JPS61237980A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS61237980A
JPS61237980A JP7833585A JP7833585A JPS61237980A JP S61237980 A JPS61237980 A JP S61237980A JP 7833585 A JP7833585 A JP 7833585A JP 7833585 A JP7833585 A JP 7833585A JP S61237980 A JPS61237980 A JP S61237980A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
shape memory
temperature
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7833585A
Other languages
Japanese (ja)
Inventor
野島 喜代志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7833585A priority Critical patent/JPS61237980A/en
Publication of JPS61237980A publication Critical patent/JPS61237980A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、空気調和機における冷凍サイクルの冷媒流量
の制御装置に係るもので、特に周囲の温度・湿度条件か
変化しても適正なる冷媒流量を与えうるちのである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a control device for a refrigerant flow rate in a refrigeration cycle in an air conditioner, and particularly to a control device for controlling a refrigerant flow rate in a refrigeration cycle in an air conditioner, and in particular, to maintain an appropriate refrigerant flow rate even when ambient temperature and humidity conditions change. It is Uruchino that gives.

〔発明の背景〕[Background of the invention]

従来の第2図に示すキャピラリチューブによる冷媒制御
装置は、流量抵抗が一定のため、室内側あるいは室外側
の温湿度条件が変化しても冷媒流量は、はとんど変化し
ないという問題点が有った。
The conventional refrigerant control device using a capillary tube shown in Fig. 2 has a constant flow resistance, so the problem is that the refrigerant flow rate hardly changes even if the temperature and humidity conditions on the indoor side or the outdoor side change. There was.

なあ、冷媒制御装置として形状記憶合金を用いたものに
は、例えば特開昭59−131866号等)挙げられる
Examples of refrigerant control devices using shape memory alloys include, for example, JP-A-59-131866.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、室内側・室外側の温湿度条件か変化し
ても常に室内側熱交換器(蒸発器)の過熱度を一定に保
持できるようにキャピラリチューブの端部に内径が可変
の形状記憶合金製細管を設け、熱負荷に対応して常に蒸
発器全体が有効に利用できる空気調和機を提供すること
にある。
The purpose of the present invention is to provide a capillary tube with a variable inner diameter at the end so that the degree of superheating of the indoor heat exchanger (evaporator) can be maintained constant even if the temperature and humidity conditions on the indoor and outdoor sides change. An object of the present invention is to provide an air conditioner that is provided with a thin tube made of a shape memory alloy and that can effectively utilize the entire evaporator at all times in response to heat loads.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するためにキャピラリチュー
ブの端部に形状記憶合金製細管を接続しこの細管内を流
れる冷媒の温度により内径か変化する。また、この形状
記憶合金製細管を蒸発器の出口側パイプに密接すること
により出口側の冷媒温度も感知して細管の内径が変化す
る。すなわち蒸発器の入口側と出口側の両方の温度を感
知し細管の内径が変化することにより、適正な過熱度を
保持するものである。
In order to achieve the above object, the present invention connects a capillary tube made of a shape memory alloy to the end of a capillary tube, and changes the inner diameter depending on the temperature of a refrigerant flowing inside the capillary tube. Furthermore, by bringing this shape memory alloy thin tube into close contact with the outlet side pipe of the evaporator, the temperature of the refrigerant on the outlet side is also sensed and the inner diameter of the thin tube changes. That is, by sensing the temperature on both the inlet and outlet sides of the evaporator and changing the inner diameter of the thin tube, an appropriate degree of superheat is maintained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明す]。冷凍
サイクルとして、圧縮機1を出て凝縮器2を通り、冷媒
流量を制御するキャピラリチューブ5とこの端部に接続
した形状記憶合金製細管6を通り、蒸発器5を経て圧縮
機1に連通ずるものである。形状記憶合金製細管6は蒸
発器の出口側パイプ7に密接している。この形状記憶合
金製細管6は、変態温度の高温側と低温側とで管の内径
が、高温時は大きく低温時は小さくなるように形状を記
憶させた形状記憶合金を用いている。
An embodiment of the present invention will be described below with reference to FIG. As a refrigeration cycle, the refrigerant leaves the compressor 1, passes through the condenser 2, passes through a capillary tube 5 that controls the flow rate of the refrigerant, and a capillary tube 6 made of shape memory alloy connected to the end of this tube, passes through the evaporator 5, and is connected to the compressor 1. It is something that can be understood. The shape memory alloy thin tube 6 is in close contact with the outlet pipe 7 of the evaporator. This shape memory alloy thin tube 6 uses a shape memory alloy whose shape is memorized so that the inner diameter of the tube is large at high temperatures and small at low temperatures on the high and low transformation temperature sides.

