
JP
Japan
Prior art keywords
gas
ventilation
concentration
adsorption rotor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009284242A
Other languages
Japanese (ja)
Other versions
JP2011125768A (en
Inventor
義啓 本岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2009284242A priority Critical patent/JP5588163B2/en
Publication of JP2011125768A publication Critical patent/JP2011125768A/en
Application granted granted Critical
Publication of JP5588163B2 publication Critical patent/JP5588163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)
  • Drying Of Gases (AREA)

Description

本発明は電池生産に用いるNMP溶剤(N−メチル−2−ピロリドン溶剤)などの溶剤蒸気を含む排気気体から含有溶剤蒸気を分離回収する溶剤回収装置に関する。 The present invention relates to a solvent recovery apparatus for separating and recovering a contained solvent vapor from an exhaust gas containing a solvent vapor such as an NMP solvent (N-methyl-2-pyrrolidone solvent) used for battery production.

さらに詳しくは、溶剤蒸気の発生がある処理室に換気気体を供給するのに伴いその処理室から排出される排気気体を冷却手段により冷却することで、その排気気体に含まれる溶剤蒸気を凝縮させて排気気体中から分離回収する溶剤回収装置に関する。 More specifically, the exhaust gas discharged from the processing chamber as it is supplied to the processing chamber where the solvent vapor is generated is cooled by the cooling means to condense the solvent vapor contained in the exhaust gas. The present invention relates to a solvent recovery device for separating and recovering from exhaust gas.

特許文献1には、リチウムイオン電池の製造工場において処理物からNMP溶剤(N−2−ピロリドン溶剤)を除去するための乾燥工程から排出される排気気体に含まれるNMP溶剤蒸気を分離回収するのに、排気気体に水を散布して排気気体中のNMP溶剤蒸気を散布水に溶解(吸収)させることで、排気気体からNMP溶剤蒸気を分離回収する吸収式の溶剤回収方法が示されている(特に、特許文献1の段落0002及び図2参照)。   In Patent Document 1, the NMP solvent vapor contained in the exhaust gas discharged from the drying process for removing the NMP solvent (N-2-pyrrolidone solvent) from the treated material in the manufacturing plant of the lithium ion battery is separated and recovered. Shows an absorption type solvent recovery method in which NMP solvent vapor is separated from exhaust gas by spraying water into the exhaust gas and dissolving (absorbing) NMP solvent vapor in the exhaust gas in the spray water. (Particularly, see paragraph 0002 of Patent Document 1 and FIG. 2).

また、特許文献1には、上記排気気体を冷却することで排気気体中のNMP溶剤蒸気を凝縮させて排気気体から分離回収するとともに、冷却によりNMP溶剤を凝縮分離した後の排気気体に残存するNMP溶剤蒸気を吸着ロータ式濃縮装置により濃縮して、その吸着ロータ式濃縮装置から送出される濃縮気体(即ち、残存NMP溶剤蒸気を排気気体から濃縮状態で移行させた気体)を再度冷却することで、残存NMP溶剤蒸気も凝縮させて濃縮気体から分離回収する冷却式の溶剤回収方法も示されている(特に、特許文献1の段落0003〜段落0004及び図1参照)   Further, Patent Document 1 condenses the NMP solvent vapor in the exhaust gas by cooling the exhaust gas and separates and collects it from the exhaust gas, and remains in the exhaust gas after the NMP solvent is condensed and separated by cooling. Concentrating the NMP solvent vapor by the adsorption rotor type concentrator, and cooling again the concentrated gas sent from the adsorption rotor type concentrator (that is, the gas in which the residual NMP solvent vapor is transferred from the exhaust gas in a concentrated state). In addition, a cooling type solvent recovery method in which residual NMP solvent vapor is condensed and separated and recovered from the concentrated gas is also shown (particularly, refer to paragraphs 0003 to 0004 of FIG. 1 and FIG. 1).

特開2005−246218号公報JP 2005-246218 A

しかし、溶剤蒸気を散布水に溶解させることで排気気体から分離回収する吸収式の溶剤回収方法(言わば、湿式の溶剤回収方法)では、溶剤蒸気を散布水に溶解させて回収するため回収液(即ち、溶剤蒸気が溶解した回収水)における水の比率が大きく、この為、回収液から溶剤を精製するのに要する精製コストが嵩む問題があった。   However, in the absorption-type solvent recovery method (so-called wet solvent recovery method) in which solvent vapor is dissolved in the spray water and separated from the exhaust gas, the recovered liquid (in order to recover the solvent vapor in the spray water) That is, the ratio of the water in the recovered water in which the solvent vapor is dissolved is large, and there is a problem that the purification cost required for purifying the solvent from the recovered liquid increases.

一方、溶剤蒸気を冷却して排気気体から凝縮分離する冷却式の溶剤回収方法(言わば、乾式の溶剤回収方法)では、水を用いず溶剤蒸気を回収することから上記吸収式(湿式)の溶剤回収方法に比べ回収液における水の比率を小さくし得るものの、この冷却式の溶剤回収方法にしても、室内使用条件などに原因して処理室に持ち込まれる水分が排気気体に含まれるため、冷却による溶剤蒸気の凝縮分離において排気気体中の水分も溶剤蒸気とともに凝縮してしまい、この為、吸収式(湿式)の溶剤回収方法に比べ小さくなるとは言え回収液(即ち、凝縮溶剤と凝縮水とを含む回収液)における水の比率が未だかなり大きく、やはり回収液から溶剤を精製するのに要する精製コストが嵩む同様の問題があった。   On the other hand, in the cooling type solvent recovery method (so-called dry type solvent recovery method) in which the solvent vapor is cooled and condensed and separated from the exhaust gas, the solvent vapor is recovered without using water. Although the ratio of water in the recovered liquid can be reduced compared to the recovery method, even with this cooling-type solvent recovery method, moisture brought into the processing chamber due to indoor use conditions etc. is contained in the exhaust gas. In the condensation separation of the solvent vapor by the water, the moisture in the exhaust gas is also condensed together with the solvent vapor. For this reason, the recovered liquid (that is, the condensed solvent and the condensed water) is reduced although it is smaller than the absorption type (wet type) solvent recovery method. The ratio of water in the recovered liquid containing the liquid is still quite large, and there is a similar problem that the purification cost required for purifying the solvent from the recovered liquid is increased.

この実情に鑑み、本発明の主たる課題は、合理的な改良により、基本的には冷却式の溶剤回収方法を採りながら上記問題を効果的に解消し得る溶剤回収装置を提供する点にある。 In view of this situation, the main problem of the present invention is to provide a solvent recovery apparatus that can effectively solve the above problems by adopting a cooling type solvent recovery method by a rational improvement.

本発明の第1特徴構成は溶剤回収装置に係り、その特徴は、
溶剤蒸気の発生がある処理室に換気気体を供給するのに伴いその処理室から排出される排気気体を冷却手段により冷却することで、その排気気体に含まれる溶剤蒸気を凝縮させて排気気体中から分離回収する溶剤回収装置であって、
前記冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、
残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、前記冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、
この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にし、
この吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の前記排気気体、又は、その浄化済排気気体と外部からの新鮮気体との混合気体、又は、外部からの新鮮気体を、前記処理室に供給する前記換気気体とし、
その換気気体を除湿して、その除湿により露点温度を低下させた換気気体を前記処理室に供給することで、前記冷却手段による冷却において溶剤蒸気とともに凝縮する排気気体中の水分の凝縮量を低減する除湿手段を設け、
この除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設け、
この吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を前記処理室に供給することで、前記処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にし、
前記換気気体加熱手段により加熱した除湿後の換気気体の一部を、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風するものと、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風するものとに分流する構成にしてある点にある。
The first characteristic configuration of the present invention relates to a solvent recovery apparatus ,
By cooling the exhaust gas discharged from the processing chamber as it is supplied to the processing chamber where solvent vapor is generated by the cooling means, the solvent vapor contained in the exhaust gas is condensed and exhausted in the exhaust gas. A solvent recovery device for separating and recovering from
As a concentration recovery means for separating the solvent vapor remaining in the exhaust gas after condensation and separation of the solvent vapor by cooling by the cooling means from the exhaust gas in a concentrated state,
Concentration adsorption area, which is a ventilation area of exhaust gas after each part of the concentration adsorption rotor holding the concentration adsorbent for adsorbing residual solvent vapor is condensed and separated by the cooling means by the rotation of the adsorption rotor. And an adsorption rotor type concentrator that is positioned alternately in the desorption area for concentration, which is the ventilation area of the regeneration gas for concentration,
Concentrated regeneration gas that has passed through the concentration desorption region in this adsorption rotor type concentrating device and has become a concentrated state containing high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber,
The purified exhaust gas that has passed through the concentration adsorption zone of the adsorption rotor type concentrator, the mixed gas of the purified exhaust gas and external fresh gas, or the external fresh gas is treated as described above. The ventilation gas supplied to the room,
By dehumidifying the ventilation gas and supplying the treatment gas with the dew point temperature lowered by the dehumidification to the processing chamber, the amount of moisture condensed in the exhaust gas that condenses with the solvent vapor during cooling by the cooling means is reduced. Providing dehumidifying means to
As the dehumidifying means, each part of the dehumidifying adsorption rotor that holds the dehumidifying adsorbent is divided into a dehumidifying adsorption area that is a ventilation gas ventilation area and a dehumidifying desorption area that is a ventilation gas ventilation area by rotating the adsorption rotor. And an adsorption rotor type dehumidifier that is alternately positioned
Ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor type dehumidifier is provided, and the dehumidified gas heated by the ventilation gas heating means is supplied to the processing chamber, so that the solvent in the processing chamber The solvent is vaporized by heating and evaporating,
A part of the dehumidified ventilation gas heated by the ventilation gas heating means is ventilated to the desorption area for concentration in the adsorption rotor type concentrator while being heated by the regeneration gas heating means for concentration as the regeneration gas for concentration. The dehumidification regeneration gas is divided into the dehumidification regeneration gas and the one that passes through the desorption region for dehumidification in the adsorption rotor type dehumidification device in a state heated by the regeneration gas heating means for dehumidification .

つまり、この第1特徴構成では、吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の排気気体、又は、その浄化済排気気体と外部からの新鮮気体との混合気体、又は、外部からの新鮮気体を換気気体とすることに対し、除湿手段(吸着ロータ式除湿装置)による除湿により露点温度(換言すれば、絶対湿度)を低下させた低湿の換気気体を処理室に供給することで、そのような除湿による低湿化を行なっていない換気気体を処理室に供給するのに比べ、処理室における室内空気の露点温度を室内使用条件などに原因する処理室への水分持ち込みに抗して低く保つようにし、これにより、処理室から排出される排気気体の露点温度を低く保つ。That is, in this first characteristic configuration, the purified exhaust gas that has passed through the adsorption zone of the adsorption rotor type concentrator, or the mixed gas of the purified exhaust gas and fresh fresh gas from the outside, or from the outside By supplying a low-humidity ventilating gas whose dew point temperature (in other words, absolute humidity) is reduced by dehumidification by a dehumidifying means (adsorption rotor type dehumidifying device) to the processing chamber. Compared to supplying ventilation gas that has not been dehumidified by such dehumidification to the processing chamber, the dew point temperature of the indoor air in the processing chamber resists the introduction of moisture into the processing chamber due to indoor use conditions, etc. The dew point temperature of the exhaust gas discharged from the processing chamber is kept low.

そして、このように排気気体の露点温度を低くして排気気体に含まれる水分量を低減することにより、凝縮分離工程での冷却手段による冷却において溶剤蒸気とともに凝縮してしまう水分量(即ち、凝縮水量)を低減する。And by reducing the dew point temperature of the exhaust gas and reducing the amount of moisture contained in the exhaust gas in this way, the amount of moisture that condenses with the solvent vapor in the cooling by the cooling means in the condensation separation process (ie, condensation) Reduce the amount of water).

従って、この第1特徴構成によれば、室内使用条件などに原因する処理室への水分の持ち込みにかかわらず、冷却による凝縮分離で回収される回収液における水の比率を効果的に低減することができ、これにより、従前に比べ回収液からの溶剤精製に要する精製コストを効果的に低減することができる。Therefore, according to this first characteristic configuration, the ratio of water in the recovered liquid recovered by the condensation separation by cooling can be effectively reduced regardless of the amount of moisture brought into the processing chamber due to indoor use conditions. As a result, the purification cost required for solvent purification from the recovered liquid can be effectively reduced as compared with the prior art.

ちなみに、従来の冷却式(乾式)の溶剤回収では、処理室に供給する換気気体に外気などの湿気のある新鮮気体を用いると、その新鮮気体の保有水分により処理室に持ち込まれる水分が大量になって回収液における水の比率が大幅に増大することから、実際上、処理室に供給する換気気体として外気などの湿気のある新鮮気体を用いることができず、この為、冷却により溶剤蒸気を分離回収した後の処理済の排気気体(即ち、溶剤蒸気の凝縮分離に伴う水分凝縮で低湿になった排気気体)を処理室に供給する換気気体として循環使用していたが、場合によっては、このような排気気体の循環使用が処理室の換気性の面や清浄度維持の面、あるいは、処理室で行なう処理の処理性能面や処理品質面などで望ましくない場合もある。By the way, in conventional cooling (dry) solvent recovery, if a fresh gas with humidity such as outside air is used as the ventilation gas supplied to the processing chamber, a large amount of moisture is brought into the processing chamber due to the water content of the fresh gas. As a result, the ratio of water in the recovered liquid greatly increases, so in practice, fresh gas with humidity such as outside air cannot be used as the ventilation gas to be supplied to the processing chamber. The exhaust gas that has been treated after separation and recovery (that is, the exhaust gas that has become low humidity due to moisture condensation accompanying the condensation and separation of the solvent vapor) was circulated as a ventilation gas to be supplied to the processing chamber. Such circulation of exhaust gas may not be desirable in terms of ventilation of the processing chamber, maintaining cleanliness, processing performance and processing quality of processing performed in the processing chamber.

また、先述した従来の吸収式(湿式)の溶剤回収では、排気気体に水を散布して溶剤蒸気を分離回収するため、溶剤を分離した後の処理済の排気気体が極めて高湿なものとなり、この為、逆に処理済の排気気体を処理室に供給する換気気体として利用することができない問題があった。Further, in the conventional absorption (wet) solvent recovery described above, water is sprayed on the exhaust gas to separate and recover the solvent vapor, so that the treated exhaust gas after separating the solvent becomes extremely humid. For this reason, there has been a problem that, on the contrary, the treated exhaust gas cannot be used as a ventilation gas for supplying the treatment chamber.

これらのことに対し、上記第1特徴構成によれば、基本的には排気気体の冷却により溶剤蒸気を凝縮分離する方式を採りながらも、上記の如く処理室への水分の持ち込みにかかわらず回収液における水の比率を効果的に低減することができるから、処理室に供給する換気気体として外気などの湿気のある新鮮気体を用いることも可能になり、また言うまでもなく、処理室に供給する換気気体として冷却により溶剤蒸気を凝縮分離した処理済の排気気体を用いることも可能であり、この点で、従来の吸収式や冷却式の溶剤回収に比べ、種々の実施条件に対する対応性の面や汎用性の面でも一層有利にすることができる。On the other hand, according to the first characteristic configuration described above, the solvent vapor is condensed and separated by cooling the exhaust gas, but it is recovered regardless of whether moisture is brought into the processing chamber as described above. Since the ratio of water in the liquid can be effectively reduced, it becomes possible to use fresh, humid air such as outside air as the ventilation gas supplied to the processing chamber. Needless to say, the ventilation supplied to the processing chamber. It is also possible to use a treated exhaust gas obtained by condensing and separating the solvent vapor by cooling as a gas, and in this respect, in terms of compatibility with various implementation conditions compared to conventional absorption type and cooling type solvent recovery, It can be made more advantageous in terms of versatility.

また、上記第1特徴構成では、冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にするから、次の効果も得ることができる。Further, in the first characteristic configuration, as the concentration recovery means for separating the solvent vapor remaining in the exhaust gas after being condensed and separated by cooling by the cooling means from the exhaust gas in a concentrated state, the concentration for adsorbing the residual solvent vapor is used. Concentration adsorption rotor that holds the adsorbent for adsorption, and the exhaust gas ventilation area after the solvent vapor is condensed and separated by the cooling means by rotation of the adsorption rotor, and the ventilation area for the concentration regeneration gas An adsorption rotor type concentrator that is alternately positioned in the desorption zone for concentration is provided, and for the concentration that has passed through the desorption zone for concentration in this adsorption rotor type concentrator and has become a concentrated state containing high concentration desorption solvent vapor Since the regeneration gas is sent to the cooling means together with the exhaust gas from the processing chamber, the following effects can also be obtained.

つまり、この構成によれば、冷却により溶剤蒸気を分離した後の排気気体に未だ残存する僅かな溶剤蒸気も上記吸着ロータ式濃縮装置における濃縮用吸着域での濃縮用吸着剤による吸着により排気気体から分離回収するから、装置全体としての溶剤蒸気の回収性能を高めて排気気体からの溶剤蒸気の回収率を一層高めることができ、また、溶剤回収後の排気気体の浄化度も一層高めることができる。In other words, according to this configuration, even a small amount of solvent vapor still remaining in the exhaust gas after separation of the solvent vapor by cooling is exhausted by the adsorption by the concentration adsorbent in the concentration adsorption region in the adsorption rotor type concentrator. Therefore, the recovery rate of the solvent vapor from the exhaust gas can be further increased, and the purification degree of the exhaust gas after the solvent recovery can be further increased. it can.

そしてまた、この構成では、吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を処理室からの排気気体とともに冷却手段に送って、排気気体に含まれる溶剤蒸気とともに濃縮状態の濃縮用再生気体に含まれる脱着溶剤蒸気を一括に冷却手段による冷却により凝縮分離するから、排気気体に含まれる溶剤蒸気と濃縮状態の濃縮用再生気体に含まれる脱着溶剤蒸気と各別に分離回収するのに比べ、装置を簡素にすることができて装置コストを安価にすることができる。Further, in this configuration, the concentrated regeneration gas that has passed through the concentration desorption zone in the adsorption rotor type concentrating device and has become concentrated including high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber. In addition, the desorbed solvent vapor contained in the concentrated regeneration gas together with the solvent vapor contained in the exhaust gas is condensed and separated by cooling with a cooling means, so that the solvent vapor contained in the exhaust gas and the concentrated vapor regeneration are recovered. The apparatus can be simplified and the apparatus cost can be reduced as compared with the case where the desorption solvent vapor contained in the gas is separated and recovered separately.

また、上記第1特徴構成では、換気気体を除湿する除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設けるから、次の効果も得ることができる。Further, in the first characteristic configuration, as a dehumidifying means for dehumidifying the ventilation gas, each part of the dehumidifying adsorption rotor that holds the dehumidifying adsorbent is replaced with a dehumidifying adsorption area that is a ventilation area of the ventilation gas by rotation of the adsorption rotor. Since the adsorption rotor type dehumidifier is provided alternately in the dehumidifying / desorbing area which is the ventilation area of the dehumidifying regeneration gas, the following effects can also be obtained.

