JPS6123688A - Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas - Google Patents

Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas

Info

Publication number
JPS6123688A
JPS6123688A JP59145787A JP14578784A JPS6123688A JP S6123688 A JPS6123688 A JP S6123688A JP 59145787 A JP59145787 A JP 59145787A JP 14578784 A JP14578784 A JP 14578784A JP S6123688 A JPS6123688 A JP S6123688A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
methanol
reaction
synthesis gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59145787A
Other languages
Japanese (ja)
Inventor
Hiroo Tominaga
冨永 博夫
Kaoru Fujimoto
薫 藤元
Yoshizo Miyake
三宅 義造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwatani Corp
Original Assignee
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwatani Corp filed Critical Iwatani Corp
Priority to JP59145787A priority Critical patent/JPS6123688A/en
Publication of JPS6123688A publication Critical patent/JPS6123688A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

PURPOSE:To produce a hydrocarbon mixture rich in lower paraffins in a good yield with one-stage reaction, by using zeolite having a specified pore size as a methanol convertion catalyst in the titled method using a catalyst mixture of a methanol synthesis catalyst and a methanol conversion catalyst. CONSTITUTION:A synthesis gas is catalytically treated by using a catalyst mixture (or pellet) obtd. by physically mixing a methanol synthesis catalyst (A) (e.g. CuO-ZnO-Al2O3 catalyst or Pd-SiO2 catalyst) with a methanol conversion catalyst (B) composed of zeolite having an average pore size of 10Angstrom or above [e.g. Y type zeolite (which has been subjected to an aluminum removal treatment or steam treatment)]. Pref. the treatment is carried out under such conditions that the temp. is 250-450 deg.C, the pressure is 5-100kg/cm<2> and the H2/CO ratio of the raw synthesis gas is 4-1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭の水性ガス反応、部分酸化反応若しくは
、天然ガスの水蒸気改質反応等から生ずる水素と一酸化
炭素の混合ガス、即ち合成ガスを、触媒の存在下で反応
させて炭化水素を製造する方法に関し、一段反応で直接
、低級飽和脂肪族を主成分とする混合炭化水素を得るも
ので、液化石油ガス(以下rLPGJという)或いはこ
れに近い組成の炭化水素混合物を製造して、燃料として
きわめて有効に利用できるものを提供する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a mixed gas of hydrogen and carbon monoxide generated from a water gas reaction of coal, a partial oxidation reaction, a steam reforming reaction of natural gas, etc. Regarding the method of producing hydrocarbons by reacting gas in the presence of a catalyst, it is a method for directly obtaining mixed hydrocarbons mainly composed of lower saturated aliphatics through a one-step reaction. A hydrocarbon mixture having a composition similar to this can be produced to provide something that can be used extremely effectively as a fuel.

(エネルギー事情) 最近、石油エネルギーの需要は一応の落ち着柊を示し、
その価格も安定して来たが、石油埋蔵量の有限性を考慮
すると、代替エネルギーの開発が急がれるところである
(Energy Situation) Recently, the demand for petroleum energy has stabilized for the time being.
Although its price has stabilized, considering the finite nature of oil reserves, there is an urgent need to develop alternative energy sources.

しかしながら、核分裂エネルギー°はその安全性及び環
境問題に関連して社会の受容性が制約され、また、核融
合エネルギーは未来技術としての期待度は大きいが、そ
の実現の道は遠い。
However, social acceptability of nuclear fission energy is limited due to its safety and environmental issues, and although fusion energy has high expectations as a future technology, its realization is still a long way off.

さらに、太陽エネルギーやバイオマス等は更新性エネル
ギー資源として理想的であるが、その供給密度に希薄性
や変動があり、集中型大規模利用については技術的に天
外な難点がある。
Furthermore, although solar energy, biomass, etc. are ideal as renewable energy resources, their supply density is sparse and variable, and there are technical difficulties in their concentrated, large-scale use.

従って当面の最も現実的な石油代替エネルギーは、核分
裂を除けば、石炭、油母頁岩及びオイルサンドなどの未
活用の化石燃料資源をおいて他にない。
Therefore, other than nuclear fission, the most realistic energy alternative to oil for the time being is unused fossil fuel resources such as coal, oil shale, and oil sands.

また、゛現状では、プロパン及びブタンを主成分とする
LPGが国民生活にとって欠くべからざる燃料となり、
近年は開発途上国でもその需要は増加しているが、L 
P G自体が本来的に石油精製に伴う副産物であり、石
油代替の趣旨から外れるとともに、その供給自体も必ず
しも安定なものとはいえない。
Additionally, ``Currently, LPG, whose main components are propane and butane, has become an indispensable fuel for people's lives.
Demand has increased in developing countries in recent years, but L
PG itself is essentially a by-product of oil refining, and is not intended as an oil substitute, and its supply itself is not necessarily stable.

そこで、上述した化石燃料或いは未利用バイオマスをガ
ス化して合成ガスを得、これを適当な触媒上で反応させ
てLPGのような低級脂肪族飽和炭化水素、即ち、低級
パラフィンを選択的に合成できるならば、化石燃料資源
のきわめて有効な利用が図れるとともに、石油資源の有
限性にも対処し得ることになる。
Therefore, by gasifying the above-mentioned fossil fuel or unused biomass to obtain synthesis gas, and reacting this on a suitable catalyst, lower aliphatic saturated hydrocarbons such as LPG, that is, lower paraffins can be selectively synthesized. If so, fossil fuel resources can be used extremely effectively, and the finite nature of oil resources can also be addressed.

(合成ガスから炭化水素を製造する従来技術及びその問
題点) 従来、合成ガスから炭化水素を得る方法としては、フィ
ッシャーニトロブシュ法が著名であるが、その生成物は
メタンからワックスに到る幅広い分布をもち、特定成分
、或いは一定の沸点範囲内成分を選択的に得ることは困
難である。
(Conventional technology for producing hydrocarbons from synthesis gas and its problems) The Fischer Nitrobusch process is a well-known method for producing hydrocarbons from synthesis gas, but its products range from methane to wax. It is difficult to selectively obtain specific components or components within a certain boiling point range.

また、ゼオライトがメタノールを炭化水素に転換すると
いう以前からの知見を利用し、合成ガスを一旦メタノー
ルに転換し、このメタノールをZSM−5(モーピル社
の商標)なるゼオライト触媒を用いてC3〜CIOの炭
化水素を得る方法が知られているが、この方法は二段法
であるためエネルギー損失が大きく、また、生成物も芳
香族炭化水素を多く含むので、低級パラフィンの選択的
合成法としては適当でない。
In addition, by utilizing the previous knowledge that zeolites convert methanol into hydrocarbons, we first convert synthesis gas into methanol, and then convert this methanol into C3 to CIO using a zeolite catalyst called ZSM-5 (a trademark of Mopil Corporation). However, since this method is a two-step process, energy loss is large, and the product also contains a large amount of aromatic hydrocarbons, so it is not suitable as a method for selectively synthesizing lower paraffins. It's not appropriate.

さらに、メタノール合成触媒とこのZSM−5との物理
的混合触媒を用いて合成ガスから直接炭化水素を生成し
ようとした試みもあるが、その生成物はC1〜C4の脂
肪族系とC6〜C11の芳香族系の両方の炭化水素を含
み、低級脂肪族系炭化水素のみを選択的に得るのは困難
であり、また、その反応条件は427°C,83atm
という厳しい値を示している。
Furthermore, there has been an attempt to directly generate hydrocarbons from synthesis gas using a physical mixed catalyst of a methanol synthesis catalyst and this ZSM-5, but the product is a C1-C4 aliphatic system and a C6-C11 aliphatic system. It is difficult to selectively obtain only lower aliphatic hydrocarbons, and the reaction conditions are 427°C, 83atm.
This shows a severe value.

そこで、本発明者のうち二名は、他の者と共同で、シリ
カゲル等に担持させたパラジウム触媒(Pcl/Sin
’2触媒、即ち、メタノール合成触媒)とZSM−5等
のゼオライト触媒(即ち、メタノール転化触媒)とから
なる混合触媒を用いることにより、緩やかな反応条件下
で、合成ガスから炭化水素を一段で合成する発明(以下
「甲発明」という)を先に出願した(特開昭58〜57
494号参照)。
Therefore, two of the present inventors, in collaboration with others, developed a palladium catalyst (Pcl/Sin) supported on silica gel, etc.
By using a mixed catalyst consisting of a zeolite catalyst such as ZSM-5 (i.e., methanol synthesis catalyst) and a zeolite catalyst such as ZSM-5 (i.e., methanol conversion catalyst), hydrocarbons can be removed from synthesis gas in one step under mild reaction conditions. The invention for synthesis (hereinafter referred to as the "Invention A") was first applied for (Japanese Patent Application Laid-Open No. 1983-1983)
(See No. 494).

