JPH06271939A - Production of high strength duplex stainless steel wire rod - Google Patents

Production of high strength duplex stainless steel wire rod

Info

Publication number
JPH06271939A
JPH06271939A JP8667193A JP8667193A JPH06271939A JP H06271939 A JPH06271939 A JP H06271939A JP 8667193 A JP8667193 A JP 8667193A JP 8667193 A JP8667193 A JP 8667193A JP H06271939 A JPH06271939 A JP H06271939A
Authority
JP
Japan
Prior art keywords
working
stainless steel
duplex stainless
wire rod
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8667193A
Other languages
Japanese (ja)
Inventor
Terutaka Tsumura
輝隆 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8667193A priority Critical patent/JPH06271939A/en
Publication of JPH06271939A publication Critical patent/JPH06271939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce austenite-ferrite series duplex stainless steel wire rod in which the working amount in cold working exerting adverse influence on resisting performance to SCC and selective corrosion in an H2S coexisting environment can extremely be reduced. CONSTITUTION:Austenite-ferrite series duplex stainless steel contg. Cu is heated to >=1000 deg.C, subjected to hot working, thereafter rapidly cooled from >=800 deg.C, then subjected to warm working at 300 to 700 deg.C, is furthermore subjected to cold working or is moreover subjected to aging treatment at 450 to 700 deg.C after the cold working, or aging treatment is executed at 450 to 700 deg.C between the warm working and cold working or between direct solution treatment and warm working, by which the high strength wire rod can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、炭酸ガス腐食環境や
応力腐食環境においても優れた耐食性を発揮すると共に
高い強度をも兼ね備え、例えば油井検層線等としても十
分に満足できるオ−ステナイト・フェライト系2相ステ
ンレス鋼線材の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention exhibits an excellent corrosion resistance in a carbon dioxide gas corrosive environment and a stress corrosive environment and also has a high strength. The present invention relates to a method for manufacturing a ferritic duplex stainless steel wire rod.

【0002】[0002]

【従来技術とその課題】近年、油井や天然ガス井は深井
戸化する傾向が著しく、これに伴い、井戸の掘削時ある
いは石油や天然ガスの生産時に井戸中へ各種の測定器,
治具を吊り下げるための“油井検層線”に対して更なる
強度の向上が要求されるようになった。加えて、産出油
や産出ガス中に湿潤な炭酸ガス(CO2),硫化水素(H
2 S),塩素イオン(Cl- )等の腐食性物質を含む油井
やガス井にまで開発の目が向けられるようになってきた
ことから、その腐食対策についても重要性を一段と増し
てきている。
2. Description of the Related Art In recent years, oil wells and natural gas wells have tended to deepen wells. With this trend, various measuring instruments have been introduced into wells during well drilling or oil or natural gas production.
It has become necessary to further improve the strength of the "oil well logging" for suspending jigs. In addition, carbon dioxide (CO 2 ), hydrogen sulfide (H 2
2 S), chlorine ions (Cl - From what has come to be directed eye development to the) oil wells and gas wells containing corrosive substances, such as, it has increased more importance also for the corrosion protection .

【0003】従来、油井検層線の腐食対策としては、井
戸中へ腐食抑制剤(インヒビタ−)を投入する方法が最
も一般的なものとして知られているが、この方法では十
分な成果が期待できないことが多く、また海上油井やガ
ス井等には有効に活用できないという問題点を有してい
た。
Conventionally, a method of introducing a corrosion inhibitor (inhibitor) into a well is known as the most general countermeasure for the corrosion of the well logging, but this method is expected to produce sufficient results. In many cases, it could not be done, and it could not be effectively used for offshore oil wells and gas wells.

【0004】このような事情に鑑み、最近ではより高級
な耐食性材料を用いる傾向にあり、22Cr鋼や25Cr鋼のよ
うなCr量の高いオ−ステナイト・フェライト系の2相ス
テンレス鋼の採用が注目を集めている。
In view of such circumstances, recently, there is a tendency to use higher-grade corrosion resistant materials, and attention is paid to the use of austenite / ferrite type duplex stainless steel having a high Cr content such as 22Cr steel and 25Cr steel. Are gathering.

【0005】しかし、このオ−ステナイト・フェライト
系2相ステンレス鋼は、鋼材製造の際通常に施される溶
体化処理のままでは80kgf/mm2 程度の引張強さを得る
のが精々で、深井戸用油井検層線としての強度を満足し
得ないものであった。そこで、オ−ステナイト・フェラ
イト系2相ステンレス鋼を適用するに当っては、溶体化
処理の後で更に冷間加工を施し、これによって深井戸用
油井検層線に要求される高強度を具備させているのが現
状である。
However, this austenitic ferritic duplex stainless steel is able to obtain a tensile strength of about 80 kgf / mm 2 at the solution treatment which is usually applied in the production of steel materials, and it is deep and deep. The strength as an oil well well logging line for wells could not be satisfied. Therefore, in applying the austenitic-ferritic duplex stainless steel, cold working is further performed after the solution treatment, and thereby the high strength required for the deep well oil well logging is provided. This is the current situation.