つまり、この構成によれば、例えば除湿手段として冷却除湿式の除湿装置を用いるのに比べ、装置の簡素化や装置コストの面で、また、省エネルギ化の面で有利にすることができる。That is, according to this configuration, for example, compared to using a cooling and dehumidifying dehumidifier as the dehumidifying means, it is possible to make the apparatus more advantageous in terms of simplification of the apparatus, apparatus cost, and energy saving.

即ち、冷却除湿式の除湿装置では、換気気体を冷却する冷却器の他、その冷却器に供給する冷熱媒を冷却する冷熱源装置や冷熱媒等の配管系を要するが、上記の如き吸着ロータ式除湿装置では、そのような冷熱源装置や配管系を不要にすることができ、これにより、装置の簡素化や装置コストの面で、また、省エネルギ化の面で一層有利にすることができる。That is, in the dehumidifying device for cooling and dehumidifying, a cooling system that cools the ventilation gas, a cooling heat source device that cools the cooling medium supplied to the cooling device, and a piping system such as a cooling medium are required. In the type dehumidifier, such a cold heat source device and a piping system can be eliminated, and this can be made more advantageous in terms of simplification of the device, cost of the device, and energy saving. it can.

そしてまた、後述の如く除湿後の換気気体を換気気体加熱手段により加熱する場合、冷却除湿式の除湿装置では換気気体を冷却するため、除湿後の換気気体を処理室への供給に適した所要温度まで換気気体加熱手段で加熱するのに換気気体加熱手段での必要加熱量が大幅に増大するが、吸着ロータ式除湿装置であれば、そのような必要加熱量の増大を招くことがなく、むしろ、除湿用吸着剤による水分吸着で発生する吸着熱の分、換気気体加熱手段での必要加熱量を低減することができる。In addition, when the ventilation gas after dehumidification is heated by the ventilation gas heating means as will be described later, the cooling dehumidification dehumidifier cools the ventilation gas, so that the ventilation gas after dehumidification is required to be supplied to the processing chamber. Although the necessary heating amount in the ventilation gas heating means is greatly increased to heat to the temperature with the ventilation gas heating means, if it is an adsorption rotor type dehumidifier, such an increase in the required heating amount is not caused, Rather, it is possible to reduce the amount of heat required for the ventilation gas heating means by the amount of adsorption heat generated by moisture adsorption by the dehumidifying adsorbent.

また、上記第1特徴構成では、吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を処理室に供給することで、処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にするから、次の効果も得ることができる。In the first characteristic configuration, the ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor dehumidifier is provided, and the ventilation gas after dehumidification heated by the ventilation gas heating means is supplied to the processing chamber. Since the solvent vapor is generated by heating and evaporating the solvent in the processing chamber, the following effects can also be obtained.

つまり、この構成によれば、上記の如く除湿後の加熱換気気体を処理室に供給することで処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させるから、その溶剤蒸発により処理物から溶剤を除去する溶剤除去処理などを処理室において行う場合に好適な溶剤回収装置にすることができる。That is, according to this configuration, by supplying the heated ventilation gas after dehumidification to the processing chamber as described above, the solvent is heated and evaporated in the processing chamber to generate a solvent vapor. It is possible to provide a solvent recovery apparatus suitable for performing a solvent removal process to be removed in a processing chamber.

また、この構成によれば、回収液における水比率の低減を目的として吸着ロータ式除湿装置により除湿した換気気体を換気気体加熱手段により加熱するから、除湿をおこなっていない換気気体を換気気体加熱手段により加熱するのに比べ、換気気体加熱手段での必要加熱量を吸着ロータ式除湿装置による除湿水分量の分だけ低減することができ、この点で省エネルギ化の面においても有利にすることができる。Further, according to this configuration, the ventilation gas dehumidified by the adsorption rotor type dehumidifier for the purpose of reducing the water ratio in the recovered liquid is heated by the ventilation gas heating means, so the ventilation gas not dehumidified is ventilated by the ventilation gas heating means. Compared to heating by means of the above, the required heating amount in the ventilation gas heating means can be reduced by the amount of dehumidified moisture by the adsorption rotor type dehumidifier, and this can be advantageous in terms of energy saving. it can.

そして、上記第1特徴構成では、換気気体加熱手段により加熱した除湿後の換気気体の一部を、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風するものと、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風するものとに分流する構成にするから、次の効果も得ることができる。And in the said 1st characteristic structure, the said adsorption rotor type | mold concentration apparatus in the state heated by the regeneration gas heating means for concentration as a part of ventilation gas after the dehumidification heated by the ventilation gas heating means as the said regeneration gas for concentration And the air that is ventilated to the desorption area for concentration in the adsorption rotor type dehumidifier while being heated by the regeneration gas heating means for dehumidification as the regeneration gas for dehumidification Because of the configuration, the following effects can also be obtained.

つまり、この構成によれば、換気気体加熱手段により加熱した除湿後の換気気体の一部を濃縮用再生気体及び除湿用再生気体として利用するから、装置を簡略化するとともに、吸着ロータ式濃縮装置における濃縮用脱着域での濃縮用吸着剤からの吸着溶剤蒸気の脱着、及び、吸着ロータ式除湿装置における除湿用脱着域での除湿用吸着剤からの吸着水分の脱着を促進することができる。In other words, according to this configuration, since a part of the dehumidified ventilation gas heated by the ventilation gas heating means is used as the regeneration gas for concentration and the regeneration gas for dehumidification, the apparatus is simplified and the adsorption rotor type concentrator The adsorption solvent vapor can be desorbed from the concentration adsorbent in the concentration desorption area and the adsorption moisture can be desorbed from the dehumidification adsorbent in the desorption area in the adsorption rotor dehumidifier.

本発明の第2特徴構成は溶剤回収装置に係り、その特徴は、The second characteristic configuration of the present invention relates to a solvent recovery apparatus,
溶剤蒸気の発生がある処理室に換気気体を供給するのに伴いその処理室から排出される排気気体を冷却手段により冷却することで、その排気気体に含まれる溶剤蒸気を凝縮させて排気気体中から分離回収する溶剤回収装置であって、By cooling the exhaust gas discharged from the processing chamber as it is supplied to the processing chamber where solvent vapor is generated by the cooling means, the solvent vapor contained in the exhaust gas is condensed and exhausted in the exhaust gas. A solvent recovery device for separating and recovering from
前記冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、As a concentration recovery means for separating the solvent vapor remaining in the exhaust gas after condensation and separation of the solvent vapor by cooling by the cooling means from the exhaust gas in a concentrated state,
残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、前記冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、Concentration adsorption area, which is a ventilation area of exhaust gas after each part of the concentration adsorption rotor holding the concentration adsorbent for adsorbing residual solvent vapor is condensed and separated by the cooling means by the rotation of the adsorption rotor. And an adsorption rotor type concentrator that is positioned alternately in the desorption area for concentration, which is the ventilation area of the regeneration gas for concentration,
この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にし、Concentrated regeneration gas that has passed through the concentration desorption region in this adsorption rotor type concentrating device and has become a concentrated state containing high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber,
この吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の前記排気気体、又は、外部からの新鮮気体を、前記処理室に供給する前記換気気体とし、Purified exhaust gas that has passed through the concentration adsorption zone of this adsorption rotor type concentrator, or fresh gas from the outside, as the ventilation gas to be supplied to the processing chamber,
その換気気体を除湿して、その除湿により露点温度を低下させた換気気体を前記処理室に供給することで、前記冷却手段による冷却において溶剤蒸気とともに凝縮する排気気体中の水分の凝縮量を低減する除湿手段を設け、By dehumidifying the ventilation gas and supplying the treatment gas with the dew point temperature lowered by the dehumidification to the processing chamber, the amount of moisture condensed in the exhaust gas that condenses with the solvent vapor during cooling by the cooling means is reduced. Providing dehumidifying means to
この除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設け、As the dehumidifying means, each part of the dehumidifying adsorption rotor that holds the dehumidifying adsorbent is divided into a dehumidifying adsorption area that is a ventilation gas ventilation area and a dehumidifying desorption area that is a ventilation gas ventilation area by rotating the adsorption rotor. And an adsorption rotor type dehumidifier that is alternately positioned
この吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を前記処理室に供給することで、前記処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にし、Ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor type dehumidifier is provided, and the dehumidified gas heated by the ventilation gas heating means is supplied to the processing chamber, so that the solvent in the processing chamber The solvent is vaporized by heating and evaporating,
前記換気気体加熱手段により加熱した除湿後の換気気体の一部を、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風し、A part of the dehumidified ventilation gas heated by the ventilation gas heating means is ventilated to the desorption area for concentration in the adsorption rotor type concentrator while being heated by the regeneration gas heating means for concentration as the regeneration gas for concentration. And
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済排気気体の一部を、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風する構成にしてある点にある。In the adsorption rotor type dehumidifier, a part of the purified exhaust gas that has passed through the concentration adsorption zone in the adsorption rotor type concentrator is heated by the regeneration gas heating means for dehumidification as the dehumidification regeneration gas. It is in the point which has the structure which ventilates to the desorption area for dehumidification.

つまり、この第2特徴構成では、吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の排気気体、又は、外部からの新鮮気体を換気気体とすることに対し、前記第1特徴構成と同様、除湿手段(吸着ロータ式除湿装置)による除湿により露点温度(換言すれば、絶対湿度)を低下させた低湿の換気気体を処理室に供給することで、そのような除湿による低湿化を行なっていない換気気体を処理室に供給するのに比べ、処理室における室内空気の露点温度を室内使用条件などに原因する処理室への水分持ち込みに抗して低く保つようにし、これにより、処理室から排出される排気気体の露点温度を低く保つ。That is, in this second characteristic configuration, the purified exhaust gas that has passed through the concentration adsorption zone of the adsorption rotor type concentrator or the fresh gas from the outside is used as the ventilation gas. Similarly, by reducing the dehumidification temperature (in other words, absolute humidity) by dehumidification by the dehumidifying means (adsorption rotor type dehumidifier), low humidity ventilation gas is supplied to the processing chamber, thereby reducing the humidity by such dehumidification. Compared to supplying unventilated ventilation gas to the processing chamber, the dew point temperature of the indoor air in the processing chamber is kept low against moisture being brought into the processing chamber due to indoor use conditions. Keep dew point temperature of exhaust gas discharged from

そして、このように排気気体の露点温度を低くして排気気体に含まれる水分量を低減することにより、凝縮分離工程での冷却手段による冷却において溶剤蒸気とともに凝縮してしまう水分量(即ち、凝縮水量)を低減する。And by reducing the dew point temperature of the exhaust gas and reducing the amount of moisture contained in the exhaust gas in this way, the amount of moisture that condenses with the solvent vapor in the cooling by the cooling means in the condensation separation process (ie, condensation) Reduce the amount of water).

また、上記第2特徴構成によれば、基本的には排気気体の冷却により溶剤蒸気を凝縮分離する方式を採りながらも、上記の如く処理室への水分の持ち込みにかかわらず回収液における水の比率を効果的に低減することができるから、処理室に供給する換気気体として外気などの湿気のある新鮮気体を用いることも可能になり、また言うまでもなく、処理室に供給する換気気体として冷却により溶剤蒸気を凝縮分離した処理済の排気気体を用いることも可能であり、この点で、従来の吸収式や冷却式の溶剤回収に比べ、種々の実施条件に対する対応性の面や汎用性の面でも一層有利にすることができる。In addition, according to the second characteristic configuration, while the solvent vapor is condensed and separated by cooling the exhaust gas, the water in the recovered liquid can be used regardless of whether moisture is brought into the processing chamber as described above. Since the ratio can be effectively reduced, it becomes possible to use fresh, humid air such as outside air as the ventilation gas supplied to the processing chamber. Needless to say, cooling as the ventilation gas supplied to the processing chamber is also possible. It is also possible to use a treated exhaust gas obtained by condensing and separating the solvent vapor. In this respect, in terms of compatibility with various implementation conditions and versatility compared to conventional absorption and cooling solvent recovery. But it can be even more advantageous.

また、上記第2特徴構成では、冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にするから、次の効果も得ることができる。Further, in the second characteristic configuration, as the concentration recovery means for separating the solvent vapor remaining in the exhaust gas after condensation and separation of the solvent vapor by cooling by the cooling means from the exhaust gas in a concentrated state, the concentration for absorbing the residual solvent vapor is performed. Concentration adsorption rotor that holds the adsorbent for adsorption, and the exhaust gas ventilation area after the solvent vapor is condensed and separated by the cooling means by rotation of the adsorption rotor, and the ventilation area for the concentration regeneration gas An adsorption rotor type concentrator that is alternately positioned in the desorption zone for concentration is provided, and for the concentration that has passed through the desorption zone for concentration in this adsorption rotor type concentrator and has become a concentrated state containing high concentration desorption solvent vapor Since the regeneration gas is sent to the cooling means together with the exhaust gas from the processing chamber, the following effects can also be obtained.

つまり、この構成によれば、冷却により溶剤蒸気を分離した後の排気気体に未だ残存する僅かな溶剤蒸気も上記吸着ロータ式濃縮装置における濃縮用吸着域での濃縮用吸着剤による吸着により排気気体から分離回収するから、装置全体としての溶剤蒸気の回収性能を高めて排気気体からの溶剤蒸気の回収率を一層高めることができ、また、溶剤回収後の排気気体の浄化度も一層高めることができる。In other words, according to this configuration, even a small amount of solvent vapor still remaining in the exhaust gas after separation of the solvent vapor by cooling is exhausted by the adsorption by the concentration adsorbent in the concentration adsorption region in the adsorption rotor type concentrator. Therefore, the recovery rate of the solvent vapor from the exhaust gas can be further increased, and the purification degree of the exhaust gas after the solvent recovery can be further increased. it can.

そしてまた、この構成では、吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を処理室からの排気気体とともに冷却手段に送って、排気気体に含まれる溶剤蒸気とともに濃縮状態の濃縮用再生気体に含まれる脱着溶剤蒸気を一括に冷却手段による冷却により凝縮分離するから、排気気体に含まれる溶剤蒸気と濃縮状態の濃縮用再生気体に含まれる脱着溶剤蒸気とを各別に分離回収するのに比べ、装置を簡素にすることができて装置コストを安価にすることができる。Further, in this configuration, the concentrated regeneration gas that has passed through the concentration desorption zone in the adsorption rotor type concentrating device and has become concentrated including high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber. In addition, the desorbed solvent vapor contained in the concentrated regeneration gas together with the solvent vapor contained in the exhaust gas is condensed and separated by cooling with a cooling means, so that the solvent vapor contained in the exhaust gas and the concentrated vapor regeneration are recovered. Compared to separating and recovering the desorption solvent vapor contained in the gas, the apparatus can be simplified and the apparatus cost can be reduced.

また、上記第2特徴構成では、換気気体を除湿する除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設けるから、次の効果も得ることができる。Further, in the second characteristic configuration, as a dehumidifying means for dehumidifying the ventilation gas, each part of the dehumidifying adsorption rotor holding the dehumidifying adsorbent is replaced with a dehumidifying adsorption area which is a ventilation area of the ventilation gas by the rotation of the adsorption rotor. Since the adsorption rotor type dehumidifier is provided alternately in the dehumidifying / desorbing area which is the ventilation area of the dehumidifying regeneration gas, the following effects can also be obtained.

つまり、この構成によれば、例えば除湿手段として冷却除湿式の除湿装置を用いるのに比べ、装置の簡素化や装置コストの面で、また、省エネルギ化の面で有利にすることができる。That is, according to this configuration, for example, compared to using a cooling and dehumidifying dehumidifier as the dehumidifying means, it is possible to make the apparatus more advantageous in terms of simplification of the apparatus, apparatus cost, and energy saving.

即ち、冷却除湿式の除湿装置では、換気気体を冷却する冷却器の他、その冷却器に供給する冷熱媒を冷却する冷熱源装置や冷熱媒等の配管系を要するが、上記の如き吸着ロータ式除湿装置では、そのような冷熱源装置や配管系を不要にすることができ、これにより、装置の簡素化や装置コストの面で、また、省エネルギ化の面で一層有利にすることができる。That is, in the dehumidifying device for cooling and dehumidifying, a cooling system that cools the ventilation gas, a cooling heat source device that cools the cooling medium supplied to the cooling device, and a piping system such as a cooling medium are required. In the type dehumidifier, such a cold heat source device and a piping system can be eliminated, and this can be made more advantageous in terms of simplification of the device, cost of the device, and energy saving. it can.

そしてまた、後述の如く除湿後の換気気体を換気気体加熱手段により加熱する場合、冷却除湿式の除湿装置では換気気体を冷却するため、除湿後の換気気体を処理室への供給に適した所要温度まで換気気体加熱手段で加熱するのに換気気体加熱手段での必要加熱量が大幅に増大するが、吸着ロータ式除湿装置であれば、そのような必要加熱量の増大を招くことがなく、むしろ、除湿用吸着剤による水分吸着で発生する吸着熱の分、換気気体加熱手段での必要加熱量を低減することができる。In addition, when the ventilation gas after dehumidification is heated by the ventilation gas heating means as will be described later, the cooling dehumidification dehumidifier cools the ventilation gas, so that the ventilation gas after dehumidification is required to be supplied to the processing chamber. Although the necessary heating amount in the ventilation gas heating means is greatly increased to heat to the temperature with the ventilation gas heating means, if it is an adsorption rotor type dehumidifier, such an increase in the required heating amount is not caused, Rather, it is possible to reduce the amount of heat required for the ventilation gas heating means by the amount of adsorption heat generated by moisture adsorption by the dehumidifying adsorbent.

また、上記第2特徴構成では、吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を処理室に供給することで、処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にするから、次の効果も得ることができる。In the second characteristic configuration, a ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor type dehumidifier is provided, and the ventilation gas after dehumidification heated by the ventilation gas heating means is supplied to the processing chamber. Since the solvent vapor is generated by heating and evaporating the solvent in the processing chamber, the following effects can also be obtained.

つまり、この構成によれば、上記の如く除湿後の加熱換気気体を処理室に供給することで処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させるから、その溶剤蒸発により処理物から溶剤を除去する溶剤除去処理などを処理室において行う場合に好適な溶剤回収装置にすることができる。That is, according to this configuration, by supplying the heated ventilation gas after dehumidification to the processing chamber as described above, the solvent is heated and evaporated in the processing chamber to generate a solvent vapor. It is possible to provide a solvent recovery apparatus suitable for performing a solvent removal process to be removed in a processing chamber.