しかしなから、この甲発明はメタノール合成触媒を所定
のパラジウム触媒に限定して、芳香族に富む炭化水素を
製造し、もって、オクタン価の高いガソリン留分を得る
ことを目的とするものであって、低級パラフィンを主体
とする燃料の製造を目的とするものではない。
However, the purpose of this invention is to limit the methanol synthesis catalyst to a specified palladium catalyst, produce aromatic-rich hydrocarbons, and thereby obtain a gasoline fraction with a high octane number. , it is not intended for the production of fuel mainly composed of lower paraffins.

(問題点を解決するだめの手段) 本発明者等は、メタノール合成触媒とゼオライト触媒と
の混合触媒の存在下で合成ガスから炭化水素を合成する
方法においては、生成する炭化水素の分布がゼオライト
の孔径に強く依存することを新たに発見し、この発見に
基いて本発明を完成したものである。
(Another Means to Solve the Problem) The present inventors have discovered that in a method for synthesizing hydrocarbons from synthesis gas in the presence of a mixed catalyst of a methanol synthesis catalyst and a zeolite catalyst, the distribution of the generated hydrocarbons is The present invention was newly discovered based on this discovery, and the present invention was completed based on this discovery.

即ち、本発明は、メタノール合成触媒と、平均孔径が略
10Å以上のゼオライトよりなるメタノール転化触媒と
を物理的に混合した混合触媒の存在下で、合成ガスを反
応させてプロパン、ブタン等の低級パラフィンを主に生
成せしめる方法を提供する。
That is, in the present invention, synthesis gas is reacted in the presence of a mixed catalyst in which a methanol synthesis catalyst and a methanol conversion catalyst made of zeolite having an average pore size of about 10 Å or more are physically mixed to produce lower-grade compounds such as propane and butane. A method for mainly producing paraffin is provided.

上記メタノール合成触媒は、金属若しくは金属酸化物を
主体とし、0r−Zn系或いはCu−Zn系触媒(具体
的には、CuO−Zn0=A1203触媒)や、シリカ
ゲル、アルミナ、マグネシア、カルシア等の担体上にパ
ラジウム、白金、ニッケル等の活性金属を担持したもの
(具体的にはP d/ S 102触媒)でも良い。
The above-mentioned methanol synthesis catalyst is mainly composed of a metal or a metal oxide, and contains an 0r-Zn-based or Cu-Zn-based catalyst (specifically, a CuO-Zn0=A1203 catalyst), or a carrier such as silica gel, alumina, magnesia, or calcia. A catalyst having an active metal such as palladium, platinum, or nickel supported thereon (specifically, a P d/S 102 catalyst) may also be used.

また、メタノール転化触媒は、略10Å以上の平均孔径
を持つゼオライトであって、具体的には人口孔径7.4
人、スーパーケージ径13人の孔径を有するY型ゼオラ
イトがより好ましく、そのままの状態で直接使用しても
、また、脱アルミ処理、水蒸気処理、或いは、EDTA
による薬品処理等を施してメタノール転化特性を所望に
変化させても良い。
Furthermore, the methanol conversion catalyst is a zeolite having an average pore diameter of approximately 10 Å or more, and specifically, the artificial pore diameter is 7.4 Å.
A Y-type zeolite with a pore size of 13 mm and a supercage diameter is more preferred, and can be used directly as is or treated with dealumination, steam treatment, or EDTA.
The methanol conversion characteristics may be changed as desired by chemical treatment with or the like.

しかも、上記メタノール転化触媒は長期使用においても
その活性は比較的衰えないが、ゼオライト触媒は活性低
下を起こし易いので、両触媒を混合して使用することが
反応効率の向上につながるが、物理的混合粉末の主まで
も、また、これをプレス成型しても差し支えない。
Moreover, the activity of the above-mentioned methanol conversion catalyst remains relatively unchanged even after long-term use, but the zeolite catalyst tends to lose its activity, so using a mixture of both catalysts leads to an improvement in reaction efficiency, Even the main body of the mixed powder may be press-molded.

一方、本発明はその合成反応を250〜450℃、5−
1−00 kg/cm2の範囲内で行うことが好ましい
。即ち、250℃以下では、ゼオライト触媒によるメタ
ノール転化反応を起こし難く、逆に、450℃以上では
低級パラフィンのうちメタンの選択率が増大してしまう
On the other hand, the present invention conducts the synthesis reaction at 250-450°C, 5-
It is preferable to carry out within the range of 1-00 kg/cm2. That is, at temperatures below 250°C, the methanol conversion reaction by the zeolite catalyst is difficult to occur, and conversely, at temperatures above 450°C, the selectivity of methane among lower paraffins increases.

さらに、5kg/cm2以下ではメタノール合成触媒が
機能しないので、合成ガスからメタノールへの変換が果
たされず、逆に、100kg/cm2以上ではプラント
建設費の増大を免れ得ない。
Further, if the amount is less than 5 kg/cm2, the methanol synthesis catalyst will not function, so the conversion of synthesis gas to methanol will not be achieved.On the other hand, if it is more than 100 kg/cm2, the plant construction cost will inevitably increase.

また、接触時間W/Fは1〜20の範囲が好ましく、1
以下では触媒との接触時間が不足して反応を満足に促進
することが出来ず、また20以上ではプラント自体を大
きくしてしよう。
Further, the contact time W/F is preferably in the range of 1 to 20, and 1
If it is less than 20, the reaction cannot be promoted satisfactorily due to insufficient contact time with the catalyst, and if it is more than 20, the plant itself should be enlarged.

尚、合成ガスの混合比H2/COは4〜1が好ましく、
4以上ではメタン等の選択率が大きくなり、逆に、1以
下では反応速度が小さくなってしまう。
In addition, the mixing ratio H2/CO of the synthesis gas is preferably 4 to 1,
When it is 4 or more, the selectivity for methane etc. increases, and conversely, when it is 1 or less, the reaction rate becomes low.

(反応機構) ここで、混合触媒の存在下で合成ガスから炭化水素を生
成する反応において、その機構の摘要を述へると下図の
ように推定できる2 まず、合成ガスCO+H2はメタノール合成触媒、例え
ばPd/SiO2触媒の作用によりメタノールCH30
Hを生成するが、このメタノールはメタノール転化触媒
たるゼオライトの細孔内に吸着されてツメチルエーテル
CH30CH,を生成しく反応(2)参照〉、非可逆反
応(3)を経たのち低級オレフィンCnH2nとなる。
(Reaction mechanism) Here, in the reaction to produce hydrocarbons from synthesis gas in the presence of a mixed catalyst, the mechanism can be summarized as shown in the figure below.2 First, synthesis gas CO + H2 is a methanol synthesis catalyst, For example, by the action of Pd/SiO2 catalyst, methanol CH30
This methanol is adsorbed into the pores of zeolite, which is a methanol conversion catalyst, to produce trimethyl ether CH30CH, see reaction (2)>, and after undergoing an irreversible reaction (3), becomes lower olefin CnH2n. .

即ち、メタノール合成反応(1)は可逆反応であり、し
かも熱力学的には有利な反応ではないため、その高温活
性を低下せしめる原因ともなるが、オレフィン生成反応
(3)は熱力学的に太いに有利であり、し゛がも反応(
2)及び(3)によりメタノールの濃度が低下するので
、(1)の平衝は右に傾いてスムーズにメタノールを生
成することになる。
In other words, the methanol synthesis reaction (1) is a reversible reaction and is not thermodynamically advantageous, which causes a decrease in its high-temperature activity, whereas the olefin production reaction (3) is a thermodynamically large reaction. It is advantageous for the reaction (
Since the methanol concentration decreases due to 2) and (3), the equilibrium of (1) tilts to the right and methanol is produced smoothly.

従って、メタノール合成触媒とメタノール転化触媒、を
混合すれば熱力学的な制限を排除でとると、/ いう大きなメリットをもつ。
Therefore, mixing a methanol synthesis catalyst and a methanol conversion catalyst has the great advantage of eliminating thermodynamic limitations.

(y人下体白) 斯くして生成したオレフィンは、ゼオライトの細孔の孔
径によって、ゼオライト外の気相に出てP d/ S 
i O2触媒の作用を受ける場合と、ゼオライト内に滞
留してゼオライト触媒の作用を受ける場合の二通りに分
かれる。
(y Underbody white) The olefin thus produced exits into the gas phase outside the zeolite depending on the pore size of the zeolite, and P d/S
There are two cases: i) when it is affected by the O2 catalyst, and when it is retained in the zeolite and is affected by the zeolite catalyst.

