JPS6123713A - Production of high-strength two phase stainless steel - Google Patents

Production of high-strength two phase stainless steel

Info

Publication number
JPS6123713A
JPS6123713A JP14392084A JP14392084A JPS6123713A JP S6123713 A JPS6123713 A JP S6123713A JP 14392084 A JP14392084 A JP 14392084A JP 14392084 A JP14392084 A JP 14392084A JP S6123713 A JPS6123713 A JP S6123713A
Authority
JP
Japan
Prior art keywords
stainless steel
steel
strength
treatment
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14392084A
Other languages
Japanese (ja)
Other versions
JPS648684B2 (en
Inventor
Terutaka Tsumura
津村 輝隆
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14392084A priority Critical patent/JPS6123713A/en
Publication of JPS6123713A publication Critical patent/JPS6123713A/en
Publication of JPS648684B2 publication Critical patent/JPS648684B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a two phase stainless steel which has excellent corrosion resistance and strength and is adequate as a material for an oil well pipe by subjecting a Cu-contg. austenitic-ferrite two phase stainless steel to hot working then cooling quickly said steel from a specific temp. and subjecting the steel to an aging treatment or to cold working before or after said treatment. CONSTITUTION:The austenitic-ferrite two phases stainless steel ingot such as 22Cr steel or 25Cr steel contg. 0.2-3.0wt% Cu is heated to >=1,000 deg.C and is subjected to hot working such as hot rolling. The steel ingot is quickly cooled straightly from >=800 deg.C and is subjected to a solutionizing treatment. The steel is subjected to the aging treatment in succession thereto or is subjected to the cold working such as cold rolling either before or after the aging treatment. The Cu- contg. austenitic-ferrite two phase stainless steel which has excellent corrosion resistance in a corrosive atmosphere of moist gaseous CO2, H2S or Cl<-> ion or in a stress corrosion environment, has excellent strength and is adequate as the material for the oil well pipe is thus produced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、耐食性の優れた高強度2相ステンレス鋼の
製造方法、特に炭酸ガス腐食環境や応力腐食環境におい
て優れた耐食性を発揮するととも(二、高い強度をも兼
ね備え、油井管として好適なCu含有オーステナイト・
フェライト系2相ステンレス鋼の製造方法に関するもの
である。
[Detailed Description of the Invention] <Field of Industrial Application> The present invention provides a method for producing high-strength duplex stainless steel with excellent corrosion resistance. 2. Cu-containing austenite, which also has high strength and is suitable for oil country tubular goods.
The present invention relates to a method for producing ferritic duplex stainless steel.

〈従来の技術〉 近年、油井及び天然ガス井は益々深井戸化の傾向を高め
ており、そのため油井管の強度向上が強く要求されてい
るが、加えて産出油や産出ガス中に、湿潤な炭酸ガス〔
C02)をはじめ、硫化水素(H2S)や塩素イオン(
CA)等の腐食性物質を含む油井やガス井にまで開発の
目が向けられるようにもなってきたことから、その腐食
対策も重要性を一層増してきている。
<Conventional technology> In recent years, oil wells and natural gas wells have become increasingly deep, and therefore there is a strong demand for improved strength of oil country tubular goods. carbon dioxide gas〔
CO2), hydrogen sulfide (H2S) and chlorine ions (
As development efforts have begun to focus on oil and gas wells that contain corrosive substances such as CA), countermeasures against corrosion have become even more important.

従来、油井管の腐食対策としては、井戸の中へ腐食抑制
剤(インヒビター)を投入する方法が最も一般的なもの
として知られているが、この方法では十分な成果が期待
できないことが多く、また海上油井やガス井等には有効
に活用できないと言う問題点を有していた。
Conventionally, the most common method to prevent corrosion of oil country tubular goods has been to inject corrosion inhibitors into wells, but this method is often not expected to produce sufficient results. Another problem was that it could not be used effectively for offshore oil wells, gas wells, etc.

このほか、油井管に保護コーティングを施して腐食を防
止しようとの試みもなされているが、これも十分な成果
が期待できない状況である。
In addition, attempts have been made to prevent corrosion by applying protective coatings to oil country tubular goods, but these efforts have not yielded satisfactory results.

このような事情に鑑み、最近では、油井管用と ゛して
従来よりも一層高級な耐食性材料が用いられる傾向にあ
り、例えば湿潤なCO2を含む油井やガス井環境下では
、′炭酸ガス腐食”と呼ばれる激しい腐食現象に対処す
るためA1.5I410鋼や420鋼と言らた13Cr
鋼の採用が試みられ、だが、それでも150℃を越える
ような高温環境下ではCO2に対する抵抗性を長期に亘
って維持し得なl/溝のが現状であった。
In view of these circumstances, there has recently been a trend to use higher-grade corrosion-resistant materials for oil country tubular goods than in the past. In order to cope with the severe corrosion phenomenon called A1.5I410 steel and 420 steel, 13Cr
Attempts have been made to use steel, but the current situation is that the l/groove structure cannot maintain resistance to CO2 for a long period of time in a high temperature environment exceeding 150°C.

従って、150℃を越えるような高温の環境下では、2
2Cr鋼や25Cr鋼のような、Cr量の更に高いオー
ステナイト・フェライト系の2相ステンレス鋼の採用が
注目を集めるよう°になってきた。
Therefore, in a high temperature environment exceeding 150℃, 2
The use of austenitic-ferritic duplex stainless steels with a higher Cr content, such as 2Cr steel and 25Cr steel, is attracting attention.