かかる構成において、運転を行うと凝縮器2にて放熱し
た冷媒は、キャピラリチューブ5を通過することにより
低温低圧の液状態に変化する。この後、蒸発器3により
室内側空気と熱交換するか、熱負荷の量1こより蒸発器
の出口側の冷媒温度は変化する。例えば、室内の熱負荷
が大きい時は蒸発器の出口側における冷媒温度は上昇し
スーパーヒート状態となり、蒸発器3の全体を有効的に
利用できないことになる。本装置では、蒸発器の人口側
の冷媒温度に近い温度にある冷媒か形状記憶合金製細管
6の内部ター通過するとともに、形状記憶府会製細管6
か蒸発器の出口側パイプ7に密接しているので形状記憶
合金製細管6の外部表面は蒸発器の出口側の冷媒温度を
感知する。上記のように室内の熱負荷か大きい場合は、
蒸発器の出口側における冷媒温度が高すぎることを感知
して形状記憶合金製細管6の内径か太き(冷媒流量か多
(なるように調節する。また、逆に熱負荷が小さい場合
は蒸発器の出口側冷媒温度は、人口側冷媒温度より下が
ってくる。蒸発器の出口側冷媒温度が下かりすぎると、
この温度を感知する形状記憶合金製細管6の内径は小さ
くなり冷媒流量が少なくなるように調整する。このよう
にして、蒸発器の人口側と出口側の冷媒温度差と形状記
憶合金製細管6の内径の変化率を適正に設定すれば、熱
負荷が変化しても冷媒流量を調節して設定した過熱度を
保、持することがでさ、蒸発器を有効的に利用でさるも
のである。
In this configuration, when the refrigerant is operated, the refrigerant that has radiated heat in the condenser 2 passes through the capillary tube 5 and changes to a low temperature, low pressure liquid state. Thereafter, the temperature of the refrigerant on the outlet side of the evaporator changes due to heat exchange with indoor air in the evaporator 3 or due to the amount of heat load. For example, when the indoor heat load is large, the refrigerant temperature at the outlet side of the evaporator rises, resulting in a superheat state, and the entire evaporator 3 cannot be used effectively. In this device, the refrigerant at a temperature close to the refrigerant temperature on the artificial side of the evaporator passes through the shape memory alloy thin tube 6, and the shape memory alloy thin tube 6
Since it is in close contact with the outlet pipe 7 of the evaporator, the outer surface of the shape memory alloy capillary tube 6 senses the refrigerant temperature on the outlet side of the evaporator. If the indoor heat load is large as shown above,
It detects that the refrigerant temperature on the exit side of the evaporator is too high and adjusts the inner diameter of the shape memory alloy thin tube 6 to be thicker (the refrigerant flow rate is larger).On the other hand, if the heat load is small, the evaporation The refrigerant temperature on the outlet side of the evaporator will drop below the refrigerant temperature on the artificial side.If the refrigerant temperature on the outlet side of the evaporator drops too much,
The inner diameter of the shape memory alloy thin tube 6 that senses this temperature is adjusted so that the flow rate of the refrigerant is reduced. In this way, if the refrigerant temperature difference between the intake side and the outlet side of the evaporator and the rate of change in the inner diameter of the shape memory alloy thin tube 6 are set appropriately, the refrigerant flow rate can be adjusted and set even if the heat load changes. The evaporator can be used effectively by maintaining the superheat level.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、蒸発器の過熱度を熱負荷の変化に対応
して常に一定に設定することかでき、蒸溌器全体を有効
に利用することにより良好で快適な冷房性能が得られる
効果がある。
According to the present invention, the degree of superheating of the evaporator can be always set constant in response to changes in heat load, and the effect is that good and comfortable cooling performance can be obtained by effectively utilizing the entire evaporator. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に詔ける空気調和機の冷凍
サイクル図、第2図は、従来の空気調和機の冷凍サイク
ル図である。 1・・・圧縮機、2・・・凝縮器、3・・・蒸発器、4
.5・・・キャピラリチューブ、6・・・形状記憶合金
製細管、7・・・蒸発器の出口側パイプ。 第 j 図 第′l に
FIG. 1 is a refrigeration cycle diagram of an air conditioner according to an embodiment of the present invention, and FIG. 2 is a refrigeration cycle diagram of a conventional air conditioner. 1... Compressor, 2... Condenser, 3... Evaporator, 4
.. 5... Capillary tube, 6... Shape memory alloy thin tube, 7... Evaporator outlet side pipe. In figure j, line 'l'