【0006】しかるに、本発明者等によって行われたオ
−ステナイト・フェライト系2相ステンレス鋼に関する
詳細な実験・研究の結果、次の事実が明らかになった。
即ち、150〜250℃といった高温の湿潤CO2 環境
下で優れた耐食性を示すオ−ステナイト・フェライト系
2相ステンレス鋼も、その環境がH2 SやCl-で汚染さ
れていると耐食性は著しく劣化してくる。このCO2
2 S−Cl- を含む油井やガス井環境下における腐食の
主たるものは応力腐食割れ(以降“SCC”と略称す
る)であるが、この場合のSCCは通常のそれとは挙動
を全く異にするものであって、Cl- の存在もさることな
がら、それ以上にH2 Sの影響が極めて大きい。
However, as a result of detailed experiments and studies conducted by the present inventors on the austenitic-ferritic duplex stainless steel, the following facts have become clear.
That is, an austenitic / ferritic duplex stainless steel showing excellent corrosion resistance in a high temperature humid CO 2 environment of 150 to 250 ° C. also has a remarkable corrosion resistance if the environment is contaminated with H 2 S or Cl −. It deteriorates. This CO 2
H 2 S-Cl - but mainly those of corrosion under oil well and gas well environments containing is stress corrosion cracking (referred to as hereinafter "SCC"), SCC in this case is usually completely different in behavior from that In addition to the presence of Cl , the influence of H 2 S is extremely large.

【0007】そして、上記事実を踏まえて更に続けられ
た検討により、次のことが解明されたのである。イ ) 溶体化処理のままのオ−ステナイト・フェライト系
2相ステンレス鋼では、環境中のH2 S分圧が10気圧
を超えるとSCCを発生するようになる。ロ ) また、強冷間加工を施して強化したものでは、集合
組織の発達により1気圧程度のH2 Sが含まれていても
SCCを生じる。ハ ) そして、Cl- の存在はこのSCCの発生を助長する
こととなる。ニ ) その上、前述したCO2 −H2 S−Cl- 環境下にお
けるオ−ステナイト・フェライト系2相ステンレス鋼
は、例えSCCを発生しないまでもH2 Sの影響でフェ
ライト域が選択的に溶解されるという所謂“選択腐食”
を生じる場合があり、この選択腐食に対しても冷間加工
は少なからぬ悪影響を及ぼしている。
Then, further studies based on the above facts have revealed the following. A) In the austenite / ferrite type duplex stainless steel that has been subjected to the solution treatment, SCC will be generated when the H 2 S partial pressure in the environment exceeds 10 atm. (B) Further, in the case of being strengthened by performing strong cold working, SCC occurs due to the development of the texture even if H 2 S of about 1 atm is contained. C) Then, the presence of Cl promotes the generation of this SCC. D) In addition, the austenite-ferrite duplex stainless steel in the above-mentioned CO 2 —H 2 S—Cl environment selectively has a ferrite region selectively due to H 2 S even if SCC is not generated. So-called "selective corrosion" that is dissolved
In some cases, cold working exerts a considerable adverse effect on this selective corrosion.

【0008】このように、オ−ステナイト・フェライト
系2相ステンレス鋼には、強度不足を補うために強冷間
加工を施すとH2 Sの存在する環境下での耐食性が著し
く劣化するという問題が認められたのである。
As described above, when the austenite-ferrite duplex stainless steel is subjected to the strong cold working in order to make up for the lack of strength, the corrosion resistance in the environment where H 2 S is present is significantly deteriorated. Was recognized.

【0009】そこで、本発明が目的としたのは、“H2
S共存環境下でのSCCや選択腐食に対する抵抗性能”
に悪影響を及ぼす冷間加工の加工量を極力低減できるオ
−ステナイト・フェライト系2相ステンレス鋼の強化手
段を確立し、例えば分圧で1気圧程度以下の微量H2
を含むCO2 −H2 S−Cl- 環境下の深層油井,ガス井
用の油井検層線等としても十分に満足できる高耐食性高
強度線材を提供することである。
Therefore, the object of the present invention is to "H 2
Resistance performance against SCC and selective corrosion under S coexisting environment "
Has established a strengthening means for austenite / ferrite type duplex stainless steel that can reduce the amount of cold working which adversely affects the heat treatment. For example, a trace amount of H 2 S with a partial pressure of about 1 atm or less.
CO 2 -H 2 S-Cl containing - deep oil well environment, to provide a high corrosion resistance and high strength wire which can be sufficiently satisfactory as an oil well logging lines and the like for gas wells.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく試行錯誤を繰り返しながら更に研究を重ねた
結果、以下のような新しい知見を得ることができた。 a) オ−ステナイト・フェライト系2相ステンレス鋼の
中でも特に“Cuを含有するもの”は、熱間加工の後その
ままの状態から直接的に急冷する処理(直接溶体化処
理)を行い、続いて温間加工を行うと、凍結された熱間
加工歪及び温間加工歪、更には温間加工時のCuの析出と
の重畳作用によって強度が大幅に向上する上、CO2
2 S−Cl- の油井,ガス井環境下での耐SCC性は良
好に維持されたままになる。そのため、更なる強化のた
めに冷間加工を施しても小さな加工量で大きな強度が得
られることになり、この冷間加工後の耐食性でも従来の
再加熱溶体化処理後に強冷間加工を施したものに比較し
て良好である。
Means for Solving the Problems The present inventor has obtained the following new findings as a result of further research by repeating trial and error in order to achieve the above object. a) Among the austenitic / ferritic duplex stainless steels, especially those containing "Cu" are directly hot-worked and then rapidly quenched (direct solution treatment), followed by Doing warm working, on frozen hot working strain and warm working strain, the strength by further superposing effect of the precipitation of Cu at the time of processing warm greatly improved, CO 2 -
The SCC resistance of H 2 S—Cl under oil well and gas well environments remains well maintained. Therefore, even if cold working is performed for further strengthening, a large amount of strength can be obtained with a small working amount, and the corrosion resistance after this cold working is also subject to strong cold working after the conventional reheating solution treatment. It is better than the ones that were made.