しかし、このオーステナイト・フェライト系2相ステン
レス鋼は、鋼材製造のための通常の方法である溶体化拠
埋のままでは降伏強さく0.2%耐力)二65〜80K
si(45,7〜56.2 Kpf /nrA )を得
るのがやっとで、深井戸用油井管としての強度を十分に
満足できるものではなかったのである。
However, this austenitic-ferritic duplex stainless steel has a yield strength of 0.2% (yield strength) of 265 to 80K when left in solution embedding, which is the usual method for manufacturing steel materials.
si (45.7 to 56.2 Kpf/nrA), and the strength as oil country tubular goods for deep wells was not sufficiently satisfied.

そこで、オーステナイト・フェライト系2相ステンレス
鋼の適用にあたっては、溶体化処理後、更に冷間加工を
施して深井戸用油井管に要求される高強度を具備させて
いるのが現状である。
Therefore, when applying austenitic-ferritic duplex stainless steel, the current practice is to further cold-work the steel after solution treatment to provide the high strength required for oil country tubular goods for deep wells.

ところで、本発明者等の詳細な実験・研究によって、こ
れまで、 1150〜250℃と言った高温での湿潤炭酸   i
ガス環−下での耐食性に優れている2相ステンレス鋼も
、該環境がH2SやC4−で汚倚されているとその耐食
性は著しく劣化してくる。このCO2−H2S−CA−
を含む油井やガス井環境下における腐食の主たるものは
応力腐食割れC以下rSCCJと略称する)であるが、
この場合のSCCは通常のそれとは挙動を全く異にする
ものであって、C7−の存在もさることながら、それ以
上にH2Sの影響が極めて大きい」 との事実が明らかとなり、更に、 「溶体化処理のままのオーステナイト・フェライト系2
相ステンレス鋼では環境中のH2S分圧が10気圧を越
えるとSCCを発生するようになり、また冷間加工を施
して強化したものでは、1気圧程度のH2Sが含まれて
いてもSCCを生じる。そして、Cl−の存在は、この
SCCの発生を助長することとなる。
By the way, detailed experiments and research by the present inventors have revealed that wet carbonic acid i
Even though duplex stainless steel has excellent corrosion resistance under a gas ring, its corrosion resistance deteriorates significantly if the environment is contaminated with H2S or C4-. This CO2-H2S-CA-
The main type of corrosion in oil and gas well environments, including stress corrosion cracking (rSCCJ), is
The behavior of SCC in this case is completely different from that of normal ones, and it has become clear that not only is the presence of C7- present, but the influence of H2S is even more significant. Austenitic/ferritic type 2 as-treated
In phase stainless steel, SCC will occur if the partial pressure of H2S in the environment exceeds 10 atm, and in steel that has been strengthened by cold working, SCC will occur even if H2S of about 1 atm is contained. . The presence of Cl- promotes the occurrence of SCC.

その上、上記CO2,−H2S −CA!−環境下にお
ける2相ステンレス鋼は、例えSCCを発生しないまで
も、H2Sの影響でフェライト域が選択的に溶解される
と言う所謂゛選択腐食”を生ずる場合があり、この選択
腐食に対しても冷間加工は少なからぬ悪影響を及ぼして
いる」 ことが解明されたのである。
Moreover, the above CO2,-H2S-CA! - Even if duplex stainless steel does not generate SCC in the environment, so-called "selective corrosion" may occur in which the ferrite region is selectively dissolved due to the influence of H2S. It was discovered that "cold working has considerable negative effects."

このように、2相ステンレス鋼には、強度不足を補うた
めに強冷間加工を施すとH2Sの存在する環境下での耐
食性が著しく劣化すると言う問題があり、また、所望強
度を確保するためには大きな加工量(圧下量)を必要と
するので、設備的な面からの制約をも受けざるを得なか
った。
As described above, duplex stainless steel has the problem that if it is subjected to severe cold working to compensate for its lack of strength, its corrosion resistance will deteriorate significantly in an environment where H2S exists. Since this requires a large amount of processing (reduction amount), it has also been subject to restrictions in terms of equipment.

〈発明の目的〉 この発明の主たる目的は、上述のような各種の問題点を
解消し、H2S共存環境下でのSCC及び選択腐食C二
対する抵抗性に悪影響を及ぼす冷間加工を必要としない
、オーステナイト−フェライト系2相ステンレス鋼の強
化手段を見出し、H2S分圧が10気圧以下、少なくと
もH2S分圧=5気圧以下の油井やガス井環境下におい
ても優れた耐久性を発揮する油井管材料を提供すること
にあり、更には、分圧で1気圧程度昼下”の微量H2S
を含む環境下での使用に供せられる2相ステンレス鋼材
に対して、設備的にパワーの小さい圧延機等によつても
強化が可能な手段、即ち少ない冷間加工量で耐食性の劣
化を最小限に抑えつつ所望の強化を達成できる手段の提
供をも目的とするものである。
<Objective of the Invention> The main object of the present invention is to solve the various problems mentioned above, and to eliminate the need for cold working, which has a negative effect on resistance to SCC and selective corrosion C2 in an H2S coexisting environment. , discovered a means of strengthening austenitic-ferritic duplex stainless steel, and created an oil country tubing material that exhibits excellent durability even in oil and gas well environments where the H2S partial pressure is 10 atm or less, or at least 5 atm or less. In addition, we also provide a trace amount of H2S with a partial pressure of about 1 atm in the afternoon.
For duplex stainless steel materials used in environments including It is also an object of the present invention to provide a means for achieving the desired reinforcement while minimizing the amount of damage.