Claims (1)

【特許請求の範囲】[Claims] 1.蒸発器と凝縮器との間に温度変化に追従し内径が変
化する形状記憶合金製の細管を備え、この細管が蒸発器
の出口側パイプに熱的に接してなることを特徴とする空
気調和機。
1. An air conditioner characterized in that a thin tube made of a shape memory alloy whose inner diameter changes according to temperature changes is provided between the evaporator and the condenser, and this thin tube is in thermal contact with the outlet pipe of the evaporator. Machine.
JP7833585A 1985-04-15 1985-04-15 Air conditioner Pending JPS61237980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7833585A JPS61237980A (en) 1985-04-15 1985-04-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7833585A JPS61237980A (en) 1985-04-15 1985-04-15 Air conditioner

Publications (1)

Publication Number Publication Date
JPS61237980A true JPS61237980A (en) 1986-10-23

Family

ID=13659101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7833585A Pending JPS61237980A (en) 1985-04-15 1985-04-15 Air conditioner

Country Status (1)

Country Link
JP (1) JPS61237980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511656A1 (en) * 2018-01-11 2019-07-17 Robert Bosch GmbH Cooling machine with adaptive nozzle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511656A1 (en) * 2018-01-11 2019-07-17 Robert Bosch GmbH Cooling machine with adaptive nozzle
CN110030775A (en) * 2018-01-11 2019-07-19 罗伯特·博世有限公司 Refrigeration machine with adaptive throttle valve

Similar Documents

Publication Publication Date Title
US4498310A (en) Heat pump system
JPS61237980A (en) Air conditioner
CN1020302C (en) Capillary thermal regulating valve and its foxing method
JPS6329165A (en) Refrigerant controller for refrigeration cycle
CN218033848U (en) Refrigerant circulation system and air conditioner
JPS60202276A (en) Air conditioner
JPS60142175A (en) Temperature type expansion valve
JPS621517B2 (en)
JPS6133428Y2 (en)
JPS5847963A (en) Refrigerating cycle of air conditioner
JPS63290368A (en) Heat pump type air conditioner
JPS61107068A (en) Refrigerator
JPS6230695Y2 (en)
JPH0112132Y2 (en)
JPS5835986Y2 (en) Refrigerated open case
JPS6317369A (en) Air conditioner
JPS59147970A (en) Capillary tube for refrigerator
JPS5944553A (en) Air conditioner
JPS6042856B2 (en) Pressure reducing device for heat pump air conditioning equipment
JPS5995351A (en) Capacity control refrigerating circuit
JPH0678764U (en) Refrigerant circuit of air conditioner
JPH05172384A (en) Control method of dehumidifying operation of air conditioner
JPS62119381A (en) Refrigerator
JPS60182670U (en) air conditioner
JPH048054U (en)