【0011】b) 耐SCC性向上のためには材料中のC
含有量をできるだけ低くする(0.1重量%未満、 特に0.03
重量%以下にする)ことが好ましいが、鋼の強度確保成
分の1つであるC含有量の低いこのような材料であって
もその構成成分としてCuが含まれていると、前記直接溶
体化処理とその後の温間加工の組み合わせで十分に大き
な強化作用を発揮する。その上、直接溶体化処理を行っ
た後に、温間加工を施して時効処理するか、あるいは時
効処理して温間加工を施すという組み合わせ処理を施す
と、材料強化の作用は一層大きくなる。 c) また、直接溶体化処理温度が特に800℃以上のと
きには、耐SCC性は殊更に良好となる。
B) In order to improve SCC resistance, C in the material
Keep the content as low as possible (less than 0.1% by weight, especially 0.03
However, even if such a material has a low C content, which is one of the strength securing components of steel, if it contains Cu as a constituent component, it is possible to directly form the solution. A combination of treatment and subsequent warm working exerts a sufficiently large strengthening effect. In addition, the effect of strengthening the material is further enhanced by performing a combination treatment of performing a warm working and then an aging treatment or a aging treatment and then a warm working after directly performing the solution treatment. c) Further, when the direct solution treatment temperature is 800 ° C. or higher, the SCC resistance becomes particularly good.

【0012】d) しかも、直接溶体化処理と、これに続
いて温間加工と冷間加工を施し、その後に時効処理を行
った場合には、更なるCuの析出によって材料強度は一段
と向上する。従って、この場合には所要強度を得るため
の冷間加工量はより小さくなるので、耐SCC性は従来
法によるものと比較して極めて良好となる。
D) Moreover, when direct solution treatment, followed by warm working and cold working, followed by aging treatment, further Cu precipitation further improves the material strength. . Therefore, in this case, the cold working amount for obtaining the required strength becomes smaller, so that the SCC resistance becomes extremely good as compared with the conventional method.

【0013】e) 一方、直接溶体化処理とそれに続く温
間加工を施した後に時効処理を行っても、あるいは直接
溶体化処理とそれに続く温間加工との間で時効処理を行
った場合でも、凍結された熱間加工歪及び温間加工歪、
更には温間加工時と時効時に析出したCuの重畳作用で材
料強度は極めて大きく向上し、しかも耐SCC性が劣化
されることはない。従って、この場合にも、その後で更
なる強化のために施す冷間加工量を小さくすることがで
き、耐SCC性は従来法によるものと比較して極めて良
好となる。
E) On the other hand, even when the aging treatment is performed after the direct solution treatment and the subsequent warm working, or when the aging treatment is performed between the direct solution treatment and the subsequent warm working. , Frozen hot working strain and warm working strain,
Further, the material strength is significantly improved by the superposition effect of Cu deposited during warm working and aging, and the SCC resistance is not deteriorated. Therefore, also in this case, it is possible to reduce the cold working amount to be applied thereafter for further strengthening, and the SCC resistance becomes extremely good as compared with the conventional method.

【0014】本発明は上記知見に基づいてなされたもの
であって、「Cuを含有するオ−ステナイト・フェライト
系2相ステンレス鋼を1000℃以上に加熱して熱間加
工を行った後、 そのまま800℃以上の温度から急冷
(直接溶体化処理)し、 次いで300〜700℃で温間
加工を施してから更に冷間加工を施すか、 更にこの冷間
加工の後に450〜700℃で時効処理することによ
り、 あるいは前記温間加工と冷間加工との間又は直接溶
体化処理と温間加工との間で450〜700℃の時効処
理を行うことによって、 耐CO2 腐食性や耐SCC性等
の耐食性に優れると共に強度が十分に高いオ−ステナイ
ト・フェライト系2相ステンレス鋼線材を安定して得ら
れるようにした点」に大きな特徴を有している。
The present invention has been made on the basis of the above-mentioned findings. "The austenitic-ferritic duplex stainless steel containing Cu is heated to 1000 ° C. or higher to perform hot working, and then, as it is. Quenching (direct solution treatment) from a temperature of 800 ° C or higher, then performing warm working at 300 to 700 ° C and further cold working, or aging treatment at 450 to 700 ° C after this cold working. Or by performing an aging treatment at 450 to 700 ° C. between the warm working and the cold working or between the direct solution treatment and the warm working, CO 2 corrosion resistance and SCC resistance And the like, which is capable of stably obtaining an austenitic / ferrite-based duplex stainless steel wire rod having excellent corrosion resistance and sufficiently high strength ”.

【0015】更に詳述すれば、本発明は、次に示すよう
な各技術的手段とそれによってもたらされる作用・効果
とを総合的・有機的に組み合わせることによって完成さ
れたものである。即ち、 1) オ−ステナイト・フェライト系2相ステンレス鋼の
中でも特にCuを含有するものを選定し、これを高温に加
熱して炭化物やシグマ相等を分解,固溶せしめた後、熱
間で加工を行い、その後急冷処理(直接溶体化処理)
し、更に粗大な炭化物やシグマ相等の析出を見ることの
ないように適正な温間加工を行えば、凍結された熱間加
工歪及び温間加工歪、更には温間加工時のCuの析出との
重畳作用で強度が大幅に向上する。
More specifically, the present invention has been completed by comprehensively and organically combining the following technical means and the actions and effects brought by them. That is, 1) Among the austenite / ferrite type duplex stainless steels, the one containing Cu in particular is selected, and this is heated to a high temperature to decompose and solidify the carbide and sigma phase, and then hot work. And then quenching (direct solution treatment)
However, if appropriate warm working is performed so that precipitation of coarse carbide and sigma phase is not observed, frozen hot working strain and warm working strain, and further Cu precipitation during warm working The strength is significantly improved by the overlapping action with.