〈発明の構成〉 本発明者等は、上述のような観点から、前記目的を達成
すべく試行錯誤を繰り返しながら研究を重ねた結果、以
下fa)〜(dlに示される如き知見を得たのである。
<Structure of the Invention> From the above-mentioned viewpoint, the inventors of the present invention have repeatedly conducted research through trial and error in order to achieve the above-mentioned objective, and have obtained the findings shown in fa) to (dl) below. be.

即ち、 (a)  オーステナイト・フェライト系の2相ステン
レス鋼の中でもCuを含有するものは、熱間加工の後、
そのままの状態で直接に急冷する処理(直接溶体化処理
)を行い、続いて時効処理を実施すれば、凍結された熱
間加工歪とCu析出との重畳作用で強度が大幅に向上す
る上、良好な耐食性をも示すこと、 (b)  耐SCC性向上のためには材料中のC含有量
を極力低くし、特に0.03重量%以下にすることが好
ましいが、鋼の強度確保成分の1つであるC含有量の低
いこのような材料であっても、その構成成分としてCu
が含まれていると、上記“直接溶体化処理″とこれに続
く“時効処理”とを組合せて施すことにより、十分に大
きな強度向上効果が得られること、 (C1前記゛直接溶体化処理”の温度を800℃以上と
した場合に、得られる材料の耐食性は特に良好となるこ
と、 fdl  更に、前記直接溶体化処理とそれに続く時効
処理との間に、或いは直接溶体化処理と時効処理とを行
った後に軽度の冷間加工を施せば、小さな加工量(圧下
量)でより大きな強度を材料に付与することができ、耐
食性も従来法によるものと比較して良好であること。
That is, (a) among austenitic-ferritic duplex stainless steels, those containing Cu, after hot working,
If a direct quenching treatment (direct solution treatment) is performed in that state, followed by an aging treatment, the strength will be significantly improved due to the combined effect of frozen hot working strain and Cu precipitation. (b) In order to improve SCC resistance, it is preferable to keep the C content in the material as low as possible, particularly to 0.03% by weight or less; Even if such a material has a low C content, it still contains Cu as a constituent component.
is included, a sufficiently large strength improvement effect can be obtained by performing the above-mentioned "direct solution treatment" in combination with the subsequent "aging treatment"; The corrosion resistance of the resulting material is particularly good when the temperature is 800°C or higher, fdl Furthermore, between the direct solution treatment and the subsequent aging treatment or between the direct solution treatment and the aging treatment, If mild cold working is performed after this process, greater strength can be imparted to the material with a small amount of processing (reduction amount), and the corrosion resistance is also better compared to conventional methods.

この発明は、上記知見に基づいてなされたものであって
、 Cuを含有するオーステナイト・フェライト系2相ステ
ンレス鋼を100゜0℃以上に加熱して熱間加工を行い
、続いてそのまま800℃以上の温度から急冷し、その
後時効処理を施すか、或いは上   i記「急冷」、と
「時効処理」との間又は「時効処理」の後に、更に冷間
加工を施すことにより、耐炭酸ガス腐食性や耐SCC性
等の耐食性に優れるとともに強度が十分C二高い2相ス
テンレス鋼を得る、点に特徴を有するものである。
This invention was made based on the above knowledge, and involves hot working a Cu-containing austenitic-ferritic duplex stainless steel by heating it to a temperature of 100°C or higher, and then hot working it as it is to a temperature of 800°C or higher. Carbon dioxide corrosion resistance can be achieved by rapid cooling from a temperature of This method is characterized in that it produces a duplex stainless steel that is excellent in corrosion resistance such as corrosion resistance and SCC resistance, and has sufficiently high C2 strength.

更に詳述すれば、この発明は、次に示すような各技術的
手段と、それによってもたらされる各作用・効果とを総
合的・有機的に組合せることによって成し遂げられたも
のである。即ち、■ オーステナイトゆフェライト系の
2相ステンレス鋼の中でも、特にCuを含有するものを
選定し、これを高温に加熱して炭化物やσ相等を分解、
固溶せしめた後熱間で加工を行い、その後急冷処理し、
更に粗大な炭化物やσ相の析出をみることのないように
適正な時効処理を行えば、凍結された熱間加工歪とCu
析出作用との重畳作用で強度が大幅に上昇する。
More specifically, this invention has been achieved by comprehensively and organically combining the following technical means and the effects brought about by them. In other words, ■ Among austenitic and ferritic duplex stainless steels, those containing Cu are particularly selected, and heated to high temperatures to decompose carbides, σ phase, etc.
After forming a solid solution, it is processed hot, then rapidly cooled,
Furthermore, if proper aging treatment is performed to avoid precipitation of coarse carbides and σ phase, frozen hot working strain and Cu
The strength increases significantly due to the combination of precipitation and precipitation.