即ち、孔径の小さなゼオライト、例えば、既述したZ 
S M −5やモルデナイト(夫々、5.5X5゜1人
、7X’6.7A)では、細孔内でのオレフィンの拡散
は速くないのでその多くのオレフィンは長時間滞留し、
しかも、その孔径は芳香族炭化水素の生成に可能な分子
サイズであるので、同時に細孔内に吸着されたメタノー
ルCH30Hがこのオレフィンとゼオライト上で重縮合
反応してメチルトリベンゼン類 e(CH3)、、  
即ち、ガソリン留分を生成する〈(5)式参照〉。
That is, zeolite with a small pore size, for example, the Z
In SM-5 and mordenite (5.5 x 5° 1 person, 7 x' 6.7 A, respectively), the diffusion of olefins in the pores is not fast, so many of the olefins stay for a long time,
Furthermore, since the pore size is a molecular size that is suitable for producing aromatic hydrocarbons, the methanol CH30H adsorbed within the pores undergoes a polycondensation reaction with this olefin on the zeolite, producing methyltribenzenes e(CH3). ,,
That is, a gasoline fraction is produced (see equation (5)).

また、細孔外に拡散したオレフィンはメタノール合成触
媒の作用により水素化を受けて02、C3のパラフィン
を生ずるが、炭化水素内での選択率は必ずしも高くない
Furthermore, the olefins diffused outside the pores are hydrogenated by the action of the methanol synthesis catalyst to produce 02 and C3 paraffins, but the selectivity within hydrocarbons is not necessarily high.

尚、既述した甲発明はこの技術的思想を利用したもので
ある。
Incidentally, the above-mentioned Invention A utilizes this technical idea.

一方、孔径の大きなゼオライト、例えばY型ゼオライト
(入口孔径7.4人、スーパーケージ径13人)では、
低級オレフィンがゼオライト細孔内を速やかに拡散して
ゼオライト外の気相に進出し、メタノール合成触媒(こ
れは、同時に良質な水素化触媒でもある)上で合成ガス
中の水素によって水素添加を受け、主に01〜C5の低
級パラフィンを生成するく(4)式参照〉。
On the other hand, in zeolites with large pore diameters, such as Y-type zeolites (inlet pore diameter of 7.4 pores, super cage diameter of 13 pores),
The lower olefins quickly diffuse through the zeolite pores, enter the gas phase outside the zeolite, and undergo hydrogenation by the hydrogen in the synthesis gas on the methanol synthesis catalyst (which is also a high-quality hydrogenation catalyst). , which mainly produces lower paraffins of 01 to C5 (see formula (4))>.

このため、オレフィンはゼオライY触媒内で縮合反応を
受けて芳香族炭化水素を与えることはほとんどなく、生
成炭化水素のうち低級パラフィンの選択率がきわめて大
きくなる。
For this reason, the olefin undergoes a condensation reaction within the zeolite Y catalyst to hardly give aromatic hydrocarbons, and the selectivity of lower paraffins among the generated hydrocarbons becomes extremely high.

本発明は、この技術的思想を利用したものである。The present invention utilizes this technical idea.

(実施例) 以下、メタノール合成触媒と孔径の大きいゼオ゛ ライ
ト触媒との混合触媒について、合成ガス、を、各々の条
件で反応させた場合の実施例を順次述べる。
(Example) Examples will be described below in which a mixed catalyst of a methanol synthesis catalyst and a zeolite catalyst with a large pore size is reacted with synthesis gas under various conditions.

〈実施例1〉 メタノール合成触媒としてPd/5in2触媒を、メタ
ノール転化触媒として孔径の異なる各種ゼオライトを用
いて、反応結果を調べた。
<Example 1> Reaction results were investigated using a Pd/5in2 catalyst as a methanol synthesis catalyst and various zeolites with different pore sizes as methanol conversion catalysts.

まず、メタノール合成触媒は酸性水溶液から調製した塩
化パラジウムをシリカゲルにドライ・アンプ法で含浸さ
せ、その後450℃で2時間水素を流して還元状態Pd
に生成せしめた。
First, the methanol synthesis catalyst was prepared by impregnating silica gel with palladium chloride prepared from an acidic aqueous solution using the dry amplifier method, and then flowing hydrogen at 450°C for 2 hours to form a reduced state of Pd.
was generated.

上記ゼオライトは、小孔径(5〜7人)のものとしてモ
ービル社製のZSM−5及び2種のモルデナイト〈商標
ゼオロン;H−M(A)とH−H(B)>を用い、また
、大孔径(8〜x3人)のY型ゼオライトとしてH−Y
とREVを用いた。
The above-mentioned zeolite used was ZSM-5 manufactured by Mobil Corporation as a small pore size (5 to 7 pores) and two types of mordenite (trademark Zeolon; H-M (A) and H-H (B)), and H-Y as Y-type zeolite with large pore diameter (8~3 pores)
and REV were used.

H−Yは、塩化アンモニウム水溶液で5回処理したリン
デ型5K−40を、120°Cで20時間乾燥したのち
450°Cで3時間か焼して得られたプロトン型のY型
ゼオライトである。
H-Y is a proton type Y zeolite obtained by drying Linde type 5K-40 treated with ammonium chloride aqueous solution five times at 120°C for 20 hours and then calcining it at 450°C for 3 hours. .

また、REYはリンデ型5K−500を450℃で3時
間か焼して得たものである。
Moreover, REY was obtained by calcining Linde type 5K-500 at 450° C. for 3 hours.

そして、メタノール合成触媒と各種ゼオライト触媒を1
:1の重量比で物理的に混合して80メツシユ以下に粉
砕し、これを200kg/cm2の圧力でプレス成型し
たのち、最終的に20〜40メツシユに微粉砕して混合
触媒を調製した。
Then, one methanol synthesis catalyst and various zeolite catalysts were added.
:1 weight ratio, pulverized to 80 mesh or less, press-molded at a pressure of 200 kg/cm2, and finally finely pulverized to 20 to 40 mesh to prepare a mixed catalyst.

次いで、耐圧固定床流通式反応装置にこの混合触媒を入
れ450℃で2時間水素を流して活性化したのち、合成
ガス)(2+ COを温度370℃、圧力21aLa、
モル比(H2/Co)1/2、接触時間(W/ F )
 10 g−cat ・I+r/molの条件下で反応
装置内に流して、各混合触媒について反応を行ない図表
1の結果を得た。
Next, this mixed catalyst was placed in a pressure-resistant fixed bed flow reactor and activated by flowing hydrogen at 450°C for 2 hours.
Molar ratio (H2/Co) 1/2, contact time (W/F)
Each mixed catalyst was reacted by flowing it into the reactor under conditions of 10 g-cat .I+r/mol, and the results shown in Figure 1 were obtained.

尚、生成物の成分は、反応装置の出口ガスを直接、ガス
クロマトグラフで分析して得たものである。
Note that the components of the product were obtained by directly analyzing the outlet gas of the reactor using a gas chromatograph.

図表1によれば、孔径の小さなゼオライ)<ZSM−5
、H−M(A)、H−M(B)>では、エタン、プロパ
ン及び芳香族炭化水素の選択率が大きく、特にZSM−
5では芳香族の選択率(テトラメチルベンゼンを主成分
とする)は30.6%に達している。また、脂肪族では
全体としてブタンの選択率が低く、略5〜7%に留まっ
ている。
According to Chart 1, zeolite with small pore size)<ZSM-5
, HM(A), HM(B)>, the selectivity of ethane, propane, and aromatic hydrocarbons is high, and in particular, ZSM-
In No. 5, the aromatic selectivity (mainly composed of tetramethylbenzene) reached 30.6%. Furthermore, the overall selectivity of butane among aliphatic compounds is low, remaining at about 5 to 7%.

これに対して、孔径の天外なゼオライ)(H−Y、RE
V)では、エタン、プロパン、ブタン等の低級パラフィ
ンの混合物を主に与え、これらLPG成分の選択率は7
0〜80%に達するが、芳香族炭化水素の生成は見られ
ない。
On the other hand, zeolites with extraordinary pore sizes (H-Y, RE
In V), a mixture of lower paraffins such as ethane, propane, and butane is mainly provided, and the selectivity of these LPG components is 7.
0 to 80%, but no aromatic hydrocarbon formation is observed.