【0016】2) そして、このようにして得られる材料
は、更に一層大きな強度を付与するために冷間加工する
とき、その加工量は通常の再加熱溶体化処理材をベ−ス
としたものに比べて大幅な低減が可能であり、従って分
圧で1気圧程度以下の微量のH2 S含有環境下での耐食
性の劣化を防止することができる。
2) When the material thus obtained is cold-worked in order to impart even greater strength, the working amount is based on the usual reheat-solution-annealed material. It is possible to significantly reduce the corrosion resistance, and thus it is possible to prevent the corrosion resistance from deteriorating under an environment containing a minute amount of H 2 S at a partial pressure of about 1 atm or less.

【0017】3) 更に、上記冷間加工に続いて時効処理
を行えば、凍結されていた熱間加工歪及び温間加工歪と
温間加工時に析出したCuの作用、更には冷間加工歪の作
用とが時効により析出するCuの作用と重畳し、極めて大
きく材料強度が上昇する。従って、この場合、所要強度
を得るための冷間での加工量は通常の再加熱溶体化処理
材をベ−スとしたものに比べて大幅に低減できることと
なり、耐食性の劣化は殆んど生じない。
3) Further, if an aging treatment is carried out after the cold working, the frozen hot working strain and warm working strain and the action of Cu precipitated during warm working, and further the cold working strain. And the effect of Cu that precipitates by aging superimpose, and the material strength increases significantly. Therefore, in this case, the cold working amount for obtaining the required strength can be significantly reduced as compared with the case where the normal reheat solution treatment material is used as the base, and deterioration of the corrosion resistance hardly occurs. Absent.

【0018】4) なお、上記の時効処理を前記温間加工
と冷間加工の間に行うかあるいは前記直接溶体化処理と
温間加工の間に行ったとしても、最終の冷間加工の際、
凍結されていた熱間加工歪及び温間加工歪と温間加工時
や時効時のCuの析出による強度上昇に、冷間加工による
強化が重畳され、材料強度は極めて大きく上昇する。従
って、この場合にも、最終の冷間加工での加工量は、通
常の再加熱溶体化処理材をベ−スとしたものに比べて大
幅に低減できることとなり、耐食性の劣化は殆んど生じ
ない。
4) Even if the aging treatment described above is performed between the warm working and the cold working or between the direct solution treatment and the warm working, in the final cold working, ,
Strengthening by cold working is superposed on the frozen hot working strain and warm working strain and the strength increase due to precipitation of Cu during warm working and aging, and the material strength increases significantly. Therefore, also in this case, the working amount in the final cold working can be significantly reduced as compared with the case where the normal reheat solution treatment material is used as the base, and deterioration of the corrosion resistance hardly occurs. Absent.

【0019】5) 更に、従来の溶体化処理は熱間加工後
に一旦常温まで大気中冷却したものを高温に再加熱して
急冷する工程をたどっていたが、本発明に係る直接溶体
化処理では、この溶体化温度への再加熱と該温度に保持
するための熱エネルギ−を節約できるという副次的効果
をもたらす。
5) Further, in the conventional solution heat treatment, after hot working, the material which was once cooled to room temperature in the air was reheated to a high temperature and rapidly cooled, but in the direct solution heat treatment according to the present invention, This brings about a secondary effect of reheating to the solution heat temperature and saving heat energy for maintaining the solution temperature.

【0020】なお、前記の直接溶体化処理と一見類似し
た鋼の加工熱処理手段として“直接焼入れ”や“オ−ス
フォ−ミング”等の処理が知られてはいる。しかしなが
ら、それらは上記直接溶体化処理と次の点において全く
異なっている。 (i) 直接焼入れ処理は、鋼を安定なオ−ステナイト域
で熱間加工した後、直ちに焼入れを行ってマルテンサイ
ト変態を起こさせる処理であり、その後焼戻をして使用
される場合が多いが、熱間加工後直ちに焼入れするため
再加熱焼入れする場合よりもオ−ステナイト粒が大き
く、従って焼きが入りやすくなって鋼の硬化能が著しく
上昇し、強度の向上がもたらされる。しかるに、本発明
の処理による強化はこの変態による強化を利用するもの
ではない。
As a means for thermomechanical treatment of steel, which is similar in appearance to the above-mentioned direct solution treatment, there are known treatments such as "direct quenching" and "ausforming". However, they are completely different from the above direct solution treatment in the following points. (i) Direct quenching is a process in which steel is hot-worked in a stable austenite region and then immediately quenched to cause martensitic transformation, which is often followed by tempering. However, since the quenching is performed immediately after hot working, the austenite grains are larger than in the case of reheating and quenching, so that quenching becomes easier, the hardening ability of the steel is remarkably increased, and the strength is improved. However, the strengthening by the treatment of the present invention does not utilize the strengthening by this transformation.