■ そして、このようにして得られる材料は、冷間加工
を施していないので、後述の実施例でも述べるよう(二
、通常の再加熱溶体化処理材に匹適する耐食性を有して
おり、従って、H2S分圧:10気圧以下、特にH2S
分圧:5気圧以下のCo2−H2S−C1−の油井やガ
ス井環境下等で優れた耐食性を発揮するところの、油井
管材料として好適な2相ステンレス鋼材の強度グレード
を上げることができる。
■ Since the material obtained in this way has not been subjected to cold working, it has corrosion resistance comparable to that of ordinary reheated and solution-treated materials, as will be described in the examples below. , H2S partial pressure: 10 atmospheres or less, especially H2S
The strength grade of the duplex stainless steel material, which is suitable as an oil country tubular material and which exhibits excellent corrosion resistance under Co2-H2S-C1- oil and gas well environments with a partial pressure of 5 atm or less, can be increased.

■ また、より一層大きな強度を付与するため(二、付
加的な冷間加工工程を取り入れた場合であっても、その
加工量は、通常の再加熱溶体化処理材をベースとしたも
のに比べて大幅な低減が可能であり、従って、分圧で1
気圧程度以下の微量のH2S含有環境下での使用に供さ
れる2相ステンレス鋼製油井管材料等の強度向上が、設
備的にパワーの小さいミルの使用によっても可能となり
、しかも冷間加工量が少なくて済むので耐食性の劣化も
殆んど生じない。なお、上記冷間加工を直接溶体化処理
に続けて行えば、最終の時効処理の際、凍結されていた
熱間加工歪及び冷間加工歪がCuの析出と重畳すること
となって大きな強度が得られ、一方、時効処理の後に冷
間加工を施すと、熱間加工歪及びCuの析出による強度
上昇作用に冷間加工による強化作用が重畳して強度が大
幅に向上するのである。
■ In addition, in order to provide even greater strength (2. Even when an additional cold working process is incorporated, the amount of processing is lower than that of materials based on ordinary reheated solution treatment materials. Therefore, it is possible to significantly reduce the partial pressure by 1
It is now possible to improve the strength of duplex stainless steel oil country tubular goods, etc. used in environments containing trace amounts of H2S at atmospheric pressure or below, even by using a mill with low power, and with a reduced amount of cold processing. Since only a small amount is required, there is almost no deterioration in corrosion resistance. In addition, if the above-mentioned cold working is performed directly after the solution treatment, the frozen hot working strain and cold working strain will overlap with the precipitation of Cu during the final aging treatment, resulting in a large strength improvement. On the other hand, when cold working is performed after aging treatment, the strengthening effect due to cold working is superimposed on the strength increasing effect due to hot working strain and Cu precipitation, and the strength is significantly improved.

[株] 更に、従来の溶体化処理は、熱間加工の後一旦
常温まで大気中冷却したものを高温に再加熱して急冷す
ると言うものであるが、この発明における゛直接溶体化
処理”は、溶体化温度への再加熱と該温度に保持するた
めの熱エネルギーを節約できると言う副次的効果をも有
するものである。
[Co., Ltd.] Furthermore, in conventional solution treatment, after hot working, the material is cooled to room temperature in the atmosphere, then reheated to a high temperature and then rapidly cooled, but the ``direct solution treatment'' in this invention is This also has the secondary effect of saving thermal energy for reheating to the solution temperature and maintaining it at that temperature.

ところで、前記”直接溶体化処理”と類似した鋼の加工
熱処理手段として、“直接焼入れ°′や”オースフォー
ミング・”等の処理が知られている。
By the way, treatments such as "direct quenching" and "ausforming" are known as processing heat treatment means for steel similar to the "direct solution treatment" described above.

しかしながら、そ−れらは上記゛直接溶体化処理”と次
の点において全く異なっているものである。
However, they are completely different from the above-mentioned "direct solution treatment" in the following points.

即ち、 げ)直接焼入れ処理は、鋼を安定オーステナイト域で熱
間加工した後、直ちに焼入れを行ってマルテンサイト変
態を起させる処理であり、その後焼戻しをして使用され
る場合が多いが、熱間加工後直ちに焼入れするため再加
熱焼入れする場合よりもオーステナイト粒が大きく、従
って焼きが入りやすくなって鋼の硬化能が著しく上昇し
、強度の向上がもたらされる。
In other words, direct quenching is a process in which steel is hot-worked in the stable austenite region and then immediately quenched to cause martensitic transformation. Since quenching is performed immediately after processing, the austenite grains are larger than in the case of reheating and quenching, and therefore quenching occurs more easily, significantly increasing the hardenability of the steel and improving its strength.

しかる(二、この発明の処理による強化は、上記「変態
による強化」を利用するものではない。
However, (2) Strengthening through processing according to the present invention does not utilize the above-mentioned "strengthening through metamorphosis."

(ロ) オースフォーミングは、オーステナイト化した
鋼を等温変態線図の入江の温度まで急冷して得たオース
テナイトのままの組織のものに、その温度で適当な塑性
変形を与えてから焼入してマルテンサイト変態を起させ
、しかる後に焼戻しを施す処理であって、加工及び変態
を一定温度で行うと言う点でこの発明の2相ステンレス
鋼強化処理とは根本的に異なっている。
(b) Ausforming involves rapidly cooling austenitized steel to the temperature at the inlet in the isothermal transformation diagram, giving the austenitic structure an appropriate amount of plastic deformation at that temperature, and then quenching it. This treatment involves causing martensitic transformation and then tempering, and is fundamentally different from the duplex stainless steel strengthening treatment of the present invention in that processing and transformation are performed at a constant temperature.