従って、本実施例によって、ゼオライト触媒の孔径が変
化すると、炭化水素の分布に変動を生ずることが実証さ
れるが、しかも、ゼオライトの孔径を大きくすれば、芳
香族炭化水素の生成を抑制してC4〜C6、特にC2−
C117)低級パラフィンを高い選択率で合成でとるこ
とが判る。
Therefore, this example demonstrates that changing the pore size of the zeolite catalyst causes a change in the distribution of hydrocarbons, but it is also demonstrated that increasing the zeolite pore size can suppress the production of aromatic hydrocarbons. C4-C6, especially C2-
C117) It can be seen that lower paraffins can be synthesized with high selectivity.

〈実施例2〉 種々の処理を施したY型ゼオライトを用いて、各々反応
結果を調べた。
<Example 2> Using Y-type zeolite subjected to various treatments, the reaction results were investigated.

即ち、メタノール合成触媒としてP d/ S ! 0
2触媒ヲ、また、メタ7−ル転化触媒として各種のY型
ゼオライトを用いて混合触媒を製造し、この混合触媒の
存在下に、合成ガスH2+COを350°C12、Ok
g/ cm’、H2/CO=]/2、W/F=108−
cat ′hr/ +nolの条件で反応せしめた。
That is, as a methanol synthesis catalyst, P d/S! 0
In addition, a mixed catalyst was prepared using various Y-type zeolites as a meta-7-al conversion catalyst, and in the presence of this mixed catalyst, synthesis gas H2+CO was heated at 350°C12, OK.
g/cm', H2/CO=]/2, W/F=108-
The reaction was carried out under the conditions of cat'hr/+nol.

Y型ゼオライトとしては、H−Y(実施例1で用いたも
の)、DAY及び5L−DAYを夫々使用した。
As the Y-type zeolite, HY (used in Example 1), DAY, and 5L-DAY were used, respectively.

D A Yは触媒化成(株)製の脱アルミゼオライト(
SiO2/A+203=7.6)rあり、脱フル[L埋
しない通常のH−YがSi○、/Al2O3二5.1な
る値を有するのに比して、ブレンステッド酸、αが強く
なっている。
DAY is dealuminated zeolite manufactured by Catalysts Kasei Co., Ltd.
SiO2/A+203=7.6) r, defluorination [compared to the normal H-Y which is not filled with L and has a value of Si○, /Al2O325.1, the Brønsted acid and α are stronger. ing.

このことは、また第1図より明らかなように、ゼオライ
トを脱アルミ処理すると、@着アンモニアの昇温脱離ピ
ークが略350°Cの高温側に現われ、強い酸点を生ず
ることからも判る。
This can also be seen from the fact that, as is clear from Figure 1, when zeolite is dealluminized, the temperature-programmed desorption peak of @adsorbed ammonia appears on the high temperature side of approximately 350°C, creating strong acid sites. .

また、S t −D A Yは上記DAYを450°C
で2時間水蒸気処理したものであり、そのコーク(触媒
上の炭素質物質)生成能を著しく低下させている。
In addition, S t -D AY is the above DAY at 450°C.
The coke (carbonaceous material on the catalyst) production ability is significantly reduced.

図表2は、本実施例の結果であり、いずれの場合も比較
的高い選択率でプロパン及びブタンを与えるが、DAY
を使用した場合にはH−Yに比して、炭化水素の収率が
倍以上になっており(6,5→14.6%)、DAYの
パラフィン生成活性がきわめて大トいことが判る。
Chart 2 shows the results of this example, and in both cases propane and butane are provided with relatively high selectivity, but DAY
When using H-Y, the hydrocarbon yield was more than double (6.5 → 14.6%), indicating that the paraffin-forming activity of DAY was extremely high. .

また、5L−DAYを使用した場合には、炭化水素の収
率がH−Yの略倍であり、しかも、プロパン及びブタン
の選択率は計68%と飛躍的に増大している(43→6
8%)。
Furthermore, when 5L-DAY is used, the yield of hydrocarbons is approximately twice that of H-Y, and the selectivity of propane and butane increases dramatically to a total of 68% (43→ 6
8%).

さらに、この5t−DAYを使用する場合、H−Yに比
べて特に顕著に現われるのは、メタン選択率の特徴的な
低下であり(12,6→5.0%)、このメタン生成の
抑制は反応のエネルギー効率を向上するうえで重要な意
義を有する。
Furthermore, when using this 5t-DAY, what appears particularly remarkable compared to H-Y is a characteristic decrease in methane selectivity (12,6 → 5.0%), which suppresses methane production. has important significance in improving the energy efficiency of the reaction.

即ち、合成ガスの反応ではその生成物を凝縮液化したう
えで各留分に分けたのち、未反応合成ガス留分を反応装
置にリサイクルするが、メタンの沸点は未反応物たる水
素及び一酸化炭素の沸点に近いため、合成ガスとメタン
との分離が難しく、もって、メタン留分も共にリサイク
ルしてしまい、反応の進行につれてメタンが反応容器中
に蓄積して来る。
In other words, in the synthesis gas reaction, the product is condensed and liquefied, separated into various fractions, and the unreacted synthesis gas fraction is recycled to the reactor, but the boiling point of methane is lower than the unreacted hydrogen and monoxide. Since it is close to the boiling point of carbon, it is difficult to separate the synthesis gas and methane, and as a result, the methane fraction is also recycled, and as the reaction progresses, methane accumulates in the reaction vessel.

従って、転化率を向上するためにはこの貯留メタンの除
去か大きな課題となり、メタン除去設備を別途反応装置
に組込んだり、メタンを水蒸気改質する工程(CH,+
H2O−+CO+3H2)を付加して反応物たる合成ガ
スに変換することが考えられるが、いずれにしてもエネ
ルギー損失が大きく、生成物中のメタン選択率の上昇は
反応プラントのエネルギーコストにとって好ましくない
のである。
Therefore, in order to improve the conversion rate, the removal of this stored methane is a major issue, and it is necessary to incorporate methane removal equipment separately into the reactor, or to perform a process of steam reforming of methane (CH, +
It is conceivable to add H2O-+CO+3H2) to convert it into the reactant synthesis gas, but in any case, the energy loss is large and the increase in methane selectivity in the product is not favorable for the energy cost of the reaction plant. be.

従って、炭化水素生成反応に当該5t−DAYを適用す
れば、メタンの選択率をきわめて小さくして、メタン除
去に要するエネルギー損失を最小に抑えることができる
Therefore, if the 5t-DAY is applied to the hydrocarbon production reaction, the selectivity of methane can be made extremely low, and the energy loss required for methane removal can be minimized.

因みに、酸度調整されたY型ゼオライトは上述のように
、それ自体の触媒活性温度範囲内(300〜400’C
)に高い酸点を持つようになるので(酸点ビークは略3
50℃である;第1図参照)、ゼオライト触媒により重
合をある程度促進させてからオレフィンを気相、つまり
メタノール合成触媒側に脱着させることがでた、ひいて
は、炭素数の人、きい(即ち、重合度の進んだ)パラフ
ィンの選択率を高くして、メタンの生成を低く抑えるこ
とができるものと推定される。
Incidentally, as mentioned above, the acidity-adjusted Y-type zeolite is within its own catalytic activity temperature range (300 to 400'C
) has a high acid point (the acid point peak is approximately 3
After the polymerization was accelerated to some extent by the zeolite catalyst, the olefin could be desorbed into the gas phase, that is, on the methanol synthesis catalyst side. It is presumed that by increasing the selectivity of paraffins (with a higher degree of polymerization), it is possible to suppress the production of methane.

以上のように、一般の大孔径ゼオライトであるY型ゼオ
ライトに脱アルミ処理を施してその酸の性質を変化させ
ると、メタノールの転化特性を好ましい方向、即ち、パ
ラフィン転化率の向上やメタン選択率の低減の方向に変
化させることができる。
As described above, when Y-type zeolite, which is a general large-pore zeolite, is subjected to dealumination treatment to change its acid properties, the methanol conversion characteristics can be improved in a favorable direction, such as improving paraffin conversion and methane selectivity. can be changed in the direction of reducing the

〈実施例3〉 Pd/SiO2+5t−DAY混合触媒を用いて、実施
例2と同じ条件下(但し、温度を除く)で温度を270
℃、320℃、370’Cに変化させて炭化水素生成物
の選択率を実測した結果、第2図を得た。
<Example 3> Using a Pd/SiO2+5t-DAY mixed catalyst, the temperature was lowered to 270°C under the same conditions as Example 2 (excluding temperature).
As a result of actually measuring the selectivity of hydrocarbon products by changing the temperature to 320°C, 320°C, and 370'C, Figure 2 was obtained.