【0021】(ii) オ−スフォ−ミングは、オ−ステナ
イト化した鋼を等温変態線図の入江の温度まで急冷して
得たオ−ステナイトのままの組織のものに、その温度で
適当な塑性変形を与えてから焼入れしてマルテンサイト
変態を起こさせ、しかる後に焼戻を行う処理であって、
一定温度での加工及び変態を生じさせるという点で、本
発明に係るオ−ステナイト・フェライト系2相ステンレ
ス鋼の強化処理とは根本的に異なっている。しかも、オ
−スフォ−ミングによって顕著な強化を起こすためには
ほぼ 0.1重量%以上のC量が必要であるが、本発明に係
る2相ステンレス鋼の強化処理の場合には、後述する実
施例での結果からも明らかであるが、 0.1重量%未満の
低C材でも大きな強化効果が得られる。
(Ii) Ausforming is suitable for an austenitic steel having a structure as austenite obtained by quenching it to the temperature of the inlet of the isothermal transformation diagram at that temperature. A process of giving a plastic deformation, then quenching to cause martensitic transformation, and then tempering,
It is fundamentally different from the strengthening treatment of the austenitic ferritic duplex stainless steel according to the present invention in that it causes working and transformation at a constant temperature. Moreover, a C content of approximately 0.1% by weight or more is required to cause remarkable strengthening by osforming, but in the case of the strengthening treatment of the duplex stainless steel according to the present invention, the examples described later are used. As is clear from the results of the above, a large strengthening effect can be obtained even with a low C material of less than 0.1% by weight.

【0022】ところで、本発明法の適用対象となる“オ
−ステナイト・フェライト系2相ステンレス鋼”は、Cu
を含有するものであればその種類が格別に制限されるも
のではないが、Cu含有量は強度並びに耐食性を向上させ
るために 0.2重量%以上とするのが好ましく、一方、熱
間加工性の劣化を考慮すればその上限は 3.0重量%が適
当であると言える。
By the way, the "austenite-ferrite duplex stainless steel" to which the method of the present invention is applied is Cu
The type is not particularly limited as long as it contains Cu, but the Cu content is preferably 0.2% by weight or more in order to improve the strength and corrosion resistance, while the hot workability is deteriorated. Considering the above, it can be said that an appropriate upper limit is 3.0% by weight.

【0023】また、CO2 −H2 S−Cl- 環境下での優
れた耐SCC性を得るためには、Crを20重量%以上、Mo
を 1.5重量%以上、Niを6重量%以上、そしてNを 0.1
重量%以上含んだものであることが好ましく、逆にMn量
は 1.5重量%以下であることが望ましい。
Further, in order to obtain excellent SCC resistance in a CO 2 -H 2 S-Cl - environment, 20% by weight or more of Cr and Mo are used.
1.5% by weight or more, Ni 6% by weight or more, and N 0.1%
It is preferable that the content of Mn is not less than 1.5% by weight, and conversely, the amount of Mn is preferably not more than 1.5% by weight.

【0024】更に、オ−ステナイト・フェライト系2相
ステンレス鋼がWを含む場合には一層良好な耐SCC性
を発揮するが、Wの多量添加は熱間加工性を劣化させる
のでその上限は4重量%程度とすることが好ましい。そ
して、C量については、直接溶体化処理によって炭化物
等の分解,固溶を十分に行わせることで所望の耐SCC
性が得られるように 0.1重量%未満(好ましくは0.03重
量%以下)とするのが望ましい。Si含有量は、脱酸に十
分であって、しかも延性に害を及ぼすことがなく耐食性
も確保できるところの、1重量%以下の必要最小限の量
に抑えるのが望ましい。
Further, when the austenitic-ferritic duplex stainless steel contains W, it exhibits a better SCC resistance, but the addition of a large amount of W deteriorates the hot workability, so its upper limit is 4. It is preferable to set the content to about wt%. Regarding the amount of C, the desired SCC resistance can be obtained by directly performing solution treatment to decompose and solidify carbides and the like.
It is desirable that the amount be less than 0.1% by weight (preferably 0.03% by weight or less) so that the properties are obtained. It is desirable that the Si content be suppressed to a necessary minimum amount of 1% by weight or less, which is sufficient for deoxidation, yet does not impair ductility and can secure corrosion resistance.

【0025】続いて、本発明において鋼材の製造条件を
前記の如くに限定した理由を詳述する。まず、オ−ステ
ナイト・フェライト系2相ステンレス鋼を熱間加工する
ための加熱下限温度を1000℃としたのは、この温度
を下回る低温域での加熱では材料の変形抵抗が大きくな
って熱間加工が困難となるほか、炭化物やシグマ相の分
解,固溶が不十分となって熱間加工性が劣化し、加えて
直接溶体化処理を適用した場合には所望のミクロ組織が
得られずに耐SCC性の劣化を招くこととなるからであ
る。
Next, the reason why the manufacturing conditions of the steel material are limited as described above in the present invention will be described in detail. First, the heating lower limit temperature for hot working the austenitic / ferritic duplex stainless steel was set to 1000 ° C., because the deformation resistance of the material becomes large in the heating in the low temperature region below this temperature, In addition to the difficulty in processing, the decomposition and solid solution of carbides and sigma phases are inadequate, which deteriorates hot workability. In addition, the desired microstructure cannot be obtained when direct solution treatment is applied. This is because the SCC resistance is deteriorated.

【0026】なお、この加熱の上限温度は特定されるも
のではなく、材料加工時に高温での脆化を生じない温度
とすれば良い。即ち、グリ−ブル試験機を用いた高温引
張り試験での絞り値が50%以上となるような温度(例
えば1200〜1250℃)を選べば良い。
The upper limit temperature of this heating is not specified, and may be a temperature that does not cause embrittlement at high temperature during material processing. That is, it suffices to select a temperature (for example, 1200 to 1250 ° C.) at which the drawing value in the high temperature tensile test using the gleeble tester becomes 50% or more.