しかも、オースフォーミングによって顕著な強化を行わ
しめるためにはC含有量が0.1重量%程度以上である
ことが必要であるのに対して、この発明における″2相
ステンレス鋼の直接溶体化処理”(二よる場合は、0.
1重量%未満の低C材であっても大きな強化効果が得ら
れるのである。
Furthermore, in order to achieve significant strengthening by ausforming, the C content must be approximately 0.1% by weight or more, whereas in this invention, direct solution treatment of duplex stainless steel is required. ” (If it depends on two, 0.
Even with a low carbon content of less than 1% by weight, a large reinforcing effect can be obtained.

さて、この発明の方法が適用される「オーステ  ゝナ
イト・フェライト系2相ステンレス鋼」は、 Cuを含
有するものであればその種類が格別に制限されるもので
はないが、Cu含有量は強度並びに耐食性を向上させる
ために0.2重量%以上とするのが好ましく、一方、熱
間加工性の劣化を考慮してそ9上限を3.0重量%とす
ることが推奨される。
Now, the type of "austenitic-ferritic duplex stainless steel" to which the method of the present invention is applied is not particularly limited as long as it contains Cu, but the Cu content does not affect the strength. In addition, in order to improve corrosion resistance, it is preferable to set the content to 0.2% by weight or more.On the other hand, in consideration of deterioration in hot workability, it is recommended to set the upper limit to 3.0% by weight.

また、直接溶体化処理によって炭化物等の分解、固溶を
十分に行わせ、大きな耐SCC性を得るためには、該処
理をC含有量が0.03重量%以下の材料に対して適用
するのが良い。
In addition, in order to sufficiently decompose and dissolve carbides etc. through direct solution treatment and obtain high SCC resistance, this treatment should be applied to materials with a C content of 0.03% by weight or less. It's good.

次いで、この発明の方法において、オーステナイト・フ
ェライト系2相ステンレス鋼を熱間加工するための加熱
下限温度、並びに熱間加工後の急冷開始温度(直接溶体
化の下限温度)を前記の如き数値によって限定した理由
を説明する。
Next, in the method of the present invention, the lower limit heating temperature for hot working the austenitic-ferritic duplex stainless steel and the quenching start temperature after hot working (lower limit temperature for direct solution) are determined using the above-mentioned values. Explain the reason for the limitation.

A)加熱下限温度 オーステナイト・フェライト系2相ステンレス鋼を熱間
加工するための加熱下限温度を1000℃としたのは、
この温度を下回る低温域での加熱では材料の変形抵抗が
大きくなって熱間加工が困難となるほか、炭化物やσ相
の分解、固溶が不十分となって熱間加工性が劣化し、加
えて直接溶体化処理の利用では所望のミクロ組織が得ら
れず耐SCC性の劣化を招くこととなるからである。ま
た、この加熱の上限温度は特定されるものではなく、材
料加工時に高温での脆性が生じない温度とすれば良く、
グリ−プル試験機を用いた高温引張り試験での絞り値が
5096以上となるような温度C例えば1200〜12
50℃)を選べば良い。
A) Lower heating limit temperature The lower limit heating temperature for hot working austenitic-ferritic duplex stainless steel was set at 1000°C.
Heating in a low temperature range below this temperature increases the deformation resistance of the material, making hot working difficult, and decomposition and solid solution of carbides and σ phases become insufficient, resulting in poor hot workability. In addition, if direct solution treatment is used, a desired microstructure cannot be obtained, resulting in deterioration of SCC resistance. In addition, the upper limit temperature for this heating is not specified, and it may be a temperature that does not cause brittleness at high temperatures during material processing.
Temperature C such that the aperture value in a high temperature tensile test using a Grieple tester is 5096 or more, e.g. 1200 to 12
50℃).

B)急冷開始温度 熱間加工後の急冷開始温度、即ち直接溶体化の下限温度
を800℃としたのは、この温度を下回る温度にまで徐
冷すると耐SCC性が劣化するので、これを防止するた
めである。
B) Rapid cooling start temperature The reason why the rapid cooling start temperature after hot working, that is, the lower limit temperature for direct solution, is set at 800°C is to prevent SCC resistance from deteriorating if it is slowly cooled to a temperature below this temperature. This is to do so.

なお、直接溶体化処理の後で実施する”時効処理”は、
できれば500〜700℃の温度域で行うのが好ましい
。なぜなら、500℃を下まわる温度での時効処理では
Cuの析出が十分に行われない傾向となりがちであり、
一方、700℃を越える温度での時効処理では、析出し
たCuが粗大化することに加えて、熱間加工歪や冷間加
工歪が解放されてしまうために強化が不十分となりがち
だからである。その上、700℃を越えて長時間時効す
ると、炭化物やσ相の析出が生じて耐SCC性の劣化を
招く恐れもある。
In addition, the "aging treatment" performed after direct solution treatment is
It is preferable to carry out the reaction in a temperature range of 500 to 700°C if possible. This is because aging treatment at temperatures below 500°C tends to result in insufficient Cu precipitation.
On the other hand, aging treatment at temperatures exceeding 700°C tends to result in insufficient strengthening due to the coarsening of precipitated Cu and the release of hot and cold working strains. . Furthermore, if the steel is aged for a long time at a temperature exceeding 700° C., carbides and σ phase may precipitate, leading to deterioration of SCC resistance.