また、この構成によれば、回収液における水比率の低減を目的として吸着ロータ式除湿装置により除湿した換気気体を換気気体加熱手段により加熱するから、除湿をおこなっていない換気気体を換気気体加熱手段により加熱するのに比べ、換気気体加熱手段での必要加熱量を吸着ロータ式除湿装置による除湿水分量の分だけ低減することができ、この点で省エネルギ化の面においても有利にすることができる。Further, according to this configuration, the ventilation gas dehumidified by the adsorption rotor type dehumidifier for the purpose of reducing the water ratio in the recovered liquid is heated by the ventilation gas heating means, so the ventilation gas not dehumidified is ventilated by the ventilation gas heating means. Compared to heating by means of the above, the required heating amount in the ventilation gas heating means can be reduced by the amount of dehumidified moisture by the adsorption rotor type dehumidifier, and this can be advantageous in terms of energy saving. it can.

そして、上記第2特徴構成では、換気気体加熱手段により加熱した除湿後の換気気体の一部を、濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で吸着ロータ式濃縮装置における濃縮用脱着域に通風し、吸着ロータ式濃縮装置における濃縮用吸着域を通過した浄化済排気気体の一部を、除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で吸着ロータ式除湿装置における除湿用脱着域に通風するから、次の効果も得ることができる。And in the said 2nd characteristic structure, in the state which heated a part of ventilation gas after the dehumidification heated by the ventilation gas heating means by the regeneration gas heating means for concentration as a regeneration gas for concentration, concentration in an adsorption rotor type | mold concentration apparatus Part of the purified exhaust gas that has passed through the desorption area for use and passed through the adsorption area for concentration in the adsorption rotor type concentrator is heated by the regeneration gas heating means for dehumidification as the dehumidification regeneration gas. Since the air is passed through the dehumidifying / desorbing area of the apparatus, the following effects can also be obtained.

つまり、この構成によれば、濃縮用再生気体として換気気体加熱手段により加熱した除湿後の換気気体の一部を利用するから、換気気体加熱手段とは別に専用の大型な再生気体加熱手段を設けて、その専用の再生気体加熱手段により濃縮用再生気体を加熱生成するのに比べ、装置構成を簡素化することができて装置コストを低減することができる。That is, according to this configuration, since a part of the dehumidified ventilation gas heated by the ventilation gas heating means is used as the regeneration gas for concentration, a dedicated large regeneration gas heating means is provided separately from the ventilation gas heating means. Thus, the apparatus configuration can be simplified and the apparatus cost can be reduced as compared with the case where the regeneration gas for concentration is heated and generated by the dedicated regeneration gas heating means.

また、換気気体加熱手段による加熱換気気体は除湿手段(吸着ロータ式除湿装置)により除湿した気体であるから、この除湿後の加熱換気気体の一部を濃縮用再生気体とすることにより、吸着ロータ式濃縮装置における濃縮用脱着域での濃縮用吸着剤からの吸着溶剤蒸気の脱着も効果的に促進することができて、吸着ロータ式濃縮装置の濃縮性能も高めることができ、その分、吸着ロータ式濃縮装置を小型化し得ることからも装置コストを低減することができる。Further, since the heated ventilation gas by the ventilation gas heating means is a gas dehumidified by the dehumidification means (adsorption rotor type dehumidifier), the adsorption rotor is obtained by using a part of the heated ventilation gas after dehumidification as a regeneration gas for concentration. Desorption of adsorbed solvent vapor from the adsorbent for concentration in the concentration desorption region in the concentration concentrator can be effectively promoted, and the concentration performance of the adsorption rotor type concentrator can be enhanced. Since the rotor type concentrator can be downsized, the apparatus cost can be reduced.

そして、吸着ロータ式濃縮装置における濃縮用吸着域を通過した浄化済排気気体(即ち、その吸着ロータ式濃縮装置での残存溶剤蒸気の分離に先立ち、冷却手段での溶剤蒸気の凝縮分離に伴う水分凝縮により露点温度(絶対湿度)を低下させた低湿の浄化済排気気体)の一部を除湿用の再生気体加熱手段により加熱して除湿用再生気体に利用するから、吸着ロータ式除湿装置における除湿用脱着域での除湿用吸着剤からの吸着水分の脱着を効果的に促進することができて、吸着ロータ式除湿装置の除湿性能を高めることができ、その分、吸着ロータ式除湿装置を小型化して装置コストを低減することができる。Then, the purified exhaust gas that has passed through the concentration adsorption zone in the adsorption rotor type concentrator (that is, the water accompanying the condensation separation of the solvent vapor in the cooling means prior to the separation of the residual solvent vapor in the adsorption rotor type concentrator) A portion of the low-humidity purified exhaust gas whose dew point temperature (absolute humidity) has been reduced by condensation is heated by the regeneration gas heating means for dehumidification and used as the regeneration gas for dehumidification. Can effectively promote the desorption of adsorbed moisture from the dehumidifying adsorbent in the desorption area, and can improve the dehumidifying performance of the adsorption rotor type dehumidifier. Device cost can be reduced.

本発明の第3特徴構成は溶剤回収装置に係り、その特徴は、The third characteristic configuration of the present invention relates to a solvent recovery apparatus,
溶剤蒸気の発生がある処理室に換気気体を供給するのに伴いその処理室から排出される排気気体を冷却手段により冷却することで、その排気気体に含まれる溶剤蒸気を凝縮させて排気気体中から分離回収する溶剤回収装置であって、By cooling the exhaust gas discharged from the processing chamber as it is supplied to the processing chamber where solvent vapor is generated by the cooling means, the solvent vapor contained in the exhaust gas is condensed and exhausted in the exhaust gas. A solvent recovery device for separating and recovering from
前記冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、As a concentration recovery means for separating the solvent vapor remaining in the exhaust gas after condensation and separation of the solvent vapor by cooling by the cooling means from the exhaust gas in a concentrated state,
残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、前記冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、Concentration adsorption area, which is a ventilation area of exhaust gas after each part of the concentration adsorption rotor holding the concentration adsorbent for adsorbing residual solvent vapor is condensed and separated by the cooling means by the rotation of the adsorption rotor. And an adsorption rotor type concentrator that is positioned alternately in the desorption area for concentration, which is the ventilation area of the regeneration gas for concentration,
この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にし、Concentrated regeneration gas that has passed through the concentration desorption region in this adsorption rotor type concentrating device and has become a concentrated state containing high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber,
この吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の前記排気気体、又は、その浄化済排気気体と外部からの新鮮気体との混合気体、又は、外部からの新鮮気体を、前記処理室に供給する前記換気気体とし、The purified exhaust gas that has passed through the concentration adsorption zone of the adsorption rotor type concentrator, the mixed gas of the purified exhaust gas and external fresh gas, or the external fresh gas is treated as described above. The ventilation gas supplied to the room,
その換気気体を除湿して、その除湿により露点温度を低下させた換気気体を前記処理室に供給することで、前記冷却手段による冷却において溶剤蒸気とともに凝縮する排気気体中の水分の凝縮量を低減する除湿手段を設け、By dehumidifying the ventilation gas and supplying the treatment gas with the dew point temperature lowered by the dehumidification to the processing chamber, the amount of moisture condensed in the exhaust gas that condenses with the solvent vapor during cooling by the cooling means is reduced. Providing dehumidifying means to
この除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設け、As the dehumidifying means, each part of the dehumidifying adsorption rotor that holds the dehumidifying adsorbent is divided into a dehumidifying adsorption area that is a ventilation gas ventilation area and a dehumidifying desorption area that is a ventilation gas ventilation area by rotating the adsorption rotor. And an adsorption rotor type dehumidifier that is alternately positioned
この吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を前記処理室に供給することで、前記処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にし、Ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor type dehumidifier is provided, and the dehumidified gas heated by the ventilation gas heating means is supplied to the processing chamber, so that the solvent in the processing chamber The solvent is vaporized by heating and evaporating,
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済排気気体の一部を、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風するものと、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風するものとに分流する構成にしてある点にある。A part of the purified exhaust gas that has passed through the adsorption zone for concentration in the adsorption rotor type concentrator is heated by the regeneration gas heating means for concentration as the regeneration gas for enrichment, and then in the adsorption rotor type concentrator. It is configured to divide into one that ventilates the desorption area for concentration and one that ventilates the desorption area for desorption in the adsorption rotor type dehumidifier while being heated by the regeneration gas heating means for dehumidification as the dehumidification regeneration gas. It is in a certain point.

つまり、この第3特徴構成では、吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の排気気体、又は、その浄化済排気気体と外部からの新鮮気体との混合気体、又は、外部からの新鮮気体を換気気体とすることに対し、前記第1,2特徴構成と同様、除湿手段(吸着ロータ式除湿装置)による除湿により露点温度(換言すれば、絶対湿度)を低下させた低湿の換気気体を処理室に供給することで、そのような除湿による低湿化を行なっていない換気気体を処理室に供給するのに比べ、処理室における室内空気の露点温度を室内使用条件などに原因する処理室への水分持ち込みに抗して低く保つようにし、これにより、処理室から排出される排気気体の露点温度を低く保つ。That is, in the third characteristic configuration, the purified exhaust gas that has passed through the adsorption zone for concentration of the adsorption rotor type concentrator, or the mixed gas of the purified exhaust gas and fresh fresh gas from the outside, or from the outside As a ventilation gas, the fresh gas of the low-humidity, in which the dew point temperature (in other words, absolute humidity) is reduced by dehumidification by the dehumidifying means (adsorption rotor type dehumidifier) is the same as the first and second characteristic configurations. By supplying ventilation gas to the processing chamber, the dew point temperature of the indoor air in the processing chamber is caused by indoor use conditions compared to supplying ventilation gas that has not been dehumidified by such dehumidification to the processing chamber. The dew point temperature of the exhaust gas exhausted from the processing chamber is kept low by keeping it low against moisture brought into the processing chamber.

そして、このように排気気体の露点温度を低くして排気気体に含まれる水分量を低減することにより、凝縮分離工程での冷却手段による冷却において溶剤蒸気とともに凝縮してしまう水分量(即ち、凝縮水量)を低減する。And by reducing the dew point temperature of the exhaust gas and reducing the amount of moisture contained in the exhaust gas in this way, the amount of moisture that condenses with the solvent vapor in the cooling by the cooling means in the condensation separation process (ie, condensation) Reduce the amount of water).

また、上記第3特徴構成によれば、基本的には排気気体の冷却により溶剤蒸気を凝縮分離する方式を採りながらも、上記の如く処理室への水分の持ち込みにかかわらず回収液における水の比率を効果的に低減することができるから、処理室に供給する換気気体として外気などの湿気のある新鮮気体を用いることも可能になり、また言うまでもなく、処理室に供給する換気気体として冷却により溶剤蒸気を凝縮分離した処理済の排気気体を用いることも可能であり、この点で、従来の吸収式や冷却式の溶剤回収に比べ、種々の実施条件に対する対応性の面や汎用性の面でも一層有利にすることができる。In addition, according to the third characteristic configuration, while the solvent vapor is condensed and separated by cooling the exhaust gas, the water in the recovered liquid can be used regardless of the moisture brought into the processing chamber as described above. Since the ratio can be effectively reduced, it becomes possible to use fresh, humid air such as outside air as the ventilation gas supplied to the processing chamber. Needless to say, cooling as the ventilation gas supplied to the processing chamber is also possible. It is also possible to use a treated exhaust gas obtained by condensing and separating the solvent vapor. In this respect, in terms of compatibility with various implementation conditions and versatility compared to conventional absorption and cooling solvent recovery. But it can be even more advantageous.

また、上記第3特徴構成では、冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にするから、次の効果も得ることができる。Further, in the third characteristic configuration, as the concentration recovery means for separating the solvent vapor remaining in the exhaust gas after the solvent vapor is condensed and separated by cooling by the cooling means from the exhaust gas in a concentrated state, the concentration for adsorbing the residual solvent vapor is used. Concentration adsorption rotor that holds the adsorbent for adsorption, and the exhaust gas ventilation area after the solvent vapor is condensed and separated by the cooling means by rotation of the adsorption rotor, and the ventilation area for the concentration regeneration gas An adsorption rotor type concentrator that is alternately positioned in the desorption zone for concentration is provided, and for the concentration that has passed through the desorption zone for concentration in this adsorption rotor type concentrator and has become a concentrated state containing high concentration desorption solvent vapor Since the regeneration gas is sent to the cooling means together with the exhaust gas from the processing chamber, the following effects can also be obtained.

つまり、この構成によれば、冷却により溶剤蒸気を分離した後の排気気体に未だ残存する僅かな溶剤蒸気も上記吸着ロータ式濃縮装置における濃縮用吸着域での濃縮用吸着剤による吸着により排気気体から分離回収するから、装置全体としての溶剤蒸気の回収性能を高めて排気気体からの溶剤蒸気の回収率を一層高めることができ、また、溶剤回収後の排気気体の浄化度も一層高めることができる。In other words, according to this configuration, even a small amount of solvent vapor still remaining in the exhaust gas after separation of the solvent vapor by cooling is exhausted by the adsorption by the concentration adsorbent in the concentration adsorption region in the adsorption rotor type concentrator. Therefore, the recovery rate of the solvent vapor from the exhaust gas can be further increased, and the purification degree of the exhaust gas after the solvent recovery can be further increased. it can.

そしてまた、この構成では、吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を処理室からの排気気体とともに冷却手段に送って、排気気体に含まれる溶剤蒸気とともに濃縮状態の濃縮用再生気体に含まれる脱着溶剤蒸気を一括に冷却手段による冷却により凝縮分離するから、排気気体に含まれる溶剤蒸気と濃縮状態の濃縮用再生気体に含まれる脱着溶剤蒸気と各別に分離回収するのに比べ、装置を簡素にすることができて装置コストを安価にすることができる。Further, in this configuration, the concentrated regeneration gas that has passed through the concentration desorption zone in the adsorption rotor type concentrating device and has become concentrated including high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber. In addition, the desorbed solvent vapor contained in the concentrated regeneration gas together with the solvent vapor contained in the exhaust gas is condensed and separated by cooling with a cooling means, so that the solvent vapor contained in the exhaust gas and the concentrated vapor regeneration are recovered. The apparatus can be simplified and the apparatus cost can be reduced as compared with the case where the desorption solvent vapor contained in the gas is separated and recovered separately.

また、上記第3特徴構成では、換気気体を除湿する除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設けるから、次の効果も得ることができる。Further, in the third characteristic configuration, as a dehumidifying means for dehumidifying the ventilation gas, each part of the dehumidifying adsorption rotor that holds the dehumidifying adsorbent is replaced with a dehumidifying adsorption area that is a ventilation area of the ventilation gas by the rotation of the adsorption rotor. Since the adsorption rotor type dehumidifier is provided alternately in the dehumidifying / desorbing area which is the ventilation area of the dehumidifying regeneration gas, the following effects can also be obtained.

つまり、この構成によれば、例えば除湿手段として冷却除湿式の除湿装置を用いるのに比べ、装置の簡素化や装置コストの面で、また、省エネルギ化の面で有利にすることができる。That is, according to this configuration, for example, compared to using a cooling and dehumidifying dehumidifier as the dehumidifying means, it is possible to make the apparatus more advantageous in terms of simplification of the apparatus, apparatus cost, and energy saving.

即ち、冷却除湿式の除湿装置では、換気気体を冷却する冷却器の他、その冷却器に供給する冷熱媒を冷却する冷熱源装置や冷熱媒等の配管系を要するが、上記の如き吸着ロータ式除湿装置では、そのような冷熱源装置や配管系を不要にすることができ、これにより、装置の簡素化や装置コストの面で、また、省エネルギ化の面で一層有利にすることができる。That is, in the dehumidifying device for cooling and dehumidifying, a cooling system that cools the ventilation gas, a cooling heat source device that cools the cooling medium supplied to the cooling device, and a piping system such as a cooling medium are required. In the type dehumidifier, such a cold heat source device and a piping system can be eliminated, and this can be made more advantageous in terms of simplification of the device, cost of the device, and energy saving. it can.

そしてまた、後述の如く除湿後の換気気体を換気気体加熱手段により加熱する場合、冷却除湿式の除湿装置では換気気体を冷却するため、除湿後の換気気体を処理室への供給に適した所要温度まで換気気体加熱手段で加熱するのに換気気体加熱手段での必要加熱量が大幅に増大するが、吸着ロータ式除湿装置であれば、そのような必要加熱量の増大を招くことがなく、むしろ、除湿用吸着剤による水分吸着で発生する吸着熱の分、換気気体加熱手段での必要加熱量を低減することができる。In addition, when the ventilation gas after dehumidification is heated by the ventilation gas heating means as will be described later, the cooling dehumidification dehumidifier cools the ventilation gas, so that the ventilation gas after dehumidification is required to be supplied to the processing chamber. Although the necessary heating amount in the ventilation gas heating means is greatly increased to heat to the temperature with the ventilation gas heating means, if it is an adsorption rotor type dehumidifier, such an increase in the required heating amount is not caused, Rather, it is possible to reduce the amount of heat required for the ventilation gas heating means by the amount of adsorption heat generated by moisture adsorption by the dehumidifying adsorbent.

また、上記第3特徴構成では、吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を処理室に供給することで、処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にするから、次の効果も得ることができる。In the third characteristic configuration, a ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor dehumidifier is provided, and the ventilation gas after dehumidification heated by the ventilation gas heating means is supplied to the processing chamber. Since the solvent vapor is generated by heating and evaporating the solvent in the processing chamber, the following effects can also be obtained.

つまり、この構成によれば、上記の如く除湿後の加熱換気気体を処理室に供給することで処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させるから、その溶剤蒸発により処理物から溶剤を除去する溶剤除去処理などを処理室において行う場合に好適な溶剤回収装置にすることができる。That is, according to this configuration, by supplying the heated ventilation gas after dehumidification to the processing chamber as described above, the solvent is heated and evaporated in the processing chamber to generate a solvent vapor. It is possible to provide a solvent recovery apparatus suitable for performing a solvent removal process to be removed in a processing chamber.

また、この構成によれば、回収液における水比率の低減を目的として吸着ロータ式除湿装置により除湿した換気気体を換気気体加熱手段により加熱するから、除湿をおこなっていない換気気体を換気気体加熱手段により加熱するのに比べ、換気気体加熱手段での必要加熱量を吸着ロータ式除湿装置による除湿水分量の分だけ低減することができ、この点で省エネルギ化の面においても有利にすることができる。Further, according to this configuration, the ventilation gas dehumidified by the adsorption rotor type dehumidifier for the purpose of reducing the water ratio in the recovered liquid is heated by the ventilation gas heating means, so the ventilation gas not dehumidified is ventilated by the ventilation gas heating means. Compared to heating by means of the above, the required heating amount in the ventilation gas heating means can be reduced by the amount of dehumidified moisture by the adsorption rotor type dehumidifier, and this can be advantageous in terms of energy saving. it can.