【0027】一方、熱間加工後の急冷開始温度、即ち直
接溶体化処理の下限温度を800℃としたのは、この温
度を下回る温度域にまで徐冷すると耐SCC性が劣化す
るので、これを防止するためである。
On the other hand, the reason why the rapid cooling start temperature after hot working, that is, the lower limit temperature of the direct solution treatment is set to 800 ° C. is that the SCC resistance deteriorates when gradually cooled to a temperature range below this temperature. This is to prevent

【0028】また、温間加工は300〜700℃の温度
域で行う。これは、300℃を下回る温度域での温間加
工では冷間加工した場合と同様に耐SCC性が劣化する
ためであり、一方、700℃を超える温度域での温間加
工では前段の熱間加工歪及び温間加工歪が解放されてし
まうことに加えて、温間加工時に析出するCuが粗大化し
て強化に有効でなくなるからである。
The warm working is performed in the temperature range of 300 to 700 ° C. This is because the SCC resistance deteriorates in the warm working in the temperature range lower than 300 ° C as in the case of the cold working, while in the warm working in the temperature range higher than 700 ° C, the heat treatment in the preceding stage occurs. This is because the hot working strain and the warm working strain are released, and Cu precipitated during the warm working becomes coarse and is not effective for strengthening.

【0029】更に、時効処理は450〜700℃の温度
域で行う。これは、450℃を下回る温度での時効処理
ではCuの析出が十分でなく、一方、700℃を超える温
度での時効処理では、析出したCuが粗大化することに加
えて、熱間加工歪や温間加工歪、更には冷間加工歪が解
放されるために強化に有効でなくなるからである。しか
も、700℃を超える温度で長時間時効処理を行うと、
粗大な炭化物やシグマ相の析出が生じて耐SCC性も劣
化する。
Further, the aging treatment is performed in the temperature range of 450 to 700 ° C. This is because the precipitation of Cu is not sufficient in the aging treatment at a temperature lower than 450 ° C, while the precipitation Cu is coarsened in the aging treatment at a temperature higher than 700 ° C, and the hot working strain is also caused. This is because the warm working strain and the cold working strain are released, so that it is not effective for strengthening. Moreover, if the aging treatment is performed for a long time at a temperature exceeding 700 ° C,
Coarse carbide and precipitation of sigma phase occur, and the SCC resistance also deteriorates.

【0030】ところで、本発明法における“温間加工後
あるいは時効処理後の冷間加工”での加工量は、従来の
再加熱溶体化処理したものに冷間加工を施して同一強度
レベルを得る場合に比べて著しく小さくすることができ
るので、耐食性の劣化を防止する上で極めて有効とな
る。
By the way, the amount of processing in the "cold working after warm working or after aging treatment" in the method of the present invention is the same as that obtained by subjecting the conventional reheated solution treatment to cold working to obtain the same strength level. Since it can be made significantly smaller than the case, it is extremely effective in preventing deterioration of corrosion resistance.

【0031】次いで、実施例によって本発明を比較例と
対比しながら説明する。
Next, the present invention will be described with reference to Examples in comparison with Comparative Examples.

【実施例】【Example】

〔試験例1〕通常の方法によって表1に示される成分組
成のオ−ステナイト・フェライト系2相ステンレス鋼
(A〜Cの3種)を溶製した。
[Test Example 1] Austenite / ferrite type duplex stainless steels (3 types of A to C) having the component compositions shown in Table 1 were melted by a usual method.

【0032】[0032]

【表1】 [Table 1]

【0033】次に、これらの鋼片を1220℃に均熱し
た後、熱間線材圧延を行い、外径が5.5mm の線材とし
た。そして、これに引き続き、該線材に直接溶体化処理
又は通常の再加熱溶体化処理を施した。
Next, these steel pieces were soaked at 1220 ° C. and then hot-rolled to obtain a wire having an outer diameter of 5.5 mm. Then, subsequent to this, the wire rod was directly subjected to solution treatment or ordinary reheat solution treatment.

【0034】続いて、直接溶体化処理したものについて
は温間加工と冷間加工、更には時効処理を行い、一方、
再加熱溶体化処理したものについては冷間加工を行っ
て、それぞれ引張強さを測定した。表2に、熱間圧延後
の各種処理の条件と共に、引張強さの測定結果を示す。
Subsequently, the directly solution treated material is subjected to warm working, cold working and further aging treatment, while
The reheated solution treatment was cold-worked and the tensile strength was measured. Table 2 shows the measurement results of the tensile strength together with the conditions of various treatments after hot rolling.

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示される結果からは、本発明に係る
処理によってオ−ステナイト・フェライト系2相ステン
レス鋼の大きな強化がなされ、また小さな冷間加工量で
“通常の再加熱溶体化処理材に大きな冷間加工量を施し
たもの”に匹敵する高強度の線材を得られることが確認
できる。
From the results shown in Table 2, the treatment according to the present invention significantly strengthens the austenitic-ferrite duplex stainless steel, and the "normal reheat solution treatment material" is used with a small cold working amount. It can be confirmed that a wire rod with a high strength comparable to that obtained by applying a large amount of cold working can be obtained.