また、より大きな強度を付与する必要があるときは、時
効処理の前或いは後に冷間加工を施すが、このときの冷
間加工量は、従来性われていた「再加熱溶体化処理した
ものに冷間加工を施して同一強度レベルを得る」処理の
場合に比べて著しく小さくすることができる。
In addition, when it is necessary to impart greater strength, cold working is performed before or after aging treatment, but the amount of cold working at this time is different from the conventional method of ``reheating and solution treatment.'' This can be significantly smaller than in the case of "cold working to obtain the same strength level."

次いで、この発明を実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained by examples and in comparison with comparative examples.

〈実施例〉 実施例 1 まず、通常の方法によって第1表に示される成分組成の
オーステナイト・フェライト系2相ステンレス鋼を溶製
した。
<Examples> Example 1 First, austenitic-ferritic duplex stainless steel having the composition shown in Table 1 was produced by a conventional method.

次に、これらの鋼片を1200℃に均熱した後熱間圧延
を行ない、第2表に示す如き仕上温度で該熱間圧延を終
了した。
Next, these steel pieces were soaked at 1200° C. and then hot rolled, and the hot rolling was completed at finishing temperatures as shown in Table 2.

続いて、同じく第2表に示す条件での直接溶体化処理又
は通常の再加熱溶体化処理9時効処理。
Subsequently, direct solution treatment or normal reheating solution treatment 9 aging treatment under the conditions also shown in Table 2.

及び冷間加工処理を行った。and cold working treatment.

このようにして得られた各処理材から試験片を採取して
降伏強さく0.296耐力)を測定し、その結果を第2
表に併せて示した。
A test piece was taken from each treated material obtained in this way, the yield strength (0.296 yield strength) was measured, and the results were
It is also shown in the table.

第2表に示される結果からも、本発明になる処理によれ
ば、耐食性の優れた2相ステンレス鋼材の大幅な強度向
上が達成でき、また少ない冷間加工量で、通常の再加熱
溶体化処理材に大加工量冷間加工を施した従来材に匹適
する高強度が得られることが明らかである。
From the results shown in Table 2, it is clear that the treatment of the present invention can significantly improve the strength of duplex stainless steel with excellent corrosion resistance. It is clear that high strength comparable to conventional materials obtained by subjecting the treated materials to cold working with a large amount of processing can be obtained.

実施例 2 第3表に示す成分組成のオーステナイト・フェライト系
2相ステンレス鋼について、その鋼片を1220℃に均
熱した後熱間圧延を行い、第4表に示す如き仕上温度で
該熱間圧延を終了した。
Example 2 Regarding the austenitic-ferritic duplex stainless steel having the composition shown in Table 3, the steel piece was soaked at 1220°C, then hot rolled, and the hot rolling was carried out at the finishing temperature shown in Table 4. Finished rolling.

続いて、同じく第4表に示す条件での直接溶体化処理又
は通常の再加熱溶体化処理、時効処理、及び冷間加工処
理を行った。
Subsequently, direct solution treatment or normal reheating solution treatment, aging treatment, and cold working treatment were performed under the same conditions shown in Table 4.

得られた各処理材から試験片を採取して降伏強さく0.
296耐力)を測定し、その結果を第4表に併せて示し
た。
A test piece was taken from each treated material and the yield strength was 0.
296 proof stress) was measured, and the results are also shown in Table 4.

第4表に示される結果からも、本発明の方法によって強
度の高い2相ステンレス鋼材を得られることが明瞭であ
る。
From the results shown in Table 4, it is clear that a duplex stainless steel material with high strength can be obtained by the method of the present invention.

実施例 3 第5表に示す成分組成のオーステナイト・フェライト系
の2相ステンレス鋼について、その鋼片を1080℃又
は1250℃に均熱した後熱間圧延を行い、第6表に示
す如き仕上温度で該熱間圧延  ”を終了した。
Example 3 Regarding austenitic-ferritic duplex stainless steel having the composition shown in Table 5, the steel piece was soaked at 1080°C or 1250°C, then hot rolled, and the finishing temperature was as shown in Table 6. The hot rolling process was completed.

続いて、同じく第6表に示す条件での直接溶体化処理又
は通常の再加熱溶体化処理1時効処理。
Subsequently, direct solution treatment or normal reheating solution treatment 1 aging treatment under the conditions also shown in Table 6.

及び冷間加工処理を行った。and cold working treatment.

得られた各処理材から、圧延方向と直角方向に厚さ=2
胡×幅:10mX長さ=75闇の寸法で、中央部に切欠
きの付いた試験片を採取して耐食性試験を実施した。
From each obtained treated material, thickness = 2 in the direction perpendicular to the rolling direction.
A test piece with dimensions of 10 m x width: 10 m x length = 75 mm and a notch in the center was taken and a corrosion resistance test was conducted.

なお、耐食性試験は、添付図面に示すよう易、試験片1
を4つの支点2で支持する4点支持ビ−ム治具3にて支
持し、更にT型ネジ押え4で降伏強さく0.2%耐力)
に相当する応力を付加して、H28分圧を種々に変えた
H2S −10気圧Co2.−5% NaCl溶液(液
温210℃)中に120時間浸漬し、SCC及び(又は
)フェライト域の選択腐食の有無を調査する方法によっ
た。
In addition, the corrosion resistance test was carried out using simple test piece 1 as shown in the attached drawing.
is supported by a four-point support beam jig 3 supported by four fulcrums 2, and furthermore, a T-shaped screw holder 4 is used to increase the yield strength (0.2% yield strength).
H2S - 10 atmospheres Co2. -5% NaCl solution (liquid temperature 210°C) for 120 hours to investigate the presence or absence of selective corrosion in the SCC and/or ferrite regions.