そして、上記第3特徴構成では、前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済排気気体の一部を、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風するものと、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風するものとに分流する構成にするから、次の効果も得ることができる。In the third characteristic configuration, a part of the purified exhaust gas that has passed through the concentration adsorption zone in the adsorption rotor type concentrator is heated by the regeneration gas heating means for concentration as the regeneration gas for concentration. In the adsorption rotor type deconcentrator, and in the desorption region for dehumidification in the adsorption rotor type dehumidifier in a state heated by the regeneration gas heating means for dehumidification as the dehumidification regeneration gas. Since the configuration is such that the air is diverted to the one to be ventilated, the following effects can be obtained.

つまり、この構成によれば、吸着ロータ式濃縮装置における濃縮用吸着域を通過した浄化済排気気体(即ち、その吸着ロータ式濃縮装置での残存溶剤蒸気の分離に先立ち、冷却手段での溶剤蒸気の凝縮分離に伴う水分凝縮により露点温度(絶対湿度)を低下させた低湿の浄化済排気気体)の一部を濃縮用の再生気体加熱手段により加熱して濃縮用再生気体に利用するから、吸着ロータ式濃縮装置における濃縮用脱着域での濃縮用吸着剤からの吸着溶剤蒸気の脱着を効果的に促進することができて、吸着ロータ式濃縮装置の濃縮性能を高めることができ、その分、吸着ロータ式濃縮装置を小型化して装置コストを低減することができる。That is, according to this configuration, the purified exhaust gas that has passed through the concentration adsorption zone in the adsorption rotor type concentrator (that is, the solvent vapor in the cooling means prior to the separation of the residual solvent vapor in the adsorption rotor type concentrator). Adsorption is performed by heating a part of the low-humidity purified exhaust gas, which has been dew point (absolute humidity) decreased due to water condensation accompanying condensation and separation, and heating it with the regeneration gas heating means for concentration. The desorption of the adsorbing solvent vapor from the adsorbent for concentration in the desorption area for concentration in the rotor type concentrator can be effectively promoted, and the concentration performance of the adsorption rotor type concentrator can be enhanced. The adsorption rotor type concentrator can be miniaturized to reduce the apparatus cost.

また、吸着ロータ式濃縮装置における濃縮用吸着域を通過した浄化済排気気体(即ち、冷却手段での溶剤蒸気の凝縮分離に伴う水分凝縮により露点温度(絶対湿度)を低下させた低湿の浄化済排気気体)の一部を除湿用の再生気体加熱手段により加熱して除湿用再生気体に利用するから、吸着ロータ式除湿装置における除湿用脱着域での除湿用吸着剤からの吸着水分の脱着を効果的に促進することができて、吸着ロータ式除湿装置の除湿性能を高めることができ、その分、吸着ロータ式除湿装置を小型化して装置コストを低減することができる。In addition, purified exhaust gas that has passed through the concentration adsorption zone in the adsorption rotor type concentrator (that is, low humidity purified that has reduced the dew point temperature (absolute humidity) due to moisture condensation accompanying condensation of solvent vapor in the cooling means) Part of the exhaust gas) is heated by the regeneration gas heating means for dehumidification and used as the regeneration gas for dehumidification. Therefore, desorption of adsorbed moisture from the dehumidifying adsorbent in the desorption area for dehumidification in the adsorption rotor type dehumidifier It can be effectively promoted, and the dehumidifying performance of the adsorption rotor type dehumidifier can be enhanced, and accordingly, the adsorption rotor type dehumidifier can be miniaturized and the apparatus cost can be reduced.

本発明の第4特徴構成は、第3特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、The fourth feature configuration of the present invention specifies an embodiment suitable for the implementation of the third feature configuration.
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済排気気体の一部を、兼用の再生気体加熱手段により加熱した後、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風するものと、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風するものとに分流する構成にし、A part of the purified exhaust gas that has passed through the adsorption zone for concentration in the adsorption rotor type concentrator is heated by a combined regeneration gas heating means and then heated by the regeneration gas heating means for concentration as the regeneration gas for concentration. The dehumidifying desorption in the adsorption rotor type dehumidifier while being ventilated in the desorption area for concentration in the adsorption rotor type concentrator in a state of being heated and heated by a regeneration gas heating means for dehumidification as the dehumidifying regeneration gas It is configured to divert to what is ventilated in the area,
前記冷却手段は、前記処理室から排出される前記排気気体を予冷用熱媒と熱交換させて予冷する予冷手段と、この予冷手段により予冷した前記排気気体を前記予冷用熱媒より低温の本冷用熱媒と熱交換させて本冷する本冷手段とを備える構成にし、The cooling means includes precooling means for precooling the exhaust gas discharged from the processing chamber by heat exchange with a precooling heat medium, and the exhaust gas precooled by the precooling means at a lower temperature than the precooling heat medium. A main cooling means for performing main cooling by heat exchange with a cooling heat medium,
前記予冷手段での前記排気気体との熱交換で昇温した前記予冷用熱媒を、再生気体加熱用の熱媒として前記兼用の再生気体加熱手段に供給する構成にしてある点にある。The precooling heating medium heated by heat exchange with the exhaust gas in the precooling means is configured to be supplied to the combined regeneration gas heating means as a heating medium for heating the regeneration gas.

つまり、この第4特徴構成では、予冷手段での排気気体の予冷で昇温した予冷用熱媒の保有熱(即ち、排気気体からの回収熱)を利用して兼用の再生気体加熱手段で、濃縮用再生気体及び除湿用再生気体とする浄化済排気気体の一部を加熱するから、バーナや電気ヒータあるいはボイラで生成した蒸気などを用いて濃縮用再生気体及び除湿用再生気体とする浄化済排気気体の一部を加熱するのに比べ、装置の消費エネルギを効果的に低減することができ、省エネルギ化の面でさらに有利にすることができる。That is, in the fourth characteristic configuration, the regenerated gas heating means also uses the retained heat of the pre-cooling heat medium heated by the pre-cooling of the exhaust gas in the pre-cooling means (that is, the recovered heat from the exhaust gas), Since a part of the purified exhaust gas to be used as the regeneration gas for concentration and the regeneration gas for dehumidification is heated, the purified exhaust gas that has been purified to be the regeneration gas for concentration and the regeneration gas for dehumidification using steam generated by a burner, electric heater, or boiler is used. Compared to heating a part of the exhaust gas, the energy consumption of the apparatus can be effectively reduced, which can be further advantageous in terms of energy saving.

また、兼用の再生気体加熱手段を用いることで装置を簡素化することもできる。In addition, the apparatus can be simplified by using a combined regeneration gas heating means.

本発明の第5特徴構成は、第4特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、The fifth feature configuration of the present invention specifies an embodiment suitable for the implementation of the fourth feature configuration.
前記予冷手段での前記排気気体との熱交換で昇温した前記予冷用熱媒を、再生気体加熱用の熱媒として前記兼用の再生気体加熱手段に供給するとともに、換気気体加熱用の熱媒として前記換気気体加熱手段に供給する構成にしてある点にある。The pre-cooling heating medium heated by the heat exchange with the exhaust gas in the pre-cooling means is supplied to the regenerating gas heating means as a regeneration gas heating medium, and a heating medium for ventilation gas heating It is in the point which is set as the structure supplied to the said ventilation gas heating means.

この第5特徴構成では、排気気体の予冷で昇温した予冷用熱媒の保有熱(即ち、排気気体からの回収熱)を利用して再生用気体及び換気気体を加熱する。In the fifth characteristic configuration, the regeneration gas and the ventilation gas are heated using the retained heat of the pre-cooling heat medium that has been heated by the pre-cooling of the exhaust gas (that is, the recovered heat from the exhaust gas).

本発明の第6特徴構成は、第1〜第3特徴構成いずれかの実施に好適な実施形態を特定するものであり、その特徴は、The sixth characteristic configuration of the present invention specifies an embodiment suitable for the implementation of any of the first to third characteristic configurations,
前記処理室から排出される前記排気気体の検出露点温度に基づき、前記吸着ロータ式除湿装置による前記換気気体からの除湿量を調整する除湿制御手段を設けてある点にある。Dehumidification control means for adjusting the amount of dehumidification from the ventilation gas by the adsorption rotor type dehumidifier based on the detected dew point temperature of the exhaust gas discharged from the processing chamber is provided.

この第6特徴構成では、設定露点温度として冷却手段による冷却により溶剤蒸気とともに凝縮する水分量が許容範囲内になる露点温度を設定しておくことで、除湿制御手段によるフィードバック方式などでの上記の如き除湿量の調整により、排気気体(室内気体であってもよい)の露点温度を設定露点温度に調整して、溶剤蒸気とともに凝縮する水分量を許容範囲内に自動的に調整することができ、これにより、回収液における水比率の低減を確実かつ安定的に達成することができる。In the sixth characteristic configuration, by setting a dew point temperature at which the amount of moisture condensed together with the solvent vapor by the cooling by the cooling unit falls within an allowable range as the set dew point temperature, the above-described feedback method by the dehumidifying control unit is used. By adjusting the dehumidification amount like this, the dew point temperature of the exhaust gas (which may be indoor gas) can be adjusted to the set dew point temperature, and the amount of moisture condensed with the solvent vapor can be automatically adjusted within the allowable range. As a result, a reduction in the water ratio in the recovered liquid can be achieved reliably and stably.

また特に、この構成では、排気気体の検出露点温度に基づき除湿量を調整するから、換気気体による処理室への水分持ち込みとは別の原因で処理室に持ち込まれる水分の量変化が大きい場合でも上記水比率の低減機能を高く維持することができる。In particular, in this configuration, the dehumidification amount is adjusted based on the detected dew point temperature of the exhaust gas, so even if the amount of moisture brought into the processing chamber due to a different cause from the introduction of moisture into the processing chamber by the ventilation gas is large. The water ratio reduction function can be kept high.

なお、この構成の実施においては、処理済の排気気体を換気気体として用いる場合、露点温度を設定露点温度に調整する排気気体は、冷却手段による冷却前の排気気体に限らず、換気気体として除湿手段(吸着ロータ式除湿装置)で除湿する段階の排気気体であってもよい。In the implementation of this configuration, when the treated exhaust gas is used as the ventilation gas, the exhaust gas for adjusting the dew point temperature to the set dew point temperature is not limited to the exhaust gas before cooling by the cooling means, but is dehumidified as the ventilation gas. The exhaust gas at the stage of dehumidification by means (adsorption rotor type dehumidifier) may be used.

本発明の第7特徴構成は、第1又は第3特徴構成の実施に好適な実施形態を特定するものであり、その特徴は、
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済の前記排気気体を、前記換気気体として前記吸着ロータ式除湿装置の前記除湿用吸着域で除湿し、それに続き前記換気気体加熱手段で加熱して前記処理室に供給する循環換気状態と、
外部からの新鮮気体を、前記換気気体として前記吸着ロータ式除湿装置の前記除湿用吸着域で除湿し、それに続き前記換気気体加熱手段で加熱して前記処理室に供給する新鮮換気状態と、
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済の前記排気気体と外部からの新鮮気体との混合気体を、前記換気気体として前記吸着ロータ式除湿装置の前記除湿用吸着域で除湿し、それに続き前記換気気体加熱手段で加熱して前記処理室に供給する混合換気状態とのうち
少なくとも2つの換気状態の選択的な切り換えを行う切換手段を設けてある点にある。
The seventh feature configuration of the present invention specifies an embodiment suitable for the implementation of the first or third feature configuration.
The purified exhaust gas that has passed through the concentration adsorption zone in the adsorption rotor type concentrator is dehumidified as the ventilation gas in the dehumidification adsorption zone of the adsorption rotor type dehumidifier, followed by the ventilation gas heating means A circulating ventilation state that is heated at
A fresh ventilation state in which fresh gas from the outside is dehumidified as the ventilation gas in the adsorption area for dehumidification of the adsorption rotor type dehumidifier, and subsequently heated by the ventilation gas heating means and supplied to the processing chamber,
In the adsorption rotor type deconcentrator, the mixed gas of the purified exhaust gas that has passed through the concentration adsorption zone and the fresh gas from the outside is used as the ventilation gas in the dehumidification adsorption zone of the adsorption rotor type dehumidifier. Dehumidifying, followed by the mixed ventilation state that is heated by the ventilation gas heating means and supplied to the processing chamber ,
A switching means for selectively switching at least two ventilation states is provided.

つまり、この第7特徴構成では、上記切換手段による切り換えにより、上記の如き循環換気状態と新鮮換気状態と混合換気状態とのうち少なくとも2つの換気状態を必要に応じて択一的に実施することができるから、使用条件の変化に対する対応性の面や汎用性の面などで一層優れた溶剤回収装置となる。In other words, in the seventh feature configuration, at least two ventilation states of the circulation ventilation state, the fresh ventilation state, and the mixed ventilation state as described above are selectively performed as necessary by switching by the switching means. Therefore, the solvent recovery apparatus is more excellent in terms of compatibility with changes in use conditions and versatility.

なお、上記混合換気状態を選択的に実施できるようにする場合、その混合換気状態において浄化済の排気気体と新鮮気体との混合比率の調整も行えるようにするのが望ましい。When the mixed ventilation state can be selectively performed, it is desirable that the mixing ratio of the purified exhaust gas and the fresh gas can be adjusted in the mixed ventilation state.

第1実施形態を示す溶剤回収装置の構成図The block diagram of the solvent collection | recovery apparatus which shows 1st Embodiment 第2実施形態を示す溶剤回収装置の構成図The block diagram of the solvent collection | recovery apparatus which shows 2nd Embodiment 第3実施形態を示す溶剤回収装置の構成図The block diagram of the solvent collection | recovery apparatus which shows 3rd Embodiment 第4実施形態を示す溶剤回収装置の構成図The block diagram of the solvent collection | recovery apparatus which shows 4th Embodiment 第5実施形態を示す溶剤回収装置の構成図The block diagram of the solvent collection | recovery apparatus which shows 5th Embodiment 第6実施形態を示す溶剤回収装置の構成図The block diagram of the solvent collection | recovery apparatus which shows 6th Embodiment 第7実施形態を示す溶剤回収装置の構成図The block diagram of the solvent collection | recovery apparatus which shows 7th Embodiment 第8実施形態を示す溶剤回収装置の構成図The block diagram of the solvent collection | recovery apparatus which shows 8th Embodiment

図1はリチウムイオン電池の生産施設に装備した溶剤回収装置の第1実施形態を示し、1はNMP溶剤(N−メチル−2−ピロリドン溶剤)を含む処理物を処理する処理室(例えば乾燥炉など)である。   FIG. 1 shows a first embodiment of a solvent recovery apparatus equipped in a lithium ion battery production facility, wherein 1 is a treatment chamber (for example, a drying furnace) for treating a treatment containing NMP solvent (N-methyl-2-pyrrolidone solvent). Etc.).

この処理室1には高温の換気空気SA(換気気体の一例)を給気ファン2により給気路3を通じて供給し、この換気空気SAの供給と室内加熱手段による加熱とにより、処理室1の室内温度を高温に維持して室内の処理物が保持するNMP溶剤を加熱蒸発させる。   High-temperature ventilation air SA (an example of ventilation gas) is supplied to the processing chamber 1 through an air supply path 3 by an air supply fan 2, and the processing chamber 1 is heated by the supply of the ventilation air SA and heating by indoor heating means. The room temperature is maintained at a high temperature, and the NMP solvent held by the indoor treatment is heated and evaporated.

この為、換気空気SAの供給に伴い処理室1から排気路4へ排出される高温(例えば130℃程度)の排気空気EAには、室内で発生したNMP溶剤の蒸気Lsが高濃度(例えば1500ppm)で含まれている。   For this reason, the high temperature (for example, about 130 ° C.) exhaust air EA exhausted from the processing chamber 1 to the exhaust passage 4 with the supply of the ventilation air SA has a high concentration (for example, 1500 ppm) of NMP solvent vapor Ls generated in the chamber. ).

本例の溶剤回収装置は、この排気空気EAに含まれるNMP溶剤の蒸気Lsを排気空気EAから分離回収するものであり、その主要装置として、排気路4には冷却回収装置5と吸着ロータ式濃縮装置6とをその順に装備してある。   The solvent recovery apparatus of this example separates and recovers the vapor Ls of the NMP solvent contained in the exhaust air EA from the exhaust air EA. As the main apparatus, the cooling recovery apparatus 5 and the adsorption rotor type are provided in the exhaust path 4. The concentrating device 6 is equipped in that order.

冷却回収装置5は、装置ケーシング5aの内部における排気空気EAの通風経路に、その上流側から順に排気空気EAに対する冷却手段として予冷器7(予冷手段の一例)、一次冷却器8(本冷手段の一例)、再冷却器9(本冷手段の一例)、二次冷却器10(本冷手段の一例)を配置するとともに、その通風経路の最下流部に再熱器11を配置したものである。   The cooling recovery device 5 includes a precooler 7 (an example of precooling means) and a primary cooler 8 (main cooling means) as cooling means for the exhaust air EA in order from the upstream side in the ventilation path of the exhaust air EA inside the apparatus casing 5a. 1), a recooler 9 (an example of the main cooling means), a secondary cooler 10 (an example of the main cooling means), and a reheater 11 at the most downstream portion of the ventilation path. is there.

つまり、この冷却回収装置5では、排気路4を通じて導かれる処理室1からの高温の排気空気EAを予冷器7,一次冷却器8、再冷却器9、二次冷却器10により段階的に冷却することで排気空気EAに含まれる溶剤蒸気Lsを凝縮させ、この冷却凝縮により溶剤蒸気Lsを排気空気EAから分離回収する。   That is, in the cooling recovery device 5, the hot exhaust air EA from the processing chamber 1 guided through the exhaust passage 4 is cooled stepwise by the precooler 7, the primary cooler 8, the recooler 9, and the secondary cooler 10. Thus, the solvent vapor Ls contained in the exhaust air EA is condensed, and the solvent vapor Ls is separated and recovered from the exhaust air EA by this cooling condensation.

そして、このように溶剤蒸気Lsを凝縮分離した後の低温の排気空気EAを再熱器11により再熱(加熱)した上で後続の吸着ロータ式濃縮装置6に送出する。   The low-temperature exhaust air EA after the solvent vapor Ls is condensed and separated in this way is reheated (heated) by the reheater 11 and then sent to the subsequent adsorption rotor type concentrator 6.

12は各冷却器7〜10での冷却により凝縮した溶剤蒸気Lsの凝縮液L(即ち、液溶剤)を受け止めて回収路12aへ導く回収用ドレンパン、13は回収路12aにより導かれる凝縮液Lを収容する回収容器である。   Reference numeral 12 denotes a recovery drain pan that receives the condensate L (ie, liquid solvent) of the solvent vapor Ls condensed by cooling in each of the coolers 7 to 10 and guides it to the recovery path 12a. Reference numeral 13 denotes the condensate L guided by the recovery path 12a. It is a collection container which stores.

予冷器7には予冷用熱媒Naを供給し、この予冷用熱媒Naとの熱交換により予冷器7において排気空気EAを予冷する。   A pre-cooling heat medium Na is supplied to the pre-cooler 7, and the exhaust air EA is pre-cooled in the pre-cooler 7 by heat exchange with the pre-cooling heat medium Na.