【0037】〔試験例2〕前記表1のA鋼を1240℃
に均熱してから熱間線材圧延を行い、外径 8.0mmの線材
とした。そして、引き続き表3に示す条件にて直接溶体
化処理又は再加熱による溶体化処理を行った。次いで、
更に表3に示す条件の各処理を施し、得られた線材につ
いて引張強さを測定したが、その結果を表3に併せて示
す。
[Test Example 2] Steel A shown in Table 1 was heated to 1240 ° C.
After soaking, the wire rod was hot-rolled to obtain a wire rod with an outer diameter of 8.0 mm. Then, the solution treatment was carried out directly or by reheating under the conditions shown in Table 3. Then
Further, each treatment under the conditions shown in Table 3 was performed, and the tensile strength of the obtained wire rod was measured. The results are also shown in Table 3.

【0038】[0038]

【表3】 [Table 3]

【0039】表3に示される結果からも、本発明に係る
処理によりオ−ステナイト・フェライト系2相ステンレ
ス鋼の大きな強化が安定してなされ、高強度の線材を容
易に得られることが明らかである。
From the results shown in Table 3, it is clear that the treatment according to the present invention stably and significantly strengthens the austenitic-ferrite duplex stainless steel, and a wire having high strength can be easily obtained. is there.

【0040】〔試験例3〕前記表1中のC鋼を1250
℃に均熱してから熱間板圧延を行い、板厚が5〜12mm
の板材とした。そして、引き続き表4に示す条件にて直
接溶体化処理又は再加熱による溶体化処理を行った。次
いで、更に表4に示す条件の各処理を行い、得られた板
材から圧延方向と直角に“厚さ2mm×幅10mm×長さ7
5mm”の試験片を採取して耐食性試験を実施した。
[Test Example 3] The C steel in Table 1 was 1250.
The plate thickness is 5 to 12 mm after soaking to ℃ and hot strip rolling.
It was used as a plate material. Then, the solution treatment was carried out directly under the conditions shown in Table 4 or by reheating. Next, each treatment under the conditions shown in Table 4 was further performed, and from the obtained plate material, "thickness 2 mm x width 10 mm x length 7" was applied at right angles to the rolling direction.
A 5 mm "test piece was sampled and a corrosion resistance test was performed.

【0041】[0041]

【表4】 [Table 4]

【0042】なお、耐食性試験は、図1に示すように試
験片1 を4つの支持点2,2,…で支持する4点支持ビ−ム
治具3 を用い、前記試験片1 にT型ネジ4 で引張強さの
65%に相当する応力を負荷した状態で“H2 S分圧を
種々に変えたH2 S−3気圧CO2 −3%NaCl(液温2
00℃)”中に100時間浸漬し、SCC及び/又はフ
ェライト域の選択腐食の有無を調査する方法によった。
In the corrosion resistance test, as shown in FIG. 1, a T-shaped test piece 1 was used by using a 4-point support beam jig 3 for supporting the test piece 1 at four support points 2, 2 ,. screw 4 in tensile strength in a state where the corresponding stress was loaded 65% "H 2 S partial pressure was changed to various H 2 S-3 atm CO 2 -3% NaCl (solution temperature 2
100 ° C) "for 100 hours and examined for the presence or absence of selective corrosion in the SCC and / or ferrite areas.

【0043】この耐食性試験結果を、引張強さと共に表
4にまとめて示す。表4に示される結果からも、本発明
法に従った処理を施したものは大きな強度を有してお
り、しかも800℃を下回る低温域から直接溶体化処理
したものに比べ耐食性が優れ、また同一強度レベルの従
来の“再加熱溶体化処理+強冷間加工処理材”に比べて
も耐食性が良好なことを確認できる。
The results of this corrosion resistance test are summarized in Table 4 together with the tensile strength. The results shown in Table 4 also show that those treated in accordance with the method of the present invention have high strength, and are superior in corrosion resistance to those treated by direct solution treatment from a low temperature range below 800 ° C. It can be confirmed that the corrosion resistance is better than that of the conventional "reheat solution treatment + strong cold work treatment material" of the same strength level.

【0044】[0044]

【効果の総括】以上に説明した如く、この発明によれ
ば、湿潤なCO2 ,H2 S,Cl- 等の腐食性物質を含む
深層油井,ガス井用の油井検層線等としても十分に満足
できる優れた耐食性と高強度を備えたオ−ステナイト・
フェライト系2相ステンレス鋼線材を安定製造すること
が可能となるなど、産業上有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, a deep oil well containing corrosive substances such as moist CO 2 , H 2 S, and Cl , an oil well logging line for gas wells, etc. is sufficient. Austenite with excellent corrosion resistance and high strength
Industrially useful effects are brought about, such as the stable production of ferritic duplex stainless steel wire rods.

【図面の簡単な説明】[Brief description of drawings]

【図1】4点曲げ腐食試験の説明図である。FIG. 1 is an explanatory diagram of a 4-point bending corrosion test.