このようにして得られた耐食性試験結果を、同じく第6
表にまとめて降伏強5.さく0.2%耐力)とともに示
す。
The corrosion resistance test results obtained in this way were also used in the 6th test.
The yield strength is summarized in the table 5. (0.2% yield strength).

第6表に示される結果からも、本発明条件で直接溶体化
処理したもの(試験番号27..28及び31)は、8
00℃を下まわる低温域から直接溶体化処理したもの(
試験番号36)に比べて耐食性が優れており、また、従
来の再加熱溶体化処理の後に冷間加工したもの(試験番
号33)と同一強度レベルではあるが耐食性において優
れていることが、それぞれ明らかである。
From the results shown in Table 6, it can be seen that the samples directly solution treated under the conditions of the present invention (test numbers 27, 28 and 31) had a
Direct solution treatment from low temperature range below 00℃ (
Test No. 36) has superior corrosion resistance, and it has the same strength level as that obtained by cold working after conventional reheating solution treatment (Test No. 33), but has superior corrosion resistance. it is obvious.

更に、この試験番号27.28及び31のものは、従来
の再加熱溶体化処理したままのもの(試験番号32)と
同じ耐食性レベルではあるが、大きな強度を有し、従っ
て深井戸化に対処できることも明らかである。
Furthermore, these test numbers 27, 28 and 31 have the same corrosion resistance level as the conventional reheated solution treatment (test number 32), but have greater strength and are therefore suitable for deeper wells. It is also clear that it can be done.

一方、本発明条件で処理したもののうち、直接溶体化処
理後の、時効処理の前或いは後に冷間加工したもの(試
験番号29及び30)は、小さな冷間加工量で従来の再
加熱溶体化処理後に強冷間加工したもの(試験番号34
及び35)に匹適する強度レベルと、それに勝る耐食レ
ベルが得られており、従って耐食性の優れた2相ステン
レス鋼製油井管の高強度化に本発明の方法は極めて有効
であることがわかる。
On the other hand, among those treated under the conditions of the present invention, those that were cold worked after direct solution treatment and before or after aging treatment (test numbers 29 and 30) showed that the conventional reheating solution treatment with a small amount of cold working After treatment, strong cold working was performed (test number 34)
and 35), and a corrosion resistance level superior to that of 35). Therefore, it can be seen that the method of the present invention is extremely effective for increasing the strength of duplex stainless steel oil country tubular goods with excellent corrosion resistance.

〈総括的な効果〉 以上説明したように、この発明によれば、■ H2S分
圧10気圧以下、とりわけH2S分圧5気圧以下のCO
2−H2S−Cl−の油井又はガ井環境下で優れた耐久
性を示す2相ステンレス鋼を得ることができ、油井管材
料等の強度グレードを上げることが可能となって、深井
戸化傾向にも十分  □対処できる、 ■ 低い冷間加工量で2相ステンレス鋼の強化ができ、
従って分圧で1気圧程度以下の微量H2s含有環境下で
の使用に供される2相ステンレス鋼製の高強度油井管材
料の製造が容易となるほか、十分な耐食性をも確保でき
る、 ■ 溶体化温度への再加熱と、該温度での保持に必要な
熱エネルギーとの節約ができる、等の優れた効果がもた
らされ、その工業的価値はすこぶる高い。
<Overall Effects> As explained above, according to the present invention, ■
It is possible to obtain duplex stainless steel that exhibits excellent durability in the 2-H2S-Cl- oil well or gas well environment, making it possible to increase the strength grade of oil country tubing materials, etc., and promoting the trend toward deeper wells. ■ Can strengthen duplex stainless steel with low cold working amount,
Therefore, it is easy to manufacture high-strength oil country tubular goods made of duplex stainless steel that can be used in environments containing trace amounts of H2s at a partial pressure of about 1 atm or less, and also ensures sufficient corrosion resistance. It brings about excellent effects such as being able to save the thermal energy required for reheating to the heating temperature and maintaining it at that temperature, and its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は、切欠付板状試験片用4点曲げ腐食試験治具
を示す。 図面において、 1・・試験片、    2・・・支持点、3・・・治具
、     4・・・T型ネジ押え。
The attached drawing shows a four-point bending corrosion test jig for plate-shaped test pieces with notches. In the drawings: 1. Test piece, 2. Support point, 3. Jig, 4. T-type screw holder.