同図によれば、270℃〜370℃の広い範囲に亘って
、プロパン及びブタンの選択率が最大になることが判る
(両者を合わせると、各温度とも略60〜65%の範囲
を示す)。
According to the same figure, it can be seen that the selectivity of propane and butane is maximum over a wide range of 270°C to 370°C (when both are combined, each temperature shows a range of approximately 60% to 65%). .

〈実施例4〉 Pct/S io、+ S t −D A Y混合触媒
を用いて、実施例2と同じ条件下(但し圧力を除く)で
圧力を10〜60atmまで変化させて、生成物の収率
と炭化水素の分布を実測した結果、第3図を得た。
<Example 4> Using a Pct/S io, + S t -D AY mixed catalyst, the product was As a result of actually measuring the yield and hydrocarbon distribution, Figure 3 was obtained.

同図によれば、圧力と生成物収率は比例するが、炭化水
素の分布は圧力20atmす、上では余り変動がない。
According to the figure, pressure and product yield are proportional, but the distribution of hydrocarbons does not change much at pressures above 20 atm.

〈実施例5〉 P d/ S i O2+S t  D A Y混合触
媒を用いて、実施例2と同し条件下(但し、温度を除く
)で温度を250〜350°Cに変化させて、生成物の
収率と炭化水素の分布を実測した結果、第4図を得た。
<Example 5> Using a P d / S i O 2 + S t D AY mixed catalyst, the temperature was changed from 250 to 350 °C under the same conditions as in Example 2 (except for the temperature) to produce Figure 4 was obtained as a result of actually measuring the yield of the product and the distribution of hydrocarbons.

同図によれば、温度と生成物収率は比例するが、炭]b
水素の分布は温度270〜340 ’Cの範囲で最大値
を示す。
According to the figure, temperature and product yield are proportional, but charcoal]b
The hydrogen distribution shows a maximum value in the temperature range of 270-340'C.

〈実施例ら〉 Pd/5in2+St  DAY混合触媒を用いて、実
施例2と同じ条件下(但し、接触時間を除く)で接触時
間W/Fを308cat ・t+r/ molまで変化
させて生成物の収率と炭化水素の分布を実測した結果、
第5図を得た。
<Examples> Using a Pd/5in2+St DAY mixed catalyst, the product was collected under the same conditions as in Example 2 (excluding the contact time) and changing the contact time W/F to 308 cat ・t+r/mol. As a result of actually measuring the ratio and distribution of hydrocarbons,
Figure 5 was obtained.

同図によれば、生成物収率は接触時間に比例するが、炭
化水素の分布は接触時間の変化によって余り変動しない
According to the figure, the product yield is proportional to the contact time, but the distribution of hydrocarbons does not change much with changes in the contact time.

〈実施例7〉 メタノール転化触媒を5L−DAYとし、メタノール合
成触媒を種々変化させた混合触媒の存在下で反応を行な
った結果、図表3を得た。
<Example 7> Chart 3 was obtained as a result of performing the reaction in the presence of a mixed catalyst in which the methanol conversion catalyst was 5L-DAY and the methanol synthesis catalyst was varied in various ways.

メタノール合成触媒は、Pd/5in3.2種のCu 
−Zn< Cu −Zn(A )並びに(B)〉及びZ
n−Crを用い、20kg/cm2、H2/C0=1/
2で、接触時間W/Fを適宜変化させた。
The methanol synthesis catalyst is Pd/5in3.2 types of Cu
-Zn<Cu-Zn(A) and (B)> and Z
Using n-Cr, 20kg/cm2, H2/C0=1/
In No. 2, the contact time W/F was changed as appropriate.

Cu−Zn(A)は、自製の銅−亜鉛−アルミナ混合酸
化物触媒を300℃で水素処理して得たもの、また、C
u−Zn(B)は、市販の低圧メタノール合成触媒を3
00℃で水素処理して得たものである。
Cu-Zn (A) is obtained by hydrogen-treating a homemade copper-zinc-alumina mixed oxide catalyst at 300°C, and
u-Zn(B) is a commercially available low-pressure methanol synthesis catalyst.
It was obtained by hydrogen treatment at 00°C.

熟 但し、Cu−Zn系触媒の場合は、その耐久性との関係
で300℃の温”度条件で行なっている。
However, in the case of a Cu--Zn catalyst, the temperature is 300° C. due to its durability.

図表3によれば、Pd/5in2触媒に代えて、Cu−
Zn系触媒を用いると(但腰Cu−Zn(A)、W/F
−’2’、7の組合せの場合を除く)炭化水素収率か著
しく向上することが判る(6.4→36.0.35.7
%)。
According to Chart 3, instead of Pd/5in2 catalyst, Cu-
When a Zn-based catalyst is used (Takashi Cu-Zn(A), W/F
- It can be seen that the hydrocarbon yield (except for the combination of '2' and 7) is significantly improved (6.4 → 36.0.35.7
%).

また、2種のC’u  Zn系触媒では、温度を300
℃にまで低下させているので、実施例1及び2に示す反
応温度350〜370℃での結果に比して、メタン選択
率は1〜2%に低下する反面、エタン選択率は7〜11
%、プロパン及びブタンの選択率は計66〜75%程度
にまで向上していることが判る。
In addition, for two types of C'u Zn-based catalysts, the temperature was set to 300
℃, the methane selectivity decreases to 1 to 2% compared to the results shown in Examples 1 and 2 at a reaction temperature of 350 to 370℃, while the ethane selectivity decreases to 7 to 11%.
It can be seen that the selectivity of propane and butane has improved to about 66 to 75% in total.

この温度の低下による生成炭化水素の平均分子量の増大
は、生成低級オレフィンの吸着が有利となって低分子重
合反応が進行し易くなるためと推定できる。
It can be assumed that the increase in the average molecular weight of the produced hydrocarbons due to this decrease in temperature is because the adsorption of the produced lower olefins becomes more advantageous, making it easier for the low molecular weight polymerization reaction to proceed.

また、この低温においてはC5以上の脂肪族炭化水素の
選択率もかな1)高くなるが、芳香族炭化水素の生成は
事実上認められない。
Furthermore, at this low temperature, the selectivity for aliphatic hydrocarbons of C5 or higher also increases (1), but the production of aromatic hydrocarbons is virtually not observed.

そして、上記St−,DAY+Cu−Zn(A)(W/
F=10.3の場合)触媒を使用したときの炭化水素の
選択率を、従来の生成方法、即ち、ZSM?5+メタノ
ール合成触媒を用いたもの、Fe−Mn−Cr系のフィ
ッシャーニトロブシュ触媒を用いたもの及び最大のLP
G成分を与える5chulz−Flory則から計算さ
れる分布函数と各々比較して、グラフ化すると第6図を
与える。
Then, the above St-, DAY+Cu-Zn(A)(W/
F = 10.3) The selectivity of hydrocarbons when using a catalyst is compared with the conventional production method, that is, ZSM? 5+ methanol synthesis catalyst, Fe-Mn-Cr-based Fischer nitro-Bush catalyst, and maximum LP.
When each is compared with the distribution function calculated from the 5chulz-Flory law that gives the G component and graphed, FIG. 6 is obtained.

同図によれば、従来方法及びS cl+u lz −F
 l ory函数のいずれも、炭化水素の炭素数の増加
とともにその選択率が低下しているが、本実施例ではプ
ロパン及びブタンの選択率が高く、特に、ブタンの選択
率は最大値を示すので、得られる混合炭化水素は燃料と
して最適なものとなる。
According to the figure, the conventional method and S cl+ulz −F
The selectivity of any of the lory functions decreases as the number of carbon atoms in the hydrocarbon increases, but in this example, the selectivity of propane and butane is high, and in particular, the selectivity of butane shows the maximum value. , the resulting mixed hydrocarbon is optimal as a fuel.

尚、Zn−Cr系触媒を使用するとPd/Sin2触媒
に比べて、プロパン及びブタンの選択率が低下しく63
→47%)、逆にメタン選択率が増大する(1.1→7
.0%)ので、この反応条件では〆り7−ル合成触媒と
してのZn−Cr系触媒の機能はあまり高くない。
In addition, when using a Zn-Cr catalyst, the selectivity of propane and butane decreases compared to a Pd/Sin2 catalyst.
→47%), and conversely, the methane selectivity increases (1.1 → 7%).
.. 0%), therefore, under these reaction conditions, the Zn-Cr catalyst does not have a very high function as a catalyst for synthesizing 7-l.