また、一次冷却器8には一次冷却用熱媒として冷却塔との間で循環させる冷却水CWを供給し、この冷却水CWとの熱交換により一次冷却器8において予冷後の排気空気EAを
一次冷却する。
The primary cooler 8 is supplied with cooling water CW to be circulated between the cooling tower as a primary cooling heat medium, and the precooled exhaust air EA is supplied to the primary cooler 8 by heat exchange with the cooling water CW. Cool primary.

さらに、二次冷却器10には二次冷却用熱媒として冷凍機で冷却した冷水Cを供給し、この冷水Cとの熱交換により二次冷却器10において一次冷却後の排気空気EAをさらに二次冷却する。   Further, the secondary cooler 10 is supplied with cold water C cooled by a refrigerator as a secondary cooling heat medium, and the exhaust air EA after primary cooling in the secondary cooler 10 is further exchanged by heat exchange with the cold water C. Secondary cooling.

再冷却器9と再熱器11とは、それらの間で再熱用熱媒Nbを循環ポンプ14aにより循環路14bを通じて循環させるランアラウンド型の熱交換装置を構成するものにしてあり、これにより、再冷却器9での排気空気EAとの熱交換で加熱(排気空気EAにとっては冷却)された再熱用熱媒Nbを再熱器11において二次冷却後の排気空気EAと熱交換させることで、溶剤蒸気分離後の排気空気EAを再熱する。即ち、再冷却器9は再熱用の温熱回収器を兼ねるものにしてある。   The recooler 9 and the reheater 11 constitute a run-around heat exchanger that circulates the reheating heat medium Nb through the circulation path 14b by the circulation pump 14a between them. The reheating heat medium Nb heated by heat exchange with the exhaust air EA in the recooler 9 (cooled for the exhaust air EA) is heat exchanged with the exhaust air EA after the secondary cooling in the reheater 11. Thus, the exhaust air EA after the solvent vapor separation is reheated. That is, the recooler 9 also serves as a heat recovery device for reheating.

一方、吸着ロータ式濃縮装置6(濃縮手段の一例)は、溶剤蒸気Lsを吸着する濃縮用吸着剤を保持させた通気性の吸着剤層Xをロータ回転方向に並べて配置した濃縮用の吸着ロータ15を装置ケーシング6aに内装したものであり、装置ケーシング6aの内部は、排気ファン16を介装した排気路4の中継路部分4aを通じて冷却回収装置5の出口から導かれる排気空気EAを吸着ロータ15の吸着剤層Xに通過させる濃縮用の吸着域17aと、濃縮用の再生空気供給路18を通じて導かれる高温の濃縮用再生空気Haを吸着ロータ15の吸着剤層Xに通過させる濃縮用の脱着域17bとに区画してある。   On the other hand, the adsorption rotor type concentrator 6 (an example of a concentration means) is a concentration adsorption rotor in which breathable adsorbent layers X holding a concentration adsorbent that adsorbs the solvent vapor Ls are arranged side by side in the rotor rotation direction. 15 is housed in the apparatus casing 6a, and the inside of the apparatus casing 6a absorbs the exhaust air EA guided from the outlet of the cooling recovery apparatus 5 through the relay path portion 4a of the exhaust path 4 with the exhaust fan 16 interposed therebetween. The concentration adsorption zone 17a that passes through the adsorbent layer X of 15 and the high-temperature concentration regeneration air Ha that is guided through the regeneration air supply path 18 for concentration pass through the adsorbent layer X of the adsorption rotor 15 It is partitioned into a desorption region 17b.

即ち、吸着ロータ15の回転域におけるロータ回転方向の一部を排気空気EAの通風域である濃縮用吸着域17aとし、かつ、吸着ロータ15の回転域におけるロータ回転方向の他部を濃縮用再生空気Haの通風域である濃縮用脱着域17bとした状態で、吸着ロータ15を濃縮用吸着域17aと濃縮用脱着域17bとに跨らせて配置し、この配置の吸着ロータ15を回転させることで吸着ロータ各部の吸着剤層Xを濃縮用吸着域17aと濃縮用脱着域17bとに交互に位置させる構成にしてある。   That is, a part of the rotor rotation direction in the rotation region of the adsorption rotor 15 is the concentration adsorption region 17a that is the ventilation region of the exhaust air EA, and the other part of the rotation direction in the rotation region of the adsorption rotor 15 is the regeneration for concentration. The adsorption rotor 15 is disposed across the concentration adsorption region 17a and the concentration desorption region 17b in a state where the concentration desorption region 17b, which is the ventilation region of the air Ha, is formed, and the adsorption rotor 15 of this arrangement is rotated. Thus, the adsorbent layer X of each part of the adsorption rotor is configured to be alternately positioned in the adsorption region 17a for concentration and the desorption region 17b for concentration.

なお、吸着ロータ15の好適例としては、円盤状の吸着ロータ15の外郭を形成する回転ドラムを設けて、濃縮用の吸着剤層Xを保持させた複数の通気性の有底円筒状の吸着カセットをロータ回転方向に並べて回転ドラムに取り付けた吸着ロータを挙げることができるが、これに限らず、濃縮用の吸着剤層Xを円筒状に集積配置した円筒状の吸着ロータなど、吸着ロータ15には種々の構造のものを採用することができる。   As a preferred example of the adsorption rotor 15, a plurality of air-permeable bottomed cylindrical adsorptions provided with a rotating drum that forms the outer shape of the disk-like adsorption rotor 15 and holding the adsorbent layer X for concentration are provided. An adsorbing rotor in which cassettes are arranged in the rotor rotation direction and attached to a rotating drum can be mentioned. The thing of various structures can be employ | adopted for.

この吸着ロータ式濃縮装置6は、冷却回収装置5で回収処理した後の排気空気EAに未だ残存する溶剤蒸気Lsを濃縮用吸着域17aにおいて濃縮用吸着剤(吸着剤層X)による吸着により排気空気EAから分離回収する後段回収装置として機能し、濃縮用吸着域17aにおいて残存溶剤蒸気Lsを分離回収した後の排気空気EAは浄化済の排気空気として吸着ロータ式濃縮装置6から浄化済排気路19へ送出する。   The adsorption rotor type concentrator 6 exhausts the solvent vapor Ls still remaining in the exhaust air EA after being recovered by the cooling recovery device 5 by adsorption by the concentration adsorbent (adsorbent layer X) in the concentration adsorption zone 17a. The exhaust air EA that functions as a post-stage recovery device that separates and recovers from the air EA and separates and recovers the residual solvent vapor Ls in the concentration adsorption zone 17a is purified exhaust air from the adsorption rotor type concentrator 6 as purified exhaust air. 19 to send.

また、濃縮用吸着域17aで残存溶剤蒸気Lsを吸着した吸着剤層Xは濃縮用脱着域17bにおいて吸着溶剤蒸気Lsを排気空気EAよりも小風量の濃縮用再生空気Haに脱着させて再生し、このように再生した吸着剤層Xを吸着ロータ15の回転により再び濃縮用吸着域17aに送って排気空気EAからの残存溶剤蒸気Lsの吸着分離に再使用する。   Further, the adsorbent layer X having adsorbed the residual solvent vapor Ls in the concentration adsorption zone 17a is regenerated by desorbing the adsorption solvent vapor Ls in the concentration desorption zone 17b to the regeneration air Ha for concentration having a smaller air volume than the exhaust air EA. The adsorbent layer X thus regenerated is sent again to the concentration adsorption zone 17a by the rotation of the adsorption rotor 15 and reused for adsorption separation of the residual solvent vapor Ls from the exhaust air EA.

吸着ロータ式濃縮装置6における濃縮用脱着域17bでの溶剤蒸気Lsの脱着により高濃度の溶剤蒸気Lsを含む濃縮状態になった使用済の濃縮用再生空気Haは混合路20を通じて処理室1からの排気空気EAとともに冷却回収装置5に送り、これにより、使用済みの濃縮用再生空気Haに含まれる溶剤蒸気Lsも冷却回収装置5で凝縮分離させて回収容器13に回収する。   In the adsorption rotor type concentrating device 6, the used concentration regeneration air Ha that has been concentrated to contain the high concentration solvent vapor Ls by desorption of the solvent vapor Ls in the concentration desorption region 17 b from the processing chamber 1 through the mixing path 20. The exhaust gas EA is sent to the cooling recovery device 5, whereby the solvent vapor Ls contained in the used concentration regeneration air Ha is also condensed and separated by the cooling recovery device 5 and recovered in the recovery container 13.

処理室1に供給する換気空気SAを導く給気路3には、外気取入路21aと浄化済排気路19から分岐した還気路21bとを接続し、これら外気取入路21a、還気路21b及び浄化済排気路19における還気路21bの分岐部よりも下流側部分(即ち、外部への排出路)には夫々、換気状態切り換え用の切換ダンパDa(切換手段の一例)を装備してある。   An outside air intake passage 21a and a return air passage 21b branched from the purified exhaust passage 19 are connected to the air supply passage 3 for guiding the ventilation air SA supplied to the processing chamber 1, and these outside air intake passage 21a and return air are connected. A switching damper Da for switching the ventilation state (an example of switching means) is provided in each of the downstream side portions of the return air passage 21b in the passage 21b and the purified exhaust passage 19 (that is, the discharge passage to the outside). It is.

つまり、これら切換ダンパDaの切り換え操作により、還気路21aを通じて浄化済排気路19から導く浄化済の排気空気EA(浄化済排気気体)のみを換気空気SAとして給気路3を通じ処理室1に供給する循環還気状態と、外気取入路21aを通じて外部から取り入れる新鮮外気OA(新鮮気体)のみを換気空気SAとして給気路3を通じ処理室1に供給する新鮮換気状態と、これら浄化済排気空気EAと新鮮外気OAとの混合空気(混合気体)を換気空気SAとして給気路3を通じて処理室1に供給する混合換気状態との選択的な切り換えを行なえるようにしてある。   That is, by the switching operation of the switching damper Da, only the purified exhaust air EA (purified exhaust gas) guided from the purified exhaust path 19 through the return air path 21a is used as the ventilation air SA to the processing chamber 1 through the air supply path 3. Circulating return air state to be supplied, fresh ventilation state in which only fresh outside air OA (fresh gas) taken from outside through the outside air intake passage 21a is supplied to the processing chamber 1 through the air supply passage 3 as ventilation air SA, and these purified exhaust gases It is possible to selectively switch between a mixed ventilation state in which mixed air (mixed gas) of air EA and fresh outside air OA is supplied to the processing chamber 1 through the air supply passage 3 as ventilation air SA.

また、混合換気状態では、これら切換ダンパDaの操作により浄化済排気気体EAと新鮮外気OAとの混合比の調整も行なえるようにしてある。   In the mixed ventilation state, the mixing ratio between the purified exhaust gas EA and the fresh outside air OA can be adjusted by operating the switching damper Da.

22は処理室1に供給する換気空気SAを所要温度に加熱する換気空気加熱装置(換気気体加熱手段の一例)であり、この換気空気加熱装置22の装置ケーシング22a内における換気空気SAの通風経路には、その上流側から順にフィルタ23,加熱器24,補助加熱器25を内装してある。   Reference numeral 22 denotes a ventilation air heating device (an example of a ventilation gas heating means) that heats the ventilation air SA supplied to the processing chamber 1 to a required temperature, and the ventilation path of the ventilation air SA in the device casing 22a of the ventilation air heating device 22. Includes a filter 23, a heater 24, and an auxiliary heater 25 in that order from the upstream side.

つまり、この換気空気加熱装置22により加熱した換気空気SA(即ち、加熱した浄化済の排気空気EA又は加熱した新鮮外気OA又は加熱した混合空気)を処理室1に供給することで、処理室1において室内の処理物が保持するNMP溶剤を加熱蒸発させる。   In other words, by supplying the processing chamber 1 with the ventilation air SA heated by the ventilation air heating device 22 (that is, the heated purified exhaust air EA, the heated fresh outside air OA, or the heated mixed air). In step 1, the NMP solvent held by the indoor treatment is evaporated by heating.

換気空気加熱装置22の加熱器24と冷却回収装置5の予冷器7とは、それらの間で予冷用熱媒Naを循環ポンプ26aにより循環路26bを通じて循環させるランアラウンド型の熱交換装置を構成するものにしてあり、これにより、予冷器7での排気空気EAとの熱交換で加熱(排気空気EAにとっては予冷)されて昇温した予冷用熱媒Naを加熱器24において換気空気SAと熱交換させることで換気空気SAを加熱する。即ち、予冷器7は換気空気加熱用の温熱回収器を兼ねるものにしてある。   The heater 24 of the ventilation air heating device 22 and the precooler 7 of the cooling recovery device 5 constitute a run-around heat exchange device that circulates the precooling heat medium Na through the circulation path 26b by the circulation pump 26a between them. As a result, the precooling heating medium Na heated by the heat exchange with the exhaust air EA in the precooler 7 (precooled for the exhaust air EA) and heated up is converted into the ventilation air SA in the heater 24. The ventilation air SA is heated by heat exchange. That is, the precooler 7 also serves as a heat recovery device for heating the ventilation air.

換気空気加熱装置22の補助加熱器25には高温蒸気との熱交換により換気空気SAを加熱する蒸気コイルや換気空気SAに対する高温熱風の供給により換気空気SAを加熱する熱風発生装置などを用いてあり、必要に応じ、この補助加熱器25により処理室1に供給する換気空気SAの温度を高める。なお、場合によっては、この補助加熱器25を省いてもよい。   The auxiliary heater 25 of the ventilation air heater 22 uses a steam coil that heats the ventilation air SA by exchanging heat with high-temperature steam, a hot air generator that heats the ventilation air SA by supplying high-temperature hot air to the ventilation air SA, and the like. Yes, the temperature of the ventilation air SA supplied to the processing chamber 1 is increased by the auxiliary heater 25 as necessary. In some cases, the auxiliary heater 25 may be omitted.

また、本例の溶剤回収装置では、処理室1に供給する換気空気SA(即ち、浄化済排気空気EA又は新鮮外気OA又はそれらの混合空気)を換気空気加熱装置22での加熱に先立ち除湿する吸着ロータ式除湿装置27(除湿手段の一例)を給気路3に装備してある。   Further, in the solvent recovery apparatus of this example, the ventilation air SA (that is, the purified exhaust air EA, the fresh outside air OA, or a mixed air thereof) supplied to the processing chamber 1 is dehumidified prior to the heating by the ventilation air heating device 22. An adsorption rotor type dehumidifier 27 (an example of dehumidifying means) is provided in the air supply path 3.

この吸着ロータ式除湿装置27は吸着ロータ式濃縮装置6と同様、除湿用吸着剤を保持させた通気性の吸着剤層Yをロータ回転方向に並べて配置した除湿用の吸着ロータ28を装置ケーシング27aに内装したものであり、装置ケーシング27aの内部は、換気空気SAを吸着ロータ28の吸着剤層Yに通過させる除湿用の吸着域29aと、除湿用の再生空気供給路30を通じて導かれる高温の除湿用再生空気Hbを吸着ロータ28の吸着剤層Yに通過させる除湿用の脱着域29bとに区画してある。   The adsorption rotor type dehumidifying device 27 is similar to the adsorption rotor type concentrating device 6 and includes a dehumidifying adsorption rotor 28 in which air-permeable adsorbent layers Y holding a dehumidifying adsorbent are arranged in the rotor rotating direction. The inside of the device casing 27a is a high temperature guided through a dehumidifying adsorption area 29a for passing the ventilation air SA through the adsorbent layer Y of the adsorption rotor 28 and a dehumidifying regeneration air supply path 30. A dehumidifying regeneration air Hb is partitioned into a dehumidifying desorption region 29b that allows the adsorbent layer Y of the adsorption rotor 28 to pass through.

即ち、吸着ロータ28の回転域におけるロータ回転方向の一部を換気空気SAの通風域である除湿用吸着域29aとし、かつ、吸着ロータ28の回転域におけるロータ回転方向の他部を除湿用再生空気Hbの通風域である除湿用脱着域29bとした状態で、吸着ロータ28を除湿用吸着域29aと除湿用脱着域29bとに跨らせて配置し、この配置の吸着ロータ28を回転させることで吸着ロータ各部の吸着剤層Yを除湿用吸着域29aと除湿用脱着域29bとに交互に位置させる構成にしてある。   That is, a part of the rotor rotation direction in the rotation area of the adsorption rotor 28 is a dehumidification adsorption area 29a that is a ventilation area of the ventilation air SA, and the other part in the rotor rotation direction in the rotation area of the adsorption rotor 28 is a regeneration for dehumidification. With the dehumidifying / desorbing area 29b, which is the ventilation area of the air Hb, the adsorption rotor 28 is disposed across the dehumidifying adsorption area 29a and the dehumidifying / desorbing area 29b, and the adsorption rotor 28 in this arrangement is rotated. Thus, the adsorbent layer Y of each part of the adsorption rotor is alternately positioned in the dehumidifying adsorption area 29a and the dehumidifying desorption area 29b.

この吸着ロータ式除湿装置27は、換気空気SAに含まれる水分を除湿用吸着域29aでの除湿用吸着剤(吸着剤層Y)による吸着により換気空気SAから分離除去し、この水分分離により除湿した換気空気SAを換気空気加熱装置22へ送出する。   This adsorption rotor type dehumidifier 27 separates and removes moisture contained in the ventilation air SA from the ventilation air SA by adsorption by the dehumidifying adsorbent (adsorbent layer Y) in the dehumidifying adsorption zone 29a, and dehumidifies by this moisture separation. The ventilated air SA is sent to the ventilating air heating device 22.

また、除湿用吸着域29aで水分吸着した吸着剤層Yは除湿用脱着域29bにおいて吸着水分を除湿用再生空気Hbに脱着させて再生し、このように再生した除湿用吸着剤層Yを吸着ロータ28の回転により再び除湿用吸着域29aに送って換気空気SAからの水分の吸着分離(即ち、換気空気SAの除湿)に再使用する。   Further, the adsorbent layer Y that has adsorbed moisture in the dehumidifying adsorption zone 29a is regenerated by desorbing the adsorbed moisture to the dehumidifying regeneration air Hb in the dehumidifying desorption zone 29b, and the dehumidifying adsorbent layer Y thus regenerated is adsorbed. By rotating the rotor 28, it is sent again to the dehumidifying adsorption zone 29a and reused for moisture adsorption separation from the ventilation air SA (ie, dehumidification of the ventilation air SA).