【符号の説明】[Explanation of symbols]

1 試験片 2 支持点 3 4点支持ビ−ム治具 4 T型ネジ 1 Test piece 2 Support point 3 4 point support beam jig 4 T type screw

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cuを含有するオ−ステナイト・フェライ
ト系2相ステンレス鋼を1000℃以上に加熱して熱間
加工を行った後、そのまま800℃以上の温度から急冷
し、次いで300〜700℃で温間加工を施してから更
に冷間加工を施すことを特徴とする、高強度2相ステン
レス鋼線材の製造方法。
1. An austenitic / ferritic duplex stainless steel containing Cu is heated to 1000 ° C. or higher to perform hot working, then rapidly cooled from a temperature of 800 ° C. or higher, and then 300 to 700 ° C. A method for producing a high-strength duplex stainless steel wire rod, which comprises performing warm working in step 1 and then cold working.
【請求項2】 Cuを含有するオ−ステナイト・フェライ
ト系2相ステンレス鋼を1000℃以上に加熱して熱間
加工を行った後、そのまま800℃以上の温度から急冷
し、次いで300〜700℃で温間加工を施してから更
に冷間加工を施し、その後450〜700℃で時効処理
することを特徴とする、高強度2相ステンレス鋼線材の
製造方法。
2. An austenitic / ferritic duplex stainless steel containing Cu is heated to 1000 ° C. or higher to perform hot working, and then rapidly cooled from a temperature of 800 ° C. or higher, and then 300 to 700 ° C. A method for producing a high-strength duplex stainless steel wire rod, which comprises performing warm working at 1, then cold working, and then performing aging treatment at 450 to 700 ° C.
【請求項3】 Cuを含有するオ−ステナイト・フェライ
ト系2相ステンレス鋼を1000℃以上に加熱して熱間
加工を行った後、そのまま800℃以上の温度から急冷
し、次いで300〜700℃で温間加工を施してから4
50〜700℃で時効処理し、その後に冷間加工を施す
ことを特徴とする、高強度2相ステンレス鋼線材の製造
方法。
3. An austenitic / ferritic duplex stainless steel containing Cu is heated to 1000 ° C. or higher to perform hot working, then rapidly cooled from a temperature of 800 ° C. or higher, and then 300 to 700 ° C. After warm working with 4
A method for producing a high-strength duplex stainless steel wire rod, which comprises aging treatment at 50 to 700 ° C. and then performing cold working.
【請求項4】 Cuを含有するオ−ステナイト・フェライ
ト系2相ステンレス鋼を1000℃以上に加熱して熱間
加工を行った後、そのまま800℃以上の温度から急冷
し、次いで450〜700℃で時効処理を施してから3
00〜700℃で温間加工を施し、更に冷間加工を施す
ことを特徴とする、高強度2相ステンレス鋼線材の製造
方法。
4. An austenitic / ferritic duplex stainless steel containing Cu is heated to 1000 ° C. or higher to perform hot working, and then rapidly cooled from a temperature of 800 ° C. or higher, and then 450 to 700 ° C. After aging treatment with 3
A method for producing a high-strength duplex stainless steel wire rod, which comprises performing warm working at 00 to 700 ° C. and further cold working.
JP8667193A 1993-03-22 1993-03-22 Production of high strength duplex stainless steel wire rod Pending JPH06271939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8667193A JPH06271939A (en) 1993-03-22 1993-03-22 Production of high strength duplex stainless steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8667193A JPH06271939A (en) 1993-03-22 1993-03-22 Production of high strength duplex stainless steel wire rod

Publications (1)

Publication Number Publication Date
JPH06271939A true JPH06271939A (en) 1994-09-27

Family

ID=13893505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8667193A Pending JPH06271939A (en) 1993-03-22 1993-03-22 Production of high strength duplex stainless steel wire rod

Country Status (1)

Country Link
JP (1) JPH06271939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762187A1 (en) * 1995-08-21 1997-03-12 Canon Kabushiki Kaisha Flash device
JP2020186442A (en) * 2019-05-14 2020-11-19 日本製鉄株式会社 Two-phase stainless steel and method for production of two-phase stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762187A1 (en) * 1995-08-21 1997-03-12 Canon Kabushiki Kaisha Flash device
JP2020186442A (en) * 2019-05-14 2020-11-19 日本製鉄株式会社 Two-phase stainless steel and method for production of two-phase stainless steel

Similar Documents

Publication Publication Date Title
JPH02236257A (en) Martensitic stainless steel having high strength and excellent in corrosion resistance and stress corrosion cracking resistance and its production
US6146472A (en) Method of making case-carburized steel components with improved core toughness
JP6223124B2 (en) High-strength duplex stainless steel sheet and its manufacturing method
JPH0421718A (en) Production of high strength steel excellent in sulfide stress cracking resistance
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JPH03229839A (en) Manufacture of duplex stainless steel and its steel material
JPS5848024B2 (en) Oil country tubular steel with excellent corrosion resistance
JPS62267420A (en) Manufacture of high tension and high toughness wire rod having superior delayed fracture resistance
JPH09241746A (en) Production of high strength duplex stainless steel tube
JPH0375337A (en) Martensitic stainless steel having high strength and excellent corrosion resistance and its manufacture
JPS61157626A (en) Manufacture of ferritic-austenitic two-phase stainless steel
KR20030076400A (en) METHOD OF PROCESSING AND HEAT-TREATING NbC-ADDED Fe-Mn-Si-BASED SHAPE MEMORY ALLOY
JPH07207337A (en) Production of high-strength two-phase stainless steel
JPH06271939A (en) Production of high strength duplex stainless steel wire rod
JPH02217444A (en) High strength martensitic stainless steel having excellent corrosion resistance and stress corrosion cracking resistance and its manufacture
JPS6123713A (en) Production of high-strength two phase stainless steel
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JPH0375336A (en) Martensitic stainless steel having excellent corrosion resistance and its manufacture
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JPH07188740A (en) Production of austenitic metallic material having high strength and high corrosion resistance
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPH06136442A (en) Production of high strength and high corrosion resistant austenitic wire rod
JPS613832A (en) Manufacture of austenitic material
JP2689864B2 (en) High toughness steel pipe
JPH07258729A (en) Production of martensitic precipitation hardening type stainless steel