また、本実施例ではいずれの触媒系を用いても炭化水素
に匹敵する量の二酸化炭素を生成するが、これは炭化水
素に伴って生成した水が未反応の一酸化炭素とCOシフ
ト反応をするためであり(CO+H2O−1co、+H
7)、予メ適当量のCO2を合成〃ス中に共存させてお
けばその副生を制御できる。
In addition, in this example, no matter which catalyst system is used, carbon dioxide is produced in an amount comparable to that of hydrocarbons, but this is because water produced with hydrocarbons undergoes a CO shift reaction with unreacted carbon monoxide. (CO+H2O-1co, +H
7) If an appropriate amount of CO2 is allowed to coexist during the synthesis process, its by-product can be controlled.

一方、上述のように、L P G生成活性の大きいCu
−Zn系触媒は、その生成物に反応中間体であるメタノ
ールやジメチルエーテルが若干生成して来るが、ゼオラ
イト触媒の混合比を増すと、この反応中間体の生成を抑
制できる。
On the other hand, as mentioned above, Cu with high LPG production activity
-Zn-based catalysts produce some reaction intermediates such as methanol and dimethyl ether, but by increasing the mixing ratio of the zeolite catalyst, the production of these reaction intermediates can be suppressed.

即ち、図表4によれば、メタノール合成触媒とゼオライ
ト触媒の混合比を171から11′3に変化させると、
メタノールの収率は3.9%から痕跡量に、また、ジメ
チルエーテルの収率も0.5%から痕跡量に低減するこ
とが判る。
That is, according to Chart 4, when the mixing ratio of methanol synthesis catalyst and zeolite catalyst is changed from 171 to 11'3,
It can be seen that the yield of methanol is reduced from 3.9% to a trace amount, and the yield of dimethyl ether is also reduced from 0.5% to a trace amount.

〈実施例8〉 良好なLPG生成活性を示すCu−Zn系触媒をメタノ
ール合成触媒とし、メタノール転化触媒、即ち、Y型ゼ
オライト触媒を種々に変化させて反応を行なった結果、
図表5を得た。
<Example 8> As a result of using a Cu-Zn-based catalyst showing good LPG production activity as a methanol synthesis catalyst and variously changing the methanol conversion catalyst, that is, the Y-type zeolite catalyst, the reaction was carried out.
Figure 5 was obtained.

尚、ゼオライト触媒のうち、REVは実施例1に用いた
ものと同じであり、また、Pt−YはI4のPtを担持
したものである。
Incidentally, among the zeolite catalysts, REV is the same as that used in Example 1, and Pt-Y is I4 on which Pt is supported.

上表によれば、水蒸気処理温度600℃で処理した5t
−DAYを用いて反応した場合には、生成炭化水素の収
率がきわめて低くなっているが(2,0%)、その外の
場合は、この収率にそれほど大きな差異はない(15,
0〜20.3%)。
According to the above table, 5t treated at a steam treatment temperature of 600℃
-DAY, the yield of the hydrocarbons produced is very low (2.0%), but in other cases the yields are not very different (15,
0-20.3%).

しかしながら、炭化水素の分布は各反応条件によって相
違し、400℃の水蒸気で処理して得た5L−DAYを
用い、水蒸気処理温度400℃で反応した場合には、メ
タン選択率は低くなり(1,8%)、逆に、プロパン、
及びブタン1.即ちLPG選択率は77%の最高値に達
した。
However, the distribution of hydrocarbons differs depending on each reaction condition, and when 5L-DAY obtained by treatment with steam at 400°C was used and the reaction was performed at a steam treatment temperature of 400°C, the methane selectivity was low (1 ,8%), conversely, propane,
and butane 1. That is, the LPG selectivity reached a maximum value of 77%.

そして、5t−DAY触媒を用いた場合、水蒸気処理温
度を600℃まで順次上昇すると、メタン選択率は増加
し、LPG選択率は逆に減少してゆくことか判る。
When the 5t-DAY catalyst is used, it can be seen that when the steam treatment temperature is gradually increased to 600°C, the methane selectivity increases and the LPG selectivity decreases.

また、PL−Y及びREVを用いた場合には、5c−D
A・買水蒸気処理温度400℃)触媒の場合に比べて、
メタン選択率が低下し、特に、Pt−Yでは0.9%の
最低値を示すか、LPG選択率は若干小さくなる(但し
、水蒸気処理温度600℃による5t−DAY触媒の場
合を除く)。
In addition, when using PL-Y and REV, 5c-D
A. Purchased steam treatment temperature: 400°C) Compared to the case of a catalyst,
The methane selectivity decreases, and in particular, Pt-Y shows a minimum value of 0.9%, or the LPG selectivity decreases slightly (excluding the case of the 5t-DAY catalyst with a steam treatment temperature of 600°C).

従って、Cu−Zn十5t−DAY触媒を使用し、水蒸
気処理温度を400°Cに抑えると、メタン選択率を小
さくし、LPG選択率を77%と、上記各実施例では到
達できなかった高い値に実現できる。
Therefore, by using the Cu-Zn 15t-DAY catalyst and suppressing the steam treatment temperature to 400°C, the methane selectivity is reduced and the LPG selectivity is 77%, which is a high level that could not be achieved in each of the above examples. Value can be realized.

しかも、Pv−”1’触媒を使用すると、メタン選択率
を0.9%と、上記各実施例のいずれに比してもきわめ
て低い値に留めるので、メタンパージ操作を実際上無視
することができる。
Moreover, when the Pv-"1' catalyst is used, the methane selectivity is kept at 0.9%, which is extremely low compared to any of the above examples, so the methane purge operation can be practically ignored. .

斯くしてなる実施例1乃至8の結果を以下に概括する。The results of Examples 1 to 8 thus obtained are summarized below.

(1)ゼオライト触媒の孔径が変化すると、炭化水素の
分布も変化する。
(1) When the pore size of the zeolite catalyst changes, the distribution of hydrocarbons also changes.

そして、孔径の大きいゼオライト触媒(例えば、Y型ゼ
オライト)を使用すると1、芳、香族炭化水素の生成を
抑制して、C1〜c6に亘る低級パラフィンをきわめて
高い選択率で合成できる(図表1参照)。
When a zeolite catalyst with a large pore size (for example, Y-type zeolite) is used, it is possible to suppress the production of aromatic and aromatic hydrocarbons and synthesize lower paraffins ranging from C1 to C6 with extremely high selectivity (Figure 1). reference).

(2)大孔径ゼオライトに脱アルミ処理及び/又は水蒸
気処理を施して酸の性質を変化させると、メタノールの
転化特性を変化できる。
(2) Methanol conversion characteristics can be changed by subjecting large-pore zeolite to dealumination treatment and/or steam treatment to change acid properties.

即ち、脱アルミ処理して酸性度を大きくした大孔径ゼオ
ライト触媒を使用すると、低級パラフィンの収率を増大
できる。
That is, the yield of lower paraffins can be increased by using a large-pore zeolite catalyst that has been treated with dealumination to increase its acidity.

また、脱アアミ処理を施したのち、さらに水蒸気処理を
して水和度を大きくすると、高い炭化水素収率を維持し
なが呟メタンの選択率を低減できる(図表2参照)。
Furthermore, if the degree of hydration is increased by further steam treatment after the deamidation treatment, the selectivity of methane can be reduced while maintaining a high hydrocarbon yield (see Figure 2).

従って、当該ゼオライト触媒を用いれば、合成プロセス
において多大のエネルギー損失となるメタンの生成を容
易に抑制することができる。
Therefore, by using the zeolite catalyst, it is possible to easily suppress the production of methane, which causes a large amount of energy loss in the synthesis process.

(3)本混合触媒を使用して低級パラフィンを合成する
方法においては、反応温度を略270〜370℃、圧力
を10〜SOatm程度とするのが好ましい(第2.3
及び4図参照)。
(3) In the method of synthesizing lower paraffins using this mixed catalyst, it is preferable to set the reaction temperature to approximately 270 to 370°C and the pressure to approximately 10 to SOatm (Section 2.3).
and Figure 4).

また、生成物収率は接触時間W/Fと比例関係にあり、
W/Fの上昇は生成物収率の増加に繋がるが、生成炭化
水素の分布はW/Fの変化によりでも余I)変動・しな
いので、プラントのエネルギー効率を考慮すれば、W/
Fを20以下に留めるのが好ましい(第5図参照)。
In addition, the product yield is proportional to the contact time W/F,
An increase in W/F leads to an increase in product yield, but the distribution of produced hydrocarbons does not change significantly even with changes in W/F, so if the energy efficiency of the plant is considered, W/F will increase.
It is preferable to keep F below 20 (see Figure 5).