つまり、この吸着ロータ式除湿装置27による除湿により露点温度(絶対湿度)を低下させた低湿の換気空気SAを処理室1に供給することで、そのような除湿による低湿化を行なっていない換気空気SAを処理室1に供給するのに比べ、処理室1における室内空気の露点温度を室内使用条件などに原因する処理室1への水分持ち込みに抗して低く保つようにし、これにより、処理室1から排出される排気空気EAの露点温度(絶対湿度)を低く保つ。   That is, by supplying low-humidity ventilation air SA whose dew point temperature (absolute humidity) has been reduced by dehumidification by the adsorption rotor type dehumidifier 27 to the processing chamber 1, ventilation air that has not been dehumidified by such dehumidification. Compared to supplying SA to the processing chamber 1, the dew point temperature of the indoor air in the processing chamber 1 is kept low against moisture brought into the processing chamber 1 due to indoor use conditions and the like. The dew point temperature (absolute humidity) of the exhaust air EA discharged from 1 is kept low.

そして、このように排気空気EAの露点温度を低くして排気空気EAに含まれる水分量を低減することにより、冷却回収装置5での排気空気EAの冷却で溶剤蒸気Lsとともに凝縮してしまう排気空気EA中の水分の凝縮量(即ち、凝縮水量)を低減し、これにより、その後における回収液Lからの溶剤精製を容易にするとともに、その精製コストを低減する。   And exhaust gas which condenses with solvent vapor | steam Ls by cooling of the exhaust air EA in the cooling recovery apparatus 5 by reducing the dew point temperature of exhaust air EA and reducing the moisture content contained in exhaust air EA in this way. The amount of condensed water (that is, the amount of condensed water) in the air EA is reduced, thereby facilitating subsequent solvent purification from the recovered liquid L and reducing the purification cost.

給気路3には、換気空気加熱装置22により加熱した除湿後の換気空気SA(即ち、除湿加熱後の浄化済排気空気EA又は除湿加熱後の新鮮外気OA又は除湿加熱後の混合空気)の一部を分流する分岐路31を接続してあり、吸着ロータ式濃縮装置6の濃縮用脱着域17bに濃縮用再生空気Haを供給する濃縮用の再生空気供給路18、及び、吸着ロータ式除湿装置27の除湿用脱着域29bに除湿用再生空気Hbを供給する除湿用の再生空気供給路30はいずれも、この分岐路31から分岐してある。   In the air supply path 3, the dehumidified ventilation air SA heated by the ventilation air heating device 22 (that is, the purified exhaust air EA after dehumidification heating, the fresh outside air OA after dehumidification heating, or the mixed air after dehumidification heating) A branching passage 31 for branching a part is connected, the regeneration air supply passage 18 for concentration for supplying the regeneration air Ha for concentration to the desorption region 17b for concentration of the adsorption rotor type concentrator 6, and the adsorption rotor type dehumidification The dehumidification regeneration air supply path 30 that supplies the dehumidification regeneration air Hb to the dehumidification desorption region 29 b of the device 27 is branched from the branch path 31.

また、濃縮用の再生空気供給路18には、再生空気ファン32とともに濃縮用の再生空気加熱器33(濃縮用再生気体加熱手段の一例)を装備し、除湿用の再生空気供給路30には、再生空気ファン34とともに除湿用の再生空気加熱器35(除湿用再生気体加熱手段の一例)を装備してある。   Further, the regeneration air supply path 18 for concentration is equipped with a regeneration air heater 33 (an example of the regeneration gas heating means for concentration) together with the regeneration air fan 32, and the regeneration air supply path 30 for dehumidification is provided in the regeneration air supply path 30. In addition to the regeneration air fan 34, a regeneration air heater 35 for dehumidification (an example of a regeneration gas heating means for dehumidification) is provided.

つまり、吸着ロータ式濃縮装置6の濃縮用吸着域17bには、濃縮用再生空気Haとして、換気空気加熱装置22により加熱した除湿加熱後の換気空気SAの一部を濃縮用の再生空気加熱器33により必要に応じ更に加熱して供給し、同じく、吸着ロータ式除湿装置27の除湿用脱着域29bには、換気空気加熱装置22により加熱した除湿加熱後の換気空気SAの一部を除湿用の再生空気加熱器35により必要に応じ更に加熱して供給する。   That is, in the concentration adsorption area 17b of the adsorption rotor type concentrator 6, a part of the dehumidified heated ventilation air SA heated by the ventilation air heater 22 is concentrated as the regeneration air Ha for concentration. 33 is further heated and supplied as necessary. Similarly, a part of the ventilation air SA after the dehumidification heating heated by the ventilation air heating unit 22 is dehumidified in the dehumidification desorption region 29b of the adsorption rotor type dehumidifier 27. The regenerative air heater 35 is further heated and supplied as necessary.

そして、このように換気空気加熱装置22により加熱した除湿加熱後の換気空気SAの一部を濃縮用再生空気Ha及び除湿用再生空気Hbとして利用することにより、装置を簡
略化するとともに、吸着ロータ式濃縮装置6における濃縮用脱着域17bでの濃縮用吸着剤(吸着剤層X)からの吸着溶剤蒸気Lsの脱着、及び、吸着ロータ式除湿装置27における除湿用脱着域29bでの除湿用吸着剤(吸着剤層Y)からの吸着水分の脱着を促進するようにしてある。
In addition, by using a part of the ventilation air SA after the dehumidification heating heated by the ventilation air heating device 22 as described above as the regeneration air Ha for concentration and the regeneration air Hb for dehumidification, the apparatus is simplified and the adsorption rotor is used. Desorption of the adsorbed solvent vapor Ls from the concentration adsorbent (adsorbent layer X) in the concentration desorption region 17b of the concentration concentrator 6 and adsorption for dehumidification in the desorption desorption region 29b of the adsorption rotor dehumidifier 27 The adsorption of adsorbed moisture from the adsorbent (adsorbent layer Y) is promoted.

吸着ロータ式除湿装置27の除湿用脱着域29bを通過した使用済の除湿用再生空気Hbを外部に排出する排出路36からは、使用済の除湿用再生空気Hbの一部を除湿用の再生空気供給路30に戻す還送路37を分岐してあり、また、これら還送路37及び排出路36における還送路37の分岐部よりも下流側部分の夫々には風量調整ダンパDbを装備してある。   From the discharge path 36 for discharging the used dehumidifying regeneration air Hb that has passed through the dehumidifying / desorbing area 29b of the adsorption rotor type dehumidifying device 27, a part of the used dehumidifying regenerating air Hb is regenerated for dehumidification. A return passage 37 that returns to the air supply passage 30 is branched, and an air volume adjustment damper Db is provided in each of the return passage 37 and the downstream portion of the return passage 37 in the discharge passage 36. It is.

つまり、これら風量調整ダンパDbの調整操作により、還送路37を通じて除湿用の再生空気供給路30に戻す使用済除湿用再生空気Hbの風量(換言すれば、除湿用再生空気Hbの循環風量)を使用条件等に応じて調整する。   That is, the air volume of the used dehumidification regeneration air Hb returned to the dehumidification regeneration air supply path 30 through the return path 37 by adjusting the air volume adjustment damper Db (in other words, the circulation air volume of the dehumidification regeneration air Hb). Adjust according to the usage conditions.

38は吸着ロータ式除湿装置27の出口側における換気空気SA(即ち、除湿した換気空気SA)の露点温度tpを検出するセンサ、39はこのセンサ38の検出情報に基づき除湿用再生空気加熱器35での除湿用再生空気Hbの加熱量を調整することで、吸着ロータ式除湿装置27での換気空気SA(即ち、浄化済排気空気EA又は新鮮外気OA又はそれらの混合空気)からの除湿量を調整する除湿制御器(除湿制御手段の一例)である。   Reference numeral 38 denotes a sensor for detecting the dew point temperature tp of the ventilation air SA (that is, dehumidified ventilation air SA) on the outlet side of the adsorption rotor type dehumidifier 27, and 39 denotes a dehumidifying regenerative air heater 35 based on the detection information of the sensor 38. The amount of dehumidification from the ventilation air SA (that is, the purified exhaust air EA, the fresh outside air OA, or a mixed air thereof) in the adsorption rotor type dehumidifying device 27 is adjusted by adjusting the heating amount of the dehumidifying regeneration air Hb at It is a dehumidification controller to adjust (an example of dehumidification control means).

具体的には、この除湿制御器39は、上記センサ38による検出露点温度tpに基づき除湿用再生空気加熱器35の加熱量調整をもって吸着ロータ式除湿装置27での換気空気SAからの除湿量を調整することで、換気空気加熱装置22に送出する除湿後の換気空気SAの露点温度tpを設定露点温度tpsに調整する。   Specifically, the dehumidifying controller 39 adjusts the amount of dehumidification from the ventilation air SA in the adsorption rotor type dehumidifying device 27 by adjusting the heating amount of the dehumidifying regeneration air heater 35 based on the dew point temperature tp detected by the sensor 38. By adjusting, the dew point temperature tp of the dehumidified ventilation air SA sent to the ventilation air heating device 22 is adjusted to the set dew point temperature tps.

そして、この換気空気SAの設定露点温度tpsとしては、冷却回収装置5での冷却による溶剤蒸気Lsの凝縮分離において溶剤蒸気Lsとともに凝縮する水分量を所要の許容上限量以下に安定的に維持し得る露点温度を装置の試運転結果や装置運転のシミュレート結果に基づき設定してある。   As the set dew point temperature tps of the ventilation air SA, the amount of water condensed together with the solvent vapor Ls in the condensation separation of the solvent vapor Ls by cooling in the cooling recovery device 5 is stably maintained below the required allowable upper limit amount. The dew point temperature to be obtained is set based on the result of trial operation of the device and the result of simulation of device operation.

図中に付記した各部の濃度値(ppm)及び温度値(℃)は、本例の溶剤回収装置の各部における溶剤蒸気濃度、空気温度の一例を示すものである。   The concentration value (ppm) and temperature value (° C.) of each part added in the figure show an example of the solvent vapor concentration and air temperature in each part of the solvent recovery apparatus of this example.

〔別実施形態〕
次に別実施形態を列記する。
[Another embodiment]
Next, another embodiment will be listed.

上述の第1実施形態では、換気空気加熱装置22により加熱した除湿加熱後の換気空気SAの一部を吸着ロータ式除湿装置27の除湿用再生空気Hbとして利用する例を示したが、これに代え、第2〜第4実施形態として図2〜図4の夫々に示す装置構成を採用してもよい。   In the first embodiment described above, an example in which a part of the ventilation air SA after the dehumidification heating heated by the ventilation air heating device 22 is used as the dehumidification regeneration air Hb of the adsorption rotor type dehumidification device 27 is shown. Instead, apparatus configurations shown in FIGS. 2 to 4 may be employed as the second to fourth embodiments.

即ち、図2に示す第2実施形態の溶剤回収装置では、吸着ロータ式除湿装置27において除湿用脱着域29bの吸着ロータ回転方向における下手側で除湿用脱着域29bと除湿用吸着域29aとの間にパージ域29cを設けてある。   That is, in the solvent recovery apparatus of the second embodiment shown in FIG. 2, in the adsorption rotor type dehumidifier 27, the dehumidification desorption area 29b and the dehumidification adsorption area 29a are located on the lower side in the rotation direction of the adsorption rotor of the dehumidification desorption area 29b. A purge zone 29c is provided between them.

そして、浄化済の排気空気EAを導く浄化済排気路19を迂回路19aと除湿路19bと再生路19cとの3路に分岐し、このうち迂回路19は迂回用ファン40を介して処理室1への給気路3に直接接続し、除湿路19bは除湿用ファン41及び吸着ロータ式除湿装置27の除湿用吸着域29aをその順に介して給気路3に接続し、再生路19cは再生
用ファン42及び除湿用の再生空気加熱器35をその順に介して吸着ロータ式除湿装置27の除湿用脱着域29bに接続してある。
Then, the purified exhaust path 19 that guides the purified exhaust air EA is branched into three paths: a bypass path 19a, a dehumidification path 19b, and a regeneration path 19c, and the bypass path 19 is connected to the processing chamber via the bypass fan 40. The dehumidification path 19b is connected to the air supply path 3 through the dehumidifying fan 41 and the desorption adsorption area 29a of the adsorption rotor type dehumidifier 27 in that order, and the regeneration path 19c is The regeneration fan 42 and the regeneration air heater 35 for dehumidification are connected to the dehumidifying / desorbing area 29b of the adsorption rotor type dehumidifying device 27 through the order.

また、除湿路19bにおける除湿用ファン41と除湿用吸着域29aとの間の部分からはパージ路19dを分岐し、このパージ路19dは風量調整ダンパD及び吸着ロータ式除湿装置27のパージ域29cを介して再生路19cにおける再生用ファン42の吸入側に接続してある。   Further, a purge path 19d is branched from a portion between the dehumidifying fan 41 and the dehumidifying adsorption area 29a in the dehumidifying path 19b. The purge path 19d is a purge area 29c of the air volume adjusting damper D and the adsorption rotor type dehumidifier 27. And is connected to the suction side of the regeneration fan 42 in the regeneration path 19c.

つまり、この図2に示す第2実施形態の溶剤回収装置では、基本的に吸着ロータ式濃縮装置6により残存溶剤蒸気Lsを分離除去した浄化済の排気空気EAを処理室1に供給する換気空気SAとして用いる構成において、除湿路19bを通じて給気路3に導く浄化済の排気空気EAを吸着ロータ式除湿装置27により除湿することで、給気路3を通じ処理室1に供給する換気空気SAを除湿(低湿化)するようにしてある。   That is, in the solvent recovery apparatus according to the second embodiment shown in FIG. 2, the ventilation air that supplies the processing chamber 1 with the purified exhaust air EA that is basically separated and removed by the adsorption rotor type concentrator 6. In the configuration used as SA, the purified exhaust air EA guided to the air supply path 3 through the dehumidification path 19b is dehumidified by the adsorption rotor type dehumidifier 27, whereby the ventilation air SA supplied to the processing chamber 1 through the air supply path 3 is obtained. It is designed to be dehumidified (low humidity).

また、脱着処理後の除湿用吸着剤層Yを冷却及び浄化するパージ用空気Paとして浄化済の排気空気EAの一部をパージ路19dを通じ吸着ロータ式除湿装置27のパージ域19cに通風するとともに、除湿用の再生空気Hbとして、再生路19cにより導く浄化済排気空気EAの一部とパージ域29cを通過した使用済パージ用空気Paとしての浄化済排気空気EAとの混合空気を除湿用の再生空気加熱器35により加熱して吸着ロータ式除湿装置27の除湿用脱着域29bに通風するようにしてある。   Further, a part of the purified exhaust air EA is passed through the purge path 19d to the purge area 19c of the adsorption rotor type dehumidifier 27 as purge air Pa for cooling and purifying the dehumidifying adsorbent layer Y after the desorption process. As the dehumidifying regeneration air Hb, a mixed air of a part of the purified exhaust air EA guided by the regeneration path 19c and the purified exhaust air EA as the used purge air Pa passing through the purge area 29c is used for dehumidification. Heating is performed by the regenerative air heater 35 and the dehumidification desorption area 29b of the adsorption rotor type dehumidifier 27 is ventilated.

なお、迂回路19a、除湿路19b、再生路19c、パージ路19夫々の通過風量は各ファン40〜42の出力調整及び風量調整ダンパDの調整操作により使用条件等に応じて適宜調整することができる。   Note that the passing air volume of each of the detour path 19a, the dehumidifying path 19b, the regeneration path 19c, and the purge path 19 can be appropriately adjusted according to the use conditions and the like by adjusting the output of the fans 40 to 42 and adjusting the air volume adjusting damper D. it can.

そしてまた、この図2に示す第2実施形態の溶剤回収装置では、吸着ロータ式除湿装置27の入口側における換気空気SAの露点温度tp(即ち、換気空気SAとして用いる浄化済排気空気EAの露点温度tp)をセンサ38により検出するようにし、除湿制御器39は、このセンサ38による検出露点温度tpに基づき除湿用再生空気加熱器35の加熱量調整などをもって吸着ロータ式除湿装置27での換気空気SAからの除湿量を調整することで、吸着ロータ式除湿装置27の入口側における換気空気SAの露点温度tpを設定露点温度tpsに調整するものにしてある。   Further, in the solvent recovery device of the second embodiment shown in FIG. 2, the dew point tp of the ventilation air SA on the inlet side of the adsorption rotor type dehumidifier 27 (that is, the dew point of the purified exhaust air EA used as the ventilation air SA). The temperature tp) is detected by the sensor 38, and the dehumidification controller 39 adjusts the heating amount of the dehumidification regenerative air heater 35 based on the dew point temperature tp detected by the sensor 38 and performs ventilation in the adsorption rotor type dehumidifier 27. By adjusting the amount of dehumidification from the air SA, the dew point temperature tp of the ventilation air SA on the inlet side of the adsorption rotor type dehumidifier 27 is adjusted to the set dew point temperature tps.

この第2実施形態の溶剤回収装置における他の点は図1に示す第1実施形態の溶剤回収装置と同じである。   Other points in the solvent recovery apparatus of the second embodiment are the same as those of the solvent recovery apparatus of the first embodiment shown in FIG.

一方、図3に示す第3実施形態の溶剤回収装置では、外気OAを処理室1に供給する換気空気SAとして用いる構成において、吸着ロータ式濃縮装置6により残存溶剤蒸気Lsを分離除去した浄化済の排気空気EA(又は、その浄化済排気空気EAと外気導入路19eからの導入外気OAとの混合空気)を除湿用の再生空気加熱器35により加熱した上で除湿用再生空気Hbとして吸着ロータ式除湿装置27の除湿用脱着域29bに通風する構成にしてある。   On the other hand, in the solvent recovery apparatus of the third embodiment shown in FIG. 3, in the configuration in which the outside air OA is used as the ventilation air SA that supplies the processing chamber 1, the purified solvent having the residual solvent vapor Ls separated and removed by the adsorption rotor type concentrator 6. The exhaust air EA (or the mixed air of the purified exhaust air EA and the introduced outside air OA from the outside air introduction passage 19e) is heated by the regeneration air heater 35 for dehumidification, and then is used as the dehumidification regeneration air Hb. The dehumidifying / desorbing area 29b of the dehumidifying device 27 is ventilated.

図中Dは、浄化済排気空気EAと外気OAとの混合比を調整する風量調整ダンパである。   D in the figure is an air volume adjustment damper that adjusts the mixing ratio of the purified exhaust air EA and the outside air OA.

この第3実施形態の溶剤回収装置における他の点は図1に示す第1実施形態の溶剤回収装置と同じである。   Other points in the solvent recovery apparatus of the third embodiment are the same as those of the solvent recovery apparatus of the first embodiment shown in FIG.