Claims (3)

【特許請求の範囲】[Claims] (1)Cuを含有するオーステナイト、フェライト系2
相ステンレス鋼を1000℃以上に加熱して熱間加工を
行い、続いてそのまま800℃以上の温度から急冷し、
その後時効処理することを特徴とする、耐食性の優れた
高強度2相ステンレス鋼の製造方法。
(1) Austenite and ferrite containing Cu 2
The phase stainless steel is heated to 1000°C or higher, hot worked, and then quenched from a temperature of 800°C or higher,
A method for producing high-strength duplex stainless steel with excellent corrosion resistance, which is characterized by subjecting it to an aging treatment thereafter.
(2)Cuを含有するオーステナイト・フェライト系2
相ステンレス鋼を1000℃以上に加熱して熱間加工を
行い、続いてそのまま800℃以上の温度から急冷した
後、冷間加工を施し、更に時効処理することを特徴とす
る、耐食性の優れた高強度2相ステンレス鋼の製造方法
(2) Austenite/ferritic system containing Cu 2
A stainless steel with excellent corrosion resistance, which is characterized by heating phase stainless steel to 1000℃ or higher and hot working it, then quenching it from a temperature of 800℃ or higher, cold working it, and then aging it. A method for producing high-strength duplex stainless steel.
(3)Cuを含有するオーステナイト・フェライト系2
相ステンレス鋼を1000℃以上に加熱して熱間加工を
行い、続いてそのまま800℃以上の温度から急冷した
後、時効処理し、更に冷間加工を施すことを特徴とする
、耐食性の優れた高強度2相ステンレス鋼の製造方法。
(3) Austenite/ferritic system containing Cu 2
A stainless steel with excellent corrosion resistance, which is characterized by heating phase stainless steel to 1000℃ or higher and hot working it, then quenching it from a temperature of 800℃ or higher, aging treatment, and then cold working it. A method for producing high-strength duplex stainless steel.
JP14392084A 1984-07-11 1984-07-11 Production of high-strength two phase stainless steel Granted JPS6123713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14392084A JPS6123713A (en) 1984-07-11 1984-07-11 Production of high-strength two phase stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14392084A JPS6123713A (en) 1984-07-11 1984-07-11 Production of high-strength two phase stainless steel

Publications (2)

Publication Number Publication Date
JPS6123713A true JPS6123713A (en) 1986-02-01
JPS648684B2 JPS648684B2 (en) 1989-02-15

Family

ID=15350172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14392084A Granted JPS6123713A (en) 1984-07-11 1984-07-11 Production of high-strength two phase stainless steel

Country Status (1)

Country Link
JP (1) JPS6123713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520491A (en) * 2001-04-27 2004-07-08 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー High manganese duplex stainless steel having excellent hot workability and method for producing the same
KR100562660B1 (en) * 2001-12-14 2006-03-20 주식회사 포스코 A method of continuous annealing for cold-rolled 22Cr duplex stainless steel
WO2018043214A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Duplex stainless steel and method for manufacturing same
WO2018131412A1 (en) 2017-01-10 2018-07-19 Jfeスチール株式会社 Duplex stainless steel and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397698U (en) * 1990-01-26 1991-10-08

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504606A (en) * 1973-05-18 1975-01-18
JPS5551010A (en) * 1978-10-11 1980-04-14 Dai Ichi Pure Chem Co Ltd Novel underwater antifouling agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504606A (en) * 1973-05-18 1975-01-18
JPS5551010A (en) * 1978-10-11 1980-04-14 Dai Ichi Pure Chem Co Ltd Novel underwater antifouling agent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004520491A (en) * 2001-04-27 2004-07-08 リサーチ インスティチュート オブ インダストリアル サイエンス アンド テクノロジー High manganese duplex stainless steel having excellent hot workability and method for producing the same
US8043446B2 (en) 2001-04-27 2011-10-25 Research Institute Of Industrial Science And Technology High manganese duplex stainless steel having superior hot workabilities and method manufacturing thereof
KR100562660B1 (en) * 2001-12-14 2006-03-20 주식회사 포스코 A method of continuous annealing for cold-rolled 22Cr duplex stainless steel
WO2018043214A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Duplex stainless steel and method for manufacturing same
WO2018131412A1 (en) 2017-01-10 2018-07-19 Jfeスチール株式会社 Duplex stainless steel and method for producing same
US11655526B2 (en) 2017-01-10 2023-05-23 Jfe Steel Corporation Duplex stainless steel and method for producing same

Also Published As

Publication number Publication date
JPS648684B2 (en) 1989-02-15

Similar Documents

Publication Publication Date Title
JP2012149317A (en) High strength martensitic stainless steel seamless pipe for oil well
JPH0156124B2 (en)
JP3241263B2 (en) Manufacturing method of high strength duplex stainless steel pipe
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JPH03229839A (en) Manufacture of duplex stainless steel and its steel material
JPS6123713A (en) Production of high-strength two phase stainless steel
JPH039168B2 (en)
JPH09170046A (en) Martensitic non-heat treated steel with high strength and high toughness and its production
JPH0545651B2 (en)
JPH07207337A (en) Production of high-strength two-phase stainless steel
CN108486337A (en) A kind of G18CrMo2-6 Heat-Treatments of Steel technique
JPH0559168B2 (en)
JPS613832A (en) Manufacture of austenitic material
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPS61295319A (en) Manufacture of sucker rod for oil well containing wet gaseous carbon dioxide
JPH0718331A (en) Manufacture of 13 chromium stainless steel bent tube
JPH08188827A (en) Production of martensitic stainless steel tube
JPS6089519A (en) Manufacture of two-phase stainless steel
JPH0450364B2 (en)
JPH06271939A (en) Production of high strength duplex stainless steel wire rod
JPH06136442A (en) Production of high strength and high corrosion resistant austenitic wire rod
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPH07258729A (en) Production of martensitic precipitation hardening type stainless steel
JPS6089518A (en) Manufacture of austenitic material
JPH0776722A (en) Production of martensitic stainless steel excellent in sulfide cracking resistance