(4)混合触媒のうち、メタノール転化触媒として−・
定の触媒(例えば、5t−DA’l’触媒)を用い、メ
タノール合成触媒をPd/SiO2触媒、Cu−Zn系
触媒或いはZn−Cr系触媒に種々変化させると、得ら
れる炭化水素収率が大幅に変化する。
(4) Among mixed catalysts, as a methanol conversion catalyst -
When using a certain catalyst (for example, 5t-DA'l' catalyst) and changing the methanol synthesis catalyst to a Pd/SiO2 catalyst, a Cu-Zn catalyst, or a Zn-Cr catalyst, the resulting hydrocarbon yield increases. Change significantly.

上記メタノール合成触媒として、Cu−Zn系触媒を用
いると、高収率で低級パラフィンを得ることができる。
When a Cu-Zn catalyst is used as the methanol synthesis catalyst, lower paraffins can be obtained in high yield.

そのうえ、Cu−Zn系触媒は略30.0、’(:’の
比較的低温で砂活性となり、炭化水素分布において、低
いメタン選択率(1〜2%)を持つとともに、高いLP
G選択率(70〜75%)を有する(図表3参照)。
Moreover, the Cu-Zn catalyst becomes sand active at a relatively low temperature of approximately 30.0,'(:'), has a low methane selectivity (1-2%) in the hydrocarbon distribution, and a high LP
It has a G selectivity (70-75%) (see Figure 3).

(5)従って、(1)〜(4)を総合すれば、メタン選
択率を抑制しなが呟LPG選択率を上昇させるには、C
u−Zn系触媒(メタノール合成触媒)と5t−DAY
触媒(メタノール転化触媒)の組合わせから成る混合触
媒の存在下、300℃、10〜50atm、W/F=2
0以下の反応条件で、合成ガスを反応させるのが最適で
ある。
(5) Therefore, if (1) to (4) are taken together, in order to increase the LPG selectivity while suppressing the methane selectivity, C
u-Zn catalyst (methanol synthesis catalyst) and 5t-DAY
In the presence of a mixed catalyst consisting of a combination of catalysts (methanol conversion catalyst), 300°C, 10 to 50 atm, W/F = 2
It is optimal to react the synthesis gas under reaction conditions of 0 or less.

(発明の効果) 以上のように、本発明は、孔径の大きいゼオライト触媒
とメタノール合成触媒の組合せたる混合触媒で合成ガス
から低級パラフィンに富む混合炭化水素を得る製法であ
って、次の効果を有する。
(Effects of the Invention) As described above, the present invention is a method for producing mixed hydrocarbons rich in lower paraffins from synthesis gas using a mixed catalyst that is a combination of a zeolite catalyst with a large pore size and a methanol synthesis catalyst, and has the following effects. have

(1)合成ガスを本混合触媒の存在下で反応させること
により、一段反応で直接、低級パラフィンに富む混合炭
化水素を得ることができ、一旦メタ7−ルを合成したの
ち、これを炭化水素に転化するという二段の反応操作を
必要としない。
(1) By reacting synthesis gas in the presence of this mixed catalyst, it is possible to directly obtain a mixed hydrocarbon rich in lower paraffins in a one-step reaction. There is no need for a two-step reaction operation to convert it into .

従って、反応装置のエネルギー効率を経済的に低減でき
るとともに、反応を迅速に行なって操作の煩雑さを解消
できる。
Therefore, the energy efficiency of the reactor can be economically reduced, and the reaction can be carried out quickly to eliminate the complexity of operation.

(2)本発明は化石燃料、或いは未利用バイオマスから
容易1こ得られる合成ガスを原料とし、しかも、得られ
る炭化水素は低級パラフィンを主成分とし、特に、プロ
パン及びブタン(即ち、LPG成分)に富むので燃料と
して有効に利用することができ、石油の有限性が指摘さ
れている今日、現実的な石油代替エネルギーとしてその
必要性がきわめて大きい。
(2) The present invention uses synthesis gas that can be easily obtained from fossil fuels or unused biomass as a raw material, and the resulting hydrocarbons mainly contain lower paraffins, particularly propane and butane (i.e., LPG components). Because it is rich in minerals, it can be used effectively as fuel, and today, when the finite nature of petroleum is being pointed out, it is extremely needed as a realistic alternative energy to petroleum.

(3)本発明は、孔径の大きいゼオライト触媒を使用し
たところ1こその特徴があるが、このゼオライト触媒を
脱アルミ処理或いは水蒸気処理等を施して酸度調整を行
なったものに限定すると、得ムれる炭化水素の分布は、
プロパン及びブタンに富み、しかも、メタンの選択率を
低く抑制できるので、燃料として特に優れたものになる
。また、メタンパージの種々の設備を反応装置に付加す
る必要がなくなり、装置全体のエネルギー損失を大幅に
なくせる。
(3) The present invention is characterized by the use of a zeolite catalyst with a large pore size, but if this zeolite catalyst is limited to one that has been subjected to dealumination treatment or steam treatment to adjust the acidity, it will not be possible to obtain benefits. The distribution of hydrocarbons is
It is rich in propane and butane, and the selectivity of methane can be suppressed to a low level, making it particularly excellent as a fuel. Furthermore, there is no need to add various methane purge equipment to the reaction apparatus, and energy loss in the entire apparatus can be largely eliminated.

(4)本発明は、メタノール合成触媒と孔径の大きいゼ
オライト触媒を用いて、広範な反応条件下に適用するこ
とができるので、特に、穏やかな条件下、例えば300
℃、20atm等の条件で低級パラフィンを与えること
ができ、反応の経済性をより効率的にできる。
(4) The present invention can be applied under a wide range of reaction conditions using a methanol synthesis catalyst and a zeolite catalyst with a large pore size.
Lower paraffins can be provided under conditions such as ℃ and 20 atm, making the reaction more economical.

しかも、ゼオライト触媒は孔径限定があるものの、この
条件を満たすものであれば分子構造、細孔構造の変化や
種々の調製処理の有無を問わず本発明に適用でき、また
、メタノール合成触媒もその属性として水素添加能を有
するものであれば、Pd系、Cu−Zn系、Cr−Zn
系の外、種々の金属或いは金属酸化物の単体又は複合物
を使用することができ、混合触媒を広く選択して本反応
の実施を容易にできる。
Furthermore, although zeolite catalysts are limited in pore size, they can be applied to the present invention as long as they satisfy this condition, regardless of changes in molecular structure and pore structure, or with or without various preparation treatments. As long as it has hydrogenation ability as an attribute, Pd-based, Cu-Zn-based, Cr-Zn
In addition to the system, various metals or metal oxides can be used singly or in combination, and a wide range of mixed catalysts can be selected to facilitate the implementation of the reaction.

【図面の簡単な説明】[Brief explanation of the drawing]

図表1はゼオライトの孔径を変化させた場合の反応結果
、図表2はゼオライトの酸性度を変化させた場合の反応
結果、図表3は混合触媒のうちメタノール合成触媒を変
化させた場合の反応結果、図表4は触媒混合比を変化さ
せた場合の反応結果、図表5はメタノール合成触媒をC
u −−−Z n系触媒に限定しゼオライト触媒を変化
させた場合の反応結果であり、第1図はゼオライト触媒
の酸度調整を行なった場合の温度−アンモニア脱離速度
関係図、第2図は温度変化による炭素数分布図、第3図
は反応圧力と活性選択性の関係図、第4図は反応温度と
活性選択性の関係図、第5図は接触時間と生成物収率及
び生成物分布の関係図、第6図は触媒を変化させた場合
の生成炭化水素の分布図である。
Chart 1 shows the reaction results when changing the zeolite pore size, Chart 2 shows the reaction results when changing the acidity of zeolite, Chart 3 shows the reaction results when changing the methanol synthesis catalyst among the mixed catalysts, Chart 4 shows the reaction results when the catalyst mixing ratio is changed, and Chart 5 shows the reaction results when the methanol synthesis catalyst is changed to C.
The reaction results are shown when the zeolite catalyst is changed, limited to the u ---Z n-based catalyst. Figure 1 shows the relationship between temperature and ammonia desorption rate when the acidity of the zeolite catalyst is adjusted, and Figure 2 shows the relationship between temperature and ammonia desorption rate. Figure 3 shows the relationship between reaction pressure and activity selectivity, Figure 4 shows the relationship between reaction temperature and activity selectivity, and Figure 5 shows the relationship between contact time and product yield and formation. Figure 6 shows the distribution of hydrocarbons produced when the catalyst is changed.