また図4に示す第4実施形態の溶剤回収装置では、浄化済の排気空気EAを導く浄化済
排気路19を再生路19cとパージ路19dとの2路に分岐し、そして、再生路19cは再生用ファン42及び除湿用の再生空気加熱器35をその順に介して吸着ロータ式除湿装置27の除湿用脱着域29bに接続し、パージ路19dは吸着ロータ式除湿装置27のパージ域29cを介して外気導入路19eとともに再生路19cにおける再生用ファン42の吸入側に接続してある。
Further, in the solvent recovery apparatus of the fourth embodiment shown in FIG. 4, the purified exhaust path 19 for guiding the purified exhaust air EA is branched into two paths, a regeneration path 19c and a purge path 19d, and the regeneration path 19c is The regeneration fan 42 and the regeneration air heater 35 for dehumidification are connected in that order to the desorption / desorption area 29b of the adsorption rotor type dehumidifier 27, and the purge path 19d is connected via the purge area 29c of the adsorption rotor type dehumidifier 27. The outside air introduction path 19e is connected to the suction side of the regeneration fan 42 in the regeneration path 19c.

つまり、この図4に示す第4実施形態の溶剤回収装置では、外気OAを処理室1に供給する換気空気SAとして用いる構成において、浄化済の排気空気EAを吸着ロータ式除湿装置27の除湿用再生空気Hb及びパージ用空気Paに用いる構成にしてある。   That is, in the solvent recovery apparatus of the fourth embodiment shown in FIG. 4, the purified exhaust air EA is used for dehumidification of the adsorption rotor type dehumidifier 27 in the configuration in which the outside air OA is used as the ventilation air SA that supplies the processing chamber 1. The regeneration air Hb and the purge air Pa are used.

図中Dは再生路19c、パージ路19d、外気導入路19e夫々の通過風量を調整する風量調整ダンパである。   In the figure, D is an air volume adjusting damper that adjusts the passing air volume of each of the regeneration path 19c, the purge path 19d, and the outside air introduction path 19e.

この第4実施形態の溶剤回収装置における他の点は図1に示す第1実施形態の溶剤回収装置と同じである。   Other points in the solvent recovery apparatus of the fourth embodiment are the same as those of the solvent recovery apparatus of the first embodiment shown in FIG.

図5〜図8は第5〜第8実施形態の溶剤回収装置を示し、これら第5〜第8実施形態の溶剤回収装置では、除湿用再生空気Hbとして浄化済の排気空気EAの一部を除湿用の再生空気供給路30を通じて吸着ロータ式除湿装置27の除湿用脱着域29bに通風する構成において、その除湿用再生空気Hb(浄化済排気空気EA)を加熱する除湿用の再生空気加熱器として、前加熱器43(前加熱手段の一例)と、この前加熱器43により加熱(予熱)した除湿用再生空気Hbを更に加熱する後加熱器35(後加熱手段)とをその順に除湿用の再生空気供給路30に介装してある。   5 to 8 show the solvent recovery devices of the fifth to eighth embodiments. In these solvent recovery devices of the fifth to eighth embodiments, a part of the purified exhaust air EA is used as the dehumidifying regeneration air Hb. A dehumidifying regenerative air heater for heating the dehumidifying regenerating air Hb (purified exhaust air EA) in a configuration in which air is passed through the dehumidifying regenerating air supply passage 30 to the dehumidifying / desorbing area 29b of the adsorption rotor type dehumidifying device 27. The preheater 43 (an example of the preheating means) and the postheater 35 (postheating means) for further heating the dehumidifying regeneration air Hb heated (preheated) by the preheater 43 are used for dehumidification in that order. The regenerative air supply passage 30 is interposed.

そして、冷却回収装置5における予冷器5と換気空気加熱装置22における加熱器24及び上記の前加熱器43との間で予冷用熱媒Naを循環ポンプ26aにより循環路26bを通じて循環させることにより、予冷器7での排気空気EAの予冷により昇温した予冷用熱媒Naを換気空気加熱用の熱媒及び再生空気加熱用の熱媒として換気空気加熱装置22における加熱器24及び上記の前加熱器43に供給する構成にしてある。   Then, by circulating the pre-cooling heat medium Na between the pre-cooler 5 in the cooling recovery device 5 and the heater 24 in the ventilation air heater 22 and the pre-heater 43 through the circulation path 26b by the circulation pump 26a, The pre-cooling heat medium Na, which has been heated by pre-cooling the exhaust air EA in the pre-cooler 7, is used as the heat medium for heating the ventilation air and the heat medium for heating the regenerative air. It is configured to supply to the container 43.

つまり、排気気体EAの予冷で昇温した予冷用熱媒Naの保有熱(即ち、排気気体EAからの回収熱)を利用して除湿用再生空気Hb及び換気空気SAを加熱するようにしてある。   That is, the dehumidification regeneration air Hb and the ventilation air SA are heated using the retained heat of the pre-cooling heat medium Na (that is, the recovered heat from the exhaust gas EA) raised in temperature by the pre-cooling of the exhaust gas EA. .

昇温予冷用熱媒Naの具体的な循環経路としては、循環路26bのうち予冷器7から送出される昇温予冷用熱媒Naを導く往路部分を第1分岐路44aと第2分岐路44bとの2路に分岐し、これら分岐路44a,44bのうち第2分岐路44bを前加熱器43を介して第1分岐路44aに接続し、この第2分岐路44bの接続箇所(合流箇所)よりも下流側において循環本路としての第1分岐路44aを換気空気加熱装置22の加熱器24に接続し、さらに、その加熱器24よりも下流側において第1分岐路44aを循環路26bの復路部分として予冷器7に接続してある。   As a specific circulation path of the heating medium for preheating temperature rise Na, the first branch path 44a and the second branch path are provided in the circulation path 26b for leading the heating temperature precooling heating medium Na sent from the precooler 7. The second branch path 44b of the branch paths 44a and 44b is connected to the first branch path 44a via the pre-heater 43, and the connection point (confluence) of the second branch path 44b The first branch path 44 a as a circulation main path is connected to the heater 24 of the ventilation air heater 22 on the downstream side of the location), and further, the first branch path 44 a is connected to the circulation path on the downstream side of the heater 24. It is connected to the precooler 7 as a return part of 26b.

即ち、排気空気EAの予冷で昇温した予冷用熱媒Nbの一部を再生空気加熱用の熱媒として第2分岐路44bを通じ前加熱器43に供給し、そして、昇温予冷用熱媒Naの残部と前加熱器43で除湿用再生空気Hbの加熱(予熱)に用いた後の昇温予冷用熱媒Naとを合流させて、その合流予冷用熱媒Naを換気空気加熱用の熱媒として換気空気加熱装置22の加熱器24に供給するようにしてある。   That is, a part of the pre-cooling heat medium Nb that has been heated by pre-cooling the exhaust air EA is supplied to the pre-heater 43 through the second branch 44b as a heat medium for heating the regenerative air, The remainder of Na and the heating medium Na for heating and cooling after being used for heating (preheating) of the dehumidification regeneration air Hb by the pre-heater 43 are merged, and the combined precooling heating medium Na is used for heating the ventilation air It is made to supply to the heater 24 of the ventilation air heating apparatus 22 as a heat medium.

45は第1分岐路4aへの昇温予冷用熱媒Naの分流流量を調整する流量調整弁、46aは第2分岐路44bにおいてバイパス路46を通じ前加熱器43を迂回させる昇温予冷
用熱媒Naの流量(バイパス流量)を調整する合流三方弁であり、この合流三方弁46aの調整によりバイパス流量を調整することで、昇温予冷用熱媒Naの前加熱器43への供給流量を前加熱器43の加熱負荷などに応じて調整する。
45 is a flow rate adjusting valve for adjusting the flow rate of the heating medium Na for temperature rising precooling to the first branch path 4a, and 46a is heat for temperature rising precooling that bypasses the preheater 43 through the bypass path 46 in the second branch path 44b. This is a merged three-way valve that adjusts the flow rate (bypass flow rate) of the medium Na. By adjusting the bypass flow rate by adjusting this merged three-way valve 46a, the supply flow rate to the pre-heater 43 of the heating medium Na for temperature rise precooling can be adjusted. It adjusts according to the heating load of the pre-heater 43, etc.

また、図5〜図8に示す第5〜第8実施形態の溶剤回収装置では、濃縮用再生空気Haを吸着ロータ式濃縮装置6の濃縮用脱着域17bに供給する濃縮用の再生空気供給路18を除湿用の再生空気供給路30における前加熱器43の介装箇所よりも下流側部分から分岐してある。   Further, in the solvent recovery devices of the fifth to eighth embodiments shown in FIGS. 5 to 8, the regeneration air supply passage for concentration for supplying the regeneration air Ha for concentration to the concentration desorption region 17 b of the adsorption rotor type concentration device 6. 18 is branched from the downstream portion of the preheater 43 in the regeneration air supply passage 30 for dehumidification.

つまり、除湿用再生空気Hbとして浄化済の排気空気EAの一部を除湿用の再生空気加熱器により加熱して吸着ロータ式除湿装置27の除湿用脱着域29bに供給し、また、濃縮用再生空気Haとして同じく浄化済の排気空気EAの一部を濃縮用の再生空気加熱器により加熱して吸着ロータ式濃縮装置6の濃縮用脱着域17bに供給する構成にすることにおいて、除湿用の再生空気加熱器と濃縮用の再生空気加熱器とを兼ねる兼用の再生空気加熱器(兼用の再生気体加熱手段)として前加熱器43を機能させるようにしてあり、これにより、装置の簡素化を図ってある。 That is, a part of the purified exhaust air EA as the dehumidification regeneration air Hb is heated by the regeneration air heater for dehumidification and supplied to the desorption / desorption area 29b of the adsorption rotor type dehumidifier 27, and the regeneration for concentration A part of the purified exhaust air EA that is also purified as the air Ha is heated by the regeneration air heater for concentration and supplied to the concentration desorption region 17b of the adsorption rotor type concentrator 6, so that regeneration for dehumidification is performed. The pre-heater 43 is made to function as a combined regenerative air heater (also used as a regenerative gas heating means) that doubles as an air heater and a concentration regenerative air heater, thereby simplifying the apparatus. It is.

図5に示す第5実施形態の溶剤回収装置における他の点は図1に示す第1実施形態の溶剤回収装置と同じであり、図6に示す第6実施形態の溶剤回収装置における他の点は図2に示す第2実施形態の溶剤回収装置と同じである。   Other points in the solvent recovery device of the fifth embodiment shown in FIG. 5 are the same as those of the solvent recovery device of the first embodiment shown in FIG. 1, and other points in the solvent recovery device of the sixth embodiment shown in FIG. Is the same as the solvent recovery apparatus of the second embodiment shown in FIG.

また、図7に示す第7実施形態の溶剤回収装置における他の点は図3に示す第3実施形態の溶剤回収装置と同じであり、図8に示す第8実施形態の溶剤回収装置における他の点は図4に示す第4実施形態の溶剤回収装置と同じである。   Further, other points in the solvent recovery apparatus of the seventh embodiment shown in FIG. 7 are the same as those of the solvent recovery apparatus of the third embodiment shown in FIG. 3, and other points in the solvent recovery apparatus of the eighth embodiment shown in FIG. This point is the same as the solvent recovery apparatus of the fourth embodiment shown in FIG.

本発明の実施において、処理室1に供給する換気気体SAは空気に限らず、どのような気体であってもよい。   In the implementation of the present invention, the ventilation gas SA supplied to the processing chamber 1 is not limited to air, and may be any gas.

また、処理室1もそれから排出される排気気体EAに溶剤蒸気Lsが含まれるものであれば、どのような処理を行なうものであってもよい。   Further, the processing chamber 1 may perform any processing as long as the exhaust gas EA discharged from the processing chamber 1 contains the solvent vapor Ls.

回収対象の溶剤蒸気Lsは冷却により排気気体EAから凝縮分離し得るものであれば、どのような溶剤であってもよい。   The solvent vapor Ls to be recovered may be any solvent as long as it can be condensed and separated from the exhaust gas EA by cooling.

前述の実施形態では、除湿制御手段39(除湿制御器)を、除湿手段27(吸着ロータ式除湿装置)の出口側又は入口側における換気気体SAの検出露点温度tpに基づき除湿手段27による換気気体SAからの除湿量を調整して、処理室1に供給する換気気体SAの露点温度又は処理室1からの排気気体EAの露点温度を設定露点温度tpsに調整する構成にしたが、これに代え、処理室1から排出される排気気体EA(室内気体でもよい)の検出露点温度tpに基づき除湿手段27による換気気体SAからの除湿量を調整して、処理室1から排出される排気気体EAの露点温度tpを設定露点温度tpsに調整する構成にしてもよい。   In the above-described embodiment, the dehumidification control means 39 (dehumidification controller) controls the ventilation gas by the dehumidification means 27 based on the detected dew point temperature tp of the ventilation gas SA at the outlet side or the inlet side of the dehumidification means 27 (adsorption rotor type dehumidifier). The dehumidification amount from SA is adjusted, and the dew point temperature of the ventilation gas SA supplied to the processing chamber 1 or the dew point temperature of the exhaust gas EA from the processing chamber 1 is adjusted to the set dew point temperature tps. The amount of dehumidification from the ventilation gas SA by the dehumidifying means 27 is adjusted based on the detected dew point temperature tp of the exhaust gas EA (which may be room gas) exhausted from the processing chamber 1, and the exhaust gas EA exhausted from the processing chamber 1 The dew point temperature tp may be adjusted to the set dew point temperature tps.

あるいはまた、除湿手段27の出口側又は入口側における換気気体SAの検出露点温度tpに基づき除湿手段27による換気気体SAからの除湿量を調整して、処理室1に供給する換気気体SAの露点温度tpを設定露点温度tpsに調整する構成において、処理室1における室内気体(排気気体EAでもよい)の検出露点温度に応じ換気空気SAの設定露点温度tpsを変更する構成を採用してもよい。   Alternatively, the dew point of the ventilation gas SA supplied to the processing chamber 1 by adjusting the amount of dehumidification from the ventilation gas SA by the dehumidification means 27 based on the detected dew point temperature tp of the ventilation gas SA at the outlet side or the inlet side of the dehumidification means 27. In the configuration in which the temperature tp is adjusted to the set dew point temperature tps, a configuration in which the set dew point temperature tps of the ventilation air SA is changed in accordance with the detected dew point temperature of the indoor gas (or the exhaust gas EA) in the processing chamber 1 may be adopted. .

除湿手段27(吸着ロータ式除湿装置)による換気気体SAからの除湿量を調整するのに、前述の実施形態では除湿用再生空気加熱器35での加熱量を調整することで除湿量を調整する調整方式を示したが、除湿量の調整方式も除湿方式などに応じて種々の方式を採用することができる。 In order to adjust the dehumidification amount from the ventilation gas SA by the dehumidifying means 27 (adsorption rotor type dehumidifier), the dehumidification amount is adjusted by adjusting the heating amount in the dehumidifying regenerative air heater 35 in the above-described embodiment. showed adjustment method, it is possible to employ various methods in accordance with the dehumidifying amount of the adjustment system also dehumidification system.

前述の各実施形態では、冷却手段7〜10による冷却により溶剤蒸気Lsを凝縮分離した後の排気気体EAに残存する溶剤蒸気Lsを吸着ロータ式濃縮装置5により濃縮状態で排気気体EAから分離するようにしている。 In each embodiment described above, separated from the exhaust gas EA as a concentrate of the solvent vapor Ls remaining solvent vapor Ls by the cooling by the cooling means 7 to 10 in the exhaust gas EA after condensed and separated by adsorption rotor type concentration unit 5 I am doing so.

また、吸着ロータ式濃縮装置6冷却手段7〜10の後段に付加的に装備してある。 Further, the adsorption rotor type concentrator 6 is additionally provided in the subsequent stage of the cooling means 7-10 .

本発明による溶剤回収方法及び溶剤回収装置は各種分野において排気気体に含まれる種々の溶剤蒸気の分離回収に利用することができる。   The solvent recovery method and the solvent recovery apparatus according to the present invention can be used for separation and recovery of various solvent vapors contained in exhaust gas in various fields.

Ls 溶剤蒸気
1 処理室
SA 換気気体
EA 排気気体
7〜10 冷却手段
7 予冷手段
8〜10 本冷手段
27 除湿手段、吸着ロータ式除湿装置
tp 露点温度
tps 設定露点温度
39 除湿制御手段
22 換気気体加熱手段
28 除湿用吸着ロータ
29a 除湿用吸着域
Hb 除湿用再生気体
29b 除湿用脱着域
35,43 除湿用の再生気体加熱手段
OA 新鮮気体
Da 切換手段
6 濃縮回収手段、吸着ロータ式濃縮装置
15 濃縮用吸着ロータ
17a 濃縮用吸着域
Ha 濃縮用再生気体
17b 濃縮用脱着域
33,43 濃縮用の再生気体加熱手段
43 兼用の再生気体加熱手段
Ls Solvent vapor 1 Processing chamber SA Ventilation gas EA Exhaust gas 7-10 Cooling means 7 Precooling means 8-10 Main cooling means 27 Dehumidification means, adsorption rotor type dehumidifier tp Dew point temperature tps Set dew point temperature 39 Dehumidification control means 22 Ventilation gas heating Means 28 Dehumidification adsorption rotor 29a Dehumidification adsorption zone Hb Dehumidification regeneration gas 29b Dehumidification desorption zone 35, 43 Regeneration gas heating means OA Fresh gas Da Switching means 6 Concentration recovery means, Adsorption rotor type concentrator 15 Concentration Adsorption rotor 17a Concentration adsorption zone Ha Concentration regeneration gas 17b Concentration desorption region 33, 43 Concentration regeneration gas heating means 43 Concurrent regeneration gas heating means

Claims (7)