Claims (1)

【特許請求の範囲】 1、Cu−Zn系、Cr−Zn系、Pd系等のメタノー
ル合成触媒と平均孔径が略10Å以上のゼオライトより
なるメタノール転化触媒とを物理的に混合した混合触媒
の存在下で、水素及び一酸化炭素よりなる合成ガスを反
応させて低級脂肪族飽和炭化水素を主に生成せしめる事
を特徴とする合成ガスからの炭化水素の製造方法 2、脱アルミ処理及び/又は水蒸気処理等により酸性度
を強めたゼオライトとメタノール合成触媒の混合触媒の
存在下で合成ガスを反応させることにより、生成するメ
タンの選択率を低下せしめる事を特徴とする特許請求の
範囲第1項に記載した合成ガスからの低級飽和脂肪族を
主成分とする炭化水素の製造方法
[Claims] 1. Existence of a mixed catalyst in which a methanol synthesis catalyst such as a Cu-Zn type, Cr-Zn type, or Pd type is physically mixed with a methanol conversion catalyst made of zeolite with an average pore size of approximately 10 Å or more. Below, method 2 for producing hydrocarbons from synthesis gas characterized by reacting synthesis gas consisting of hydrogen and carbon monoxide to mainly produce lower aliphatic saturated hydrocarbons, dealumination treatment and/or steam Claim 1 is characterized in that the selectivity of the methane produced is reduced by reacting synthesis gas in the presence of a mixed catalyst of zeolite whose acidity has been increased through treatment and a methanol synthesis catalyst. Method for producing hydrocarbons mainly composed of lower saturated aliphatics from the described synthesis gas
JP59145787A 1984-07-12 1984-07-12 Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas Pending JPS6123688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59145787A JPS6123688A (en) 1984-07-12 1984-07-12 Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59145787A JPS6123688A (en) 1984-07-12 1984-07-12 Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas

Publications (1)

Publication Number Publication Date
JPS6123688A true JPS6123688A (en) 1986-02-01

Family

ID=15393146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59145787A Pending JPS6123688A (en) 1984-07-12 1984-07-12 Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas

Country Status (1)

Country Link
JP (1) JPS6123688A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410814B2 (en) 2000-04-04 2002-06-25 Toyota Jidosha Kabushiki Kaisha Process for synthesis of lower isoparaffins from synthesis gas
JP2002293508A (en) * 2001-03-30 2002-10-09 Idemitsu Kosan Co Ltd Hydrogen manufacturing plant and hydrogen production method
WO2004076063A1 (en) * 2003-02-26 2004-09-10 Japan Gas Synthesize, Ltd. Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst
WO2005037962A1 (en) * 2003-10-16 2005-04-28 Japan Gas Synthesize, Ltd. Method for producing liquefied petroleum gas containing propane or butane as main component
JP2006021100A (en) * 2004-07-07 2006-01-26 Nippon Gas Gosei Kk Catalyst for manufacture of liquefied petroleum gas and method of manufacturing liquefied petroleum gas using it
JP2007181755A (en) * 2006-01-05 2007-07-19 Nippon Gas Gosei Kk Catalyst for producing liquefied petroleum gas and method for producing liquefied petroleum gas by using the same
JP2007238935A (en) * 2006-02-10 2007-09-20 Nippon Gas Gosei Kk Preparation process of liquefied petroleum gas
JPWO2006016444A1 (en) * 2004-08-10 2008-05-01 日本ガス合成株式会社 Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
US7432410B2 (en) 2004-08-11 2008-10-07 Japan Gas Synthesize, Ltd. Production of LPG containing propane or butane from dimethyl ether or methanol
JP2015044926A (en) * 2013-08-28 2015-03-12 独立行政法人産業技術総合研究所 Hydrocarbon production method and apparatus
JP2016117029A (en) * 2014-12-22 2016-06-30 国立研究開発法人産業技術総合研究所 Method for producing hydrocarbon from carbon dioxide using organic group-modified zeolite catalyst
CN109908932A (en) * 2019-02-25 2019-06-21 苏斌 A kind of catalysis phase transformation medium ball and preparation method thereof of methanol burning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096163A (en) * 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4139550A (en) * 1976-09-10 1979-02-13 Suntech, Inc. Aromatics from synthesis gas
JPS57163321A (en) * 1981-04-01 1982-10-07 Res Assoc Petroleum Alternat Dev<Rapad> Preparation of hydrocarbon from synthetic gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096163A (en) * 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US4139550A (en) * 1976-09-10 1979-02-13 Suntech, Inc. Aromatics from synthesis gas
JPS57163321A (en) * 1981-04-01 1982-10-07 Res Assoc Petroleum Alternat Dev<Rapad> Preparation of hydrocarbon from synthetic gas

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410814B2 (en) 2000-04-04 2002-06-25 Toyota Jidosha Kabushiki Kaisha Process for synthesis of lower isoparaffins from synthesis gas
JP2002293508A (en) * 2001-03-30 2002-10-09 Idemitsu Kosan Co Ltd Hydrogen manufacturing plant and hydrogen production method
JP4568448B2 (en) * 2001-03-30 2010-10-27 出光興産株式会社 Hydrogen production plant and hydrogen production method
WO2004076063A1 (en) * 2003-02-26 2004-09-10 Japan Gas Synthesize, Ltd. Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst
WO2005037962A1 (en) * 2003-10-16 2005-04-28 Japan Gas Synthesize, Ltd. Method for producing liquefied petroleum gas containing propane or butane as main component
JP2006021100A (en) * 2004-07-07 2006-01-26 Nippon Gas Gosei Kk Catalyst for manufacture of liquefied petroleum gas and method of manufacturing liquefied petroleum gas using it
US7297825B2 (en) 2004-07-07 2007-11-20 Japan Gas Synthesize, Ltd. Catalyst and process for LPG production
JPWO2006016444A1 (en) * 2004-08-10 2008-05-01 日本ガス合成株式会社 Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
US7432410B2 (en) 2004-08-11 2008-10-07 Japan Gas Synthesize, Ltd. Production of LPG containing propane or butane from dimethyl ether or methanol
JP2007181755A (en) * 2006-01-05 2007-07-19 Nippon Gas Gosei Kk Catalyst for producing liquefied petroleum gas and method for producing liquefied petroleum gas by using the same
JP2007238935A (en) * 2006-02-10 2007-09-20 Nippon Gas Gosei Kk Preparation process of liquefied petroleum gas
JP2015044926A (en) * 2013-08-28 2015-03-12 独立行政法人産業技術総合研究所 Hydrocarbon production method and apparatus
JP2016117029A (en) * 2014-12-22 2016-06-30 国立研究開発法人産業技術総合研究所 Method for producing hydrocarbon from carbon dioxide using organic group-modified zeolite catalyst
CN109908932A (en) * 2019-02-25 2019-06-21 苏斌 A kind of catalysis phase transformation medium ball and preparation method thereof of methanol burning
CN109908932B (en) * 2019-02-25 2020-05-05 苏斌 Catalytic phase change medium ball for methanol combustion and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4965258B2 (en) Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
EP2104657B1 (en) Oil-based thermo-neutral reforming with a multi-component catalyst
US7718832B1 (en) Combination catalytic process for producing ethanol from synthesis gas
NZ571184A (en) Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions
JP2006021100A (en) Catalyst for manufacture of liquefied petroleum gas and method of manufacturing liquefied petroleum gas using it
CN101016494A (en) Method of producing liquefied petroleum gas
CN102942974A (en) Process for producing liquefied petroleum gas
JPS6123688A (en) Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas
JP4558751B2 (en) Method for producing liquefied petroleum gas and / or gasoline from synthesis gas
JP5405103B2 (en) Catalyst for liquefied petroleum gas production
JP3930879B2 (en) Method for producing liquefied petroleum gas
US7001574B2 (en) Apparatus for producing high molecular weight liquid hydrocarbons from methane and/or natural gas
US20060242904A1 (en) Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst
JP2009195815A (en) Catalyst for liquefied petroleum gas production and method for manufacturing liquefied petroleum gas using the same
WO2009104742A1 (en) Liquefied petroleum gas production catalyst, and method for production of liquefied petroleum gas using the catalyst
Curry-Hyde et al. Natural gas conversion II
WO2005037962A1 (en) Method for producing liquefied petroleum gas containing propane or butane as main component
JP2007181755A (en) Catalyst for producing liquefied petroleum gas and method for producing liquefied petroleum gas by using the same
JP4594011B2 (en) Ethanol reforming method
WO2006016583A1 (en) Method for producing liquefied petroleum gas
JP5706175B2 (en) Manufacturing method of high calorific value fuel gas
JP2007313450A (en) Catalyst for liquefied petroleum gas production and production method of liquefied petroleum gas using catalyst thereof
JP2006143752A (en) Manufacturing method of liquefied petroleum gas mainly composed of propane or butane
JPH0136811B2 (en)
WO2004076600A1 (en) Method for producing liquefied petroleum gas mainly containing propane or butane