溶剤蒸気の発生がある処理室に換気気体を供給するのに伴いその処理室から排出される排気気体を冷却手段により冷却することで、その排気気体に含まれる溶剤蒸気を凝縮させて排気気体中から分離回収する溶剤回収装置であって、
前記冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、
残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、前記冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、
この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にし、
この吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の前記排気気体、又は、その浄化済排気気体と外部からの新鮮気体との混合気体、又は、外部からの新鮮気体を、前記処理室に供給する前記換気気体とし、
その換気気体を除湿して、その除湿により露点温度を低下させた換気気体を前記処理室に供給することで、前記冷却手段による冷却において溶剤蒸気とともに凝縮する排気気体中の水分の凝縮量を低減する除湿手段を設け、
この除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設け、
この吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を前記処理室に供給することで、前記処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にし、
前記換気気体加熱手段により加熱した除湿後の換気気体の一部を、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風するものと、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風するものとに分流する構成にしてある溶剤回収装置。
By cooling the exhaust gas discharged from the processing chamber as it is supplied to the processing chamber where solvent vapor is generated by the cooling means, the solvent vapor contained in the exhaust gas is condensed and exhausted in the exhaust gas. A solvent recovery device for separating and recovering from
As a concentration recovery means for separating the solvent vapor remaining in the exhaust gas after condensation and separation of the solvent vapor by cooling by the cooling means from the exhaust gas in a concentrated state,
Concentration adsorption area, which is a ventilation area of exhaust gas after each part of the concentration adsorption rotor holding the concentration adsorbent for adsorbing residual solvent vapor is condensed and separated by the cooling means by the rotation of the adsorption rotor. And an adsorption rotor type concentrator that is positioned alternately in the desorption area for concentration, which is the ventilation area of the regeneration gas for concentration,
Concentrated regeneration gas that has passed through the concentration desorption region in this adsorption rotor type concentrating device and has become a concentrated state containing high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber,
The purified exhaust gas that has passed through the concentration adsorption zone of the adsorption rotor type concentrator, the mixed gas of the purified exhaust gas and external fresh gas, or the external fresh gas is treated as described above. The ventilation gas supplied to the room,
By dehumidifying the ventilation gas and supplying the treatment gas with the dew point temperature lowered by the dehumidification to the processing chamber, the amount of moisture condensed in the exhaust gas that condenses with the solvent vapor during cooling by the cooling means is reduced. Providing dehumidifying means to
As the dehumidifying means, each part of the dehumidifying adsorption rotor that holds the dehumidifying adsorbent is divided into a dehumidifying adsorption area that is a ventilation gas ventilation area and a dehumidifying desorption area that is a ventilation gas ventilation area by rotating the adsorption rotor. And an adsorption rotor type dehumidifier that is alternately positioned
Ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor type dehumidifier is provided, and the dehumidified gas heated by the ventilation gas heating means is supplied to the processing chamber, so that the solvent in the processing chamber The solvent is vaporized by heating and evaporating,
A part of the dehumidified ventilation gas heated by the ventilation gas heating means is ventilated to the desorption area for concentration in the adsorption rotor type concentrator while being heated by the regeneration gas heating means for concentration as the regeneration gas for concentration. And a solvent recovery apparatus configured to divide the dehumidification regeneration gas into a dehumidification regeneration gas heating means in a state of being heated by the regeneration gas heating means for dehumidification.
溶剤蒸気の発生がある処理室に換気気体を供給するのに伴いその処理室から排出される排気気体を冷却手段により冷却することで、その排気気体に含まれる溶剤蒸気を凝縮させて排気気体中から分離回収する溶剤回収装置であって、By cooling the exhaust gas discharged from the processing chamber as it is supplied to the processing chamber where solvent vapor is generated by the cooling means, the solvent vapor contained in the exhaust gas is condensed and exhausted in the exhaust gas. A solvent recovery device for separating and recovering from
前記冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、As a concentration recovery means for separating the solvent vapor remaining in the exhaust gas after condensation and separation of the solvent vapor by cooling by the cooling means from the exhaust gas in a concentrated state,
残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、前記冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、Concentration adsorption area, which is a ventilation area of exhaust gas after each part of the concentration adsorption rotor holding the concentration adsorbent for adsorbing residual solvent vapor is condensed and separated by the cooling means by the rotation of the adsorption rotor. And an adsorption rotor type concentrator that is positioned alternately in the desorption area for concentration, which is the ventilation area of the regeneration gas for concentration,
この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にし、Concentrated regeneration gas that has passed through the concentration desorption region in this adsorption rotor type concentrating device and has become a concentrated state containing high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber,
この吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の前記排気気体、又は、外部からの新鮮気体を、前記処理室に供給する前記換気気体とし、Purified exhaust gas that has passed through the concentration adsorption zone of this adsorption rotor type concentrator, or fresh gas from the outside, as the ventilation gas to be supplied to the processing chamber,
その換気気体を除湿して、その除湿により露点温度を低下させた換気気体を前記処理室に供給することで、前記冷却手段による冷却において溶剤蒸気とともに凝縮する排気気体中の水分の凝縮量を低減する除湿手段を設け、By dehumidifying the ventilation gas and supplying the treatment gas with the dew point temperature lowered by the dehumidification to the processing chamber, the amount of moisture condensed in the exhaust gas that condenses with the solvent vapor during cooling by the cooling means is reduced. Providing dehumidifying means to
この除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設け、As the dehumidifying means, each part of the dehumidifying adsorption rotor that holds the dehumidifying adsorbent is divided into a dehumidifying adsorption area that is a ventilation gas ventilation area and a dehumidifying desorption area that is a ventilation gas ventilation area by rotating the adsorption rotor. And an adsorption rotor type dehumidifier that is alternately positioned
この吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を前記処理室に供給することで、前記処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にし、Ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor type dehumidifier is provided, and the dehumidified gas heated by the ventilation gas heating means is supplied to the processing chamber, so that the solvent in the processing chamber The solvent is vaporized by heating and evaporating,
前記換気気体加熱手段により加熱した除湿後の換気気体の一部を、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風し、A part of the dehumidified ventilation gas heated by the ventilation gas heating means is ventilated to the desorption area for concentration in the adsorption rotor type concentrator while being heated by the regeneration gas heating means for concentration as the regeneration gas for concentration. And
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済排気気体の一部を、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風する構成にしてある溶剤回収装置。In the adsorption rotor type dehumidifier, a part of the purified exhaust gas that has passed through the concentration adsorption zone in the adsorption rotor type concentrator is heated by the regeneration gas heating means for dehumidification as the dehumidification regeneration gas. A solvent recovery apparatus configured to ventilate the dehumidifying desorption region.
溶剤蒸気の発生がある処理室に換気気体を供給するのに伴いその処理室から排出される排気気体を冷却手段により冷却することで、その排気気体に含まれる溶剤蒸気を凝縮させて排気気体中から分離回収する溶剤回収装置であって、By cooling the exhaust gas discharged from the processing chamber as it is supplied to the processing chamber where solvent vapor is generated by the cooling means, the solvent vapor contained in the exhaust gas is condensed and exhausted in the exhaust gas. A solvent recovery device for separating and recovering from
前記冷却手段による冷却により溶剤蒸気を凝縮分離した後の排気気体に残存する溶剤蒸気を濃縮状態で排気気体から分離する濃縮回収手段として、As a concentration recovery means for separating the solvent vapor remaining in the exhaust gas after condensation and separation of the solvent vapor by cooling by the cooling means from the exhaust gas in a concentrated state,
残存溶剤蒸気を吸着する濃縮用吸着剤を保持する濃縮用吸着ロータの各部をその吸着ロータの回転により、前記冷却手段で溶剤蒸気を凝縮分離した後の排気気体の通風域である濃縮用吸着域と濃縮用再生気体の通風域である濃縮用脱着域とに交互に位置させる吸着ロータ式濃縮装置を設け、Concentration adsorption area, which is a ventilation area of exhaust gas after each part of the concentration adsorption rotor holding the concentration adsorbent for adsorbing residual solvent vapor is condensed and separated by the cooling means by the rotation of the adsorption rotor. And an adsorption rotor type concentrator that is positioned alternately in the desorption area for concentration, which is the ventilation area of the regeneration gas for concentration,
この吸着ロータ式濃縮装置における濃縮用脱着域を通過して高濃度の脱着溶剤蒸気を含む濃縮状態になった濃縮用再生気体を前記処理室からの排気気体とともに前記冷却手段に送る構成にし、Concentrated regeneration gas that has passed through the concentration desorption region in this adsorption rotor type concentrating device and has become a concentrated state containing high concentration desorption solvent vapor is sent to the cooling means together with the exhaust gas from the processing chamber,
この吸着ロータ式濃縮装置の濃縮用吸着域を通過した浄化済の前記排気気体、又は、その浄化済排気気体と外部からの新鮮気体との混合気体、又は、外部からの新鮮気体を、前記処理室に供給する前記換気気体とし、The purified exhaust gas that has passed through the concentration adsorption zone of the adsorption rotor type concentrator, the mixed gas of the purified exhaust gas and external fresh gas, or the external fresh gas is treated as described above. The ventilation gas supplied to the room,
その換気気体を除湿して、その除湿により露点温度を低下させた換気気体を前記処理室に供給することで、前記冷却手段による冷却において溶剤蒸気とともに凝縮する排気気体中の水分の凝縮量を低減する除湿手段を設け、By dehumidifying the ventilation gas and supplying the treatment gas with the dew point temperature lowered by the dehumidification to the processing chamber, the amount of moisture condensed in the exhaust gas that condenses with the solvent vapor during cooling by the cooling means is reduced. Providing dehumidifying means to
この除湿手段として、除湿用吸着剤を保持する除湿用吸着ロータの各部をその吸着ロータの回転により換気気体の通風域である除湿用吸着域と除湿用再生気体の通風域である除湿用脱着域とに交互に位置させる吸着ロータ式除湿装置を設け、As the dehumidifying means, each part of the dehumidifying adsorption rotor that holds the dehumidifying adsorbent is divided into a dehumidifying adsorption area that is a ventilation gas ventilation area and a dehumidifying desorption area that is a ventilation gas ventilation area by rotating the adsorption rotor. And an adsorption rotor type dehumidifier that is alternately positioned
この吸着ロータ式除湿装置により除湿した換気気体を加熱する換気気体加熱手段を設けて、この換気気体加熱手段により加熱した除湿後の換気気体を前記処理室に供給することで、前記処理室において溶剤を加熱蒸発させて溶剤蒸気を発生させる構成にし、Ventilation gas heating means for heating the ventilation gas dehumidified by the adsorption rotor type dehumidifier is provided, and the dehumidified gas heated by the ventilation gas heating means is supplied to the processing chamber, so that the solvent in the processing chamber The solvent is vaporized by heating and evaporating,
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済排気気体の一部を、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風するものと、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風するものとに分流する構成にしてある溶剤回収装置。A part of the purified exhaust gas that has passed through the adsorption zone for concentration in the adsorption rotor type concentrator is heated by the regeneration gas heating means for concentration as the regeneration gas for enrichment, and then in the adsorption rotor type concentrator. It is configured to divide into one that ventilates the desorption area for concentration and one that ventilates the desorption area for desorption in the adsorption rotor type dehumidifier while being heated by the regeneration gas heating means for dehumidification as the dehumidification regeneration gas. Solvent recovery device.
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済排気気体の一部を、兼用の再生気体加熱手段により加熱した後、前記濃縮用再生気体として濃縮用の再生気体加熱手段により加熱した状態で前記吸着ロータ式濃縮装置における前記濃縮用脱着域に通風するものと、前記除湿用再生気体として除湿用の再生気体加熱手段により加熱した状態で前記吸着ロータ式除湿装置における前記除湿用脱着域に通風するものとに分流する構成にし、A part of the purified exhaust gas that has passed through the adsorption zone for concentration in the adsorption rotor type concentrator is heated by a combined regeneration gas heating means and then heated by the regeneration gas heating means for concentration as the regeneration gas for concentration. The dehumidifying desorption in the adsorption rotor type dehumidifier while being ventilated in the desorption area for concentration in the adsorption rotor type concentrator in a state of being heated and heated by a regeneration gas heating means for dehumidification as the dehumidifying regeneration gas It is configured to divert to what is ventilated in the area,
前記冷却手段は、前記処理室から排出される前記排気気体を予冷用熱媒と熱交換させて予冷する予冷手段と、この予冷手段により予冷した前記排気気体を前記予冷用熱媒より低温の本冷用熱媒と熱交換させて本冷する本冷手段とを備える構成にし、The cooling means includes precooling means for precooling the exhaust gas discharged from the processing chamber by heat exchange with a precooling heat medium, and the exhaust gas precooled by the precooling means at a lower temperature than the precooling heat medium. A main cooling means for performing main cooling by heat exchange with a cooling heat medium,
前記予冷手段での前記排気気体との熱交換で昇温した前記予冷用熱媒を、再生気体加熱用の熱媒として前記兼用の再生気体加熱手段に供給する構成にしてある請求項3記載の溶剤回収装置。4. The configuration according to claim 3, wherein the pre-cooling heat medium heated by heat exchange with the exhaust gas in the pre-cooling means is supplied to the combined regeneration gas heating means as a heat medium for regenerating gas heating. Solvent recovery device.
前記予冷手段での前記排気気体との熱交換で昇温した前記予冷用熱媒を、再生気体加熱用の熱媒として前記兼用の再生気体加熱手段に供給するとともに、換気気体加熱用の熱媒として前記換気気体加熱手段に供給する構成にしてある請求項4記載の溶剤回収装置。The pre-cooling heating medium heated by the heat exchange with the exhaust gas in the pre-cooling means is supplied to the regenerating gas heating means as a regeneration gas heating medium, and a heating medium for ventilation gas heating The solvent recovery apparatus according to claim 4, wherein the solvent recovery apparatus is configured to supply to the ventilation gas heating means. 前記処理室から排出される前記排気気体の検出露点温度に基づき、前記吸着ロータ式除湿装置による前記換気気体からの除湿量を調整する除湿制御手段を設けてある請求項1〜3のいずれか1項に記載の溶剤回収装置。The dehumidification control means which adjusts the dehumidification amount from the said ventilation gas by the said adsorption rotor type dehumidifier based on the detection dew point temperature of the said exhaust gas discharged | emitted from the said process chamber is provided. Item 4. Solvent recovery device. 前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済の前記排気気体を、前記換気気体として前記吸着ロータ式除湿装置の前記除湿用吸着域で除湿し、それに続き前記換気気体加熱手段で加熱して前記処理室に供給する循環換気状態と、The purified exhaust gas that has passed through the concentration adsorption zone in the adsorption rotor type concentrator is dehumidified as the ventilation gas in the dehumidification adsorption zone of the adsorption rotor type dehumidifier, followed by the ventilation gas heating means A circulating ventilation state that is heated at
外部からの新鮮気体を、前記換気気体として前記吸着ロータ式除湿装置の前記除湿用吸着域で除湿し、それに続き前記換気気体加熱手段で加熱して前記処理室に供給する新鮮換気状態と、A fresh ventilation state in which fresh gas from the outside is dehumidified as the ventilation gas in the adsorption area for dehumidification of the adsorption rotor type dehumidifier, and subsequently heated by the ventilation gas heating means and supplied to the processing chamber,
前記吸着ロータ式濃縮装置における前記濃縮用吸着域を通過した浄化済の前記排気気体と外部からの新鮮気体との混合気体を、前記換気気体として前記吸着ロータ式除湿装置の前記除湿用吸着域で除湿し、それに続き前記換気気体加熱手段で加熱して前記処理室に供給する混合換気状態とのうち、In the adsorption rotor type deconcentrator, the mixed gas of the purified exhaust gas that has passed through the concentration adsorption zone and the fresh gas from the outside is used as the ventilation gas in the dehumidification adsorption zone of the adsorption rotor type dehumidifier. Dehumidifying, followed by the mixed ventilation state that is heated by the ventilation gas heating means and supplied to the processing chamber,
少なくとも2つの換気状態の選択的な切り換えを行う切換手段を設けてある請求項1又は3記載の溶剤回収装置。4. The solvent recovery apparatus according to claim 1, further comprising switching means for selectively switching at least two ventilation states.
JP2009284242A 2009-12-15 2009-12-15 Solvent recovery device Active JP5588163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284242A JP5588163B2 (en) 2009-12-15 2009-12-15 Solvent recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284242A JP5588163B2 (en) 2009-12-15 2009-12-15 Solvent recovery device

Publications (2)

Publication Number Publication Date
JP2011125768A JP2011125768A (en) 2011-06-30
JP5588163B2 true JP5588163B2 (en) 2014-09-10

Family

ID=44288957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284242A Active JP5588163B2 (en) 2009-12-15 2009-12-15 Solvent recovery device

Country Status (1)

Country Link
JP (1) JP5588163B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871308B2 (en) * 2011-11-10 2016-03-01 五十嵐 豊 Low boiling point solvent recovery method and apparatus
JP5862880B2 (en) * 2012-02-28 2016-02-16 株式会社大気社 Drying furnace equipment
KR101476300B1 (en) * 2012-10-09 2014-12-24 주식회사 엔바이온 System for recovering organic solvent from high temperature exhaust gas
JP5850430B2 (en) * 2012-10-30 2016-02-03 株式会社大気社 Solvent recovery equipment
CN104344707B (en) * 2013-07-31 2018-04-10 株式会社大气社 Dry furnace apparatus
CN108096977A (en) * 2017-12-28 2018-06-01 杭州捷瑞空气处理设备有限公司 The processing method and system for the exhaust gas that lithium battery recovery processing generates in the process
CN114042372B (en) * 2020-12-25 2023-09-01 江西兴南环保科技有限公司 Environment-friendly industrial metal smelting waste gas treatment device
CN115487641A (en) * 2022-03-26 2022-12-20 上海深城环保设备工程有限公司 Rotary butt-joint matrix type gas treatment device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567300B2 (en) * 1990-12-10 1996-12-25 高砂熱学工業株式会社 Solvent recovery equipment using dry air
JP3266326B2 (en) * 1992-08-25 2002-03-18 高砂熱学工業株式会社 Dry dehumidifier
JP3468924B2 (en) * 1995-08-02 2003-11-25 株式会社大気社 Solvent recovery device
JP2004008914A (en) * 2002-06-06 2004-01-15 Matsushita Electric Ind Co Ltd Dry dehumidifier
JP2006162131A (en) * 2004-12-06 2006-06-22 Hitachi Chem Co Ltd Dry type dehumidifier
JP2007038071A (en) * 2005-08-01 2007-02-15 Toyobo Co Ltd System for recovering organic solvent
JP5303143B2 (en) * 2007-12-04 2013-10-02 伸和コントロールズ株式会社 How to prepare clean room exhaust to ultra high purity air

Also Published As

Publication number Publication date
JP2011125768A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5588163B2 (en) Solvent recovery device
JP5243900B2 (en) Solvent recovery equipment
US20090139254A1 (en) Thermodynamic closed loop desiccant rotor system and process
KR102528072B1 (en) Drying apparatus
JP2005525528A (en) Sorptive heat exchanger and associated cooling sorption method
JP2001062242A (en) Dehumidifying device
US10046267B2 (en) Dehumidifier system for regenerating a dissicant wheel by means of steam and a dehumidifier comprising said system
JP2007303772A (en) Desiccant air conditioning system
JP2006326504A (en) Dehumidifier
JP2005233435A (en) Absorption dehumidifying air conditioning system
KR20140045728A (en) System for recovering organic solvent from high temperature exhaust gas
JP6078237B2 (en) Solvent recovery apparatus and control method thereof
JP6024982B2 (en) Solvent recovery equipment
JP5686311B2 (en) Gas removal system
JP2012011343A (en) Apparatus for generating low dew point air
KR101723507B1 (en) System for separating chemical material from exhaust gas
CN113446673A (en) Direct-expansion type runner composite deep dehumidification fresh air system
JPH08141353A (en) Dehumidifier
JP5628051B2 (en) Solvent recovery system
JP5581554B2 (en) Adsorption / desorption type concentrator
JP2021133323A (en) Gas separation recovery device
JP4523146B2 (en) Organic solvent vapor processing equipment
JP2013132582A (en) Organic solvent-containing gas treatment system
JP6458465B2 (en) Organic solvent recovery system
JP5581550B2 (en) Adsorption / desorption type concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140725

R150 Certificate of patent or registration of utility model

Ref document number: 5588163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250