WO2005037962A1 - Method for producing liquefied petroleum gas containing propane or butane as main component - Google Patents

Method for producing liquefied petroleum gas containing propane or butane as main component Download PDF

Info

Publication number
WO2005037962A1
WO2005037962A1 PCT/JP2004/015215 JP2004015215W WO2005037962A1 WO 2005037962 A1 WO2005037962 A1 WO 2005037962A1 JP 2004015215 W JP2004015215 W JP 2004015215W WO 2005037962 A1 WO2005037962 A1 WO 2005037962A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
carbon
catalyst
raw material
Prior art date
Application number
PCT/JP2004/015215
Other languages
French (fr)
Japanese (ja)
Inventor
Kaoru Fujimoto
Kenji Asami
Sachio Asaoka
Xiaohong Li
Original Assignee
Japan Gas Synthesize, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gas Synthesize, Ltd. filed Critical Japan Gas Synthesize, Ltd.
Priority to JP2005514781A priority Critical patent/JPWO2005037962A1/en
Priority to CN2004800305786A priority patent/CN1867652B/en
Publication of WO2005037962A1 publication Critical patent/WO2005037962A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0485Set-up of reactors or accessories; Multi-step processes

Definitions

  • the present invention relates to a method for producing a shiroi petroleum gas whose main component is propane or butane from synthesis gas. Further, the present invention relates to a method for producing a liquid petroleum gas whose main component is pulp bread or butane from a carbon-containing raw material such as natural gas.
  • LPG Liquefied petroleum gas
  • propane-based LPG propane gas
  • propane gas is widely used as a fuel for domestic and commercial use. At present, propane gas is supplied to about 25 million households in Japan (more than 50% of all households).
  • LPG is also used as a fuel for mobile objects (mainly butane gas) such as cassette stoves and disposable lighters, industrial fuels, and automotive fuels, in addition to household and commercial fuels.
  • LPG has been 1) a method of recovering wet natural gas power, 2) a method of recovering crude oil from a stabilizing (vapor pressure adjustment) process, and 3) separating and extracting products produced in a petroleum refining process and the like. It is produced by methods.
  • LPG especially propane gas used as a fuel for home and business use, is expected to be expected in the future and is very useful if a new production method that can be implemented industrially can be established.
  • Patent Document 1 discloses a Cu—Zn-based, CrZn-based, Pd-based, etc. methanol synthesis catalyst, specifically, a CuO—ZnO—AlO catalyst, a PdZSiO catalyst. , Average hole
  • It consists of hydrogen and carbon monoxide in the presence of a mixed catalyst physically mixed with a zeolite having a diameter of about 10 A (lnm) or more, specifically a methanol conversion catalyst consisting of Y-type zeolite.
  • a method is disclosed in which a synthesis gas is reacted to produce a liquid hydrocarbon gas or a hydrocarbon mixture having a composition similar thereto.
  • Patent Document 1 specifically describes CO that coexists in syngas, including its amount.
  • Non-Patent Document 1 A method for producing C2-C4 paraffin from a synthesis gas via a methanol and dimethyl ether with a selectivity of 69-85% using a solvent is disclosed.
  • the method described in Non-Patent Document 1 does not say that the content of carbon dioxide in the obtained product is sufficiently low as in the method described in Patent Document 1 described above. , Difficult,.
  • Patent Document 1 JP-A-61-23688
  • Non-Patent Document 1 Selective synthesis of LPG from Synthesis Gas, Kaor u Fujimoto et al., Bull. Chem. Soc. Jpn., 58, p. 3059-3060 (1985) Disclosure of the Invention
  • An object of the present invention is to provide a method capable of easily and more economically producing LPG having a high concentration of propane and Z or butane from synthesis gas.
  • Another object of the present invention is to provide a method for easily and economically producing LPG having a high concentration of propane and Z or butane from a carbon-containing raw material such as natural gas. It is.
  • the present invention provides a method for producing liquid liquefied petroleum gas containing propane or butane as a main component (1-1-1 method for producing LPG).
  • the content of monoacid I ⁇ oxygen in the feed gas, the total amount of carbon monoxide and carbon dioxide and hydrogen, 3 30 mol 0/0 above the 1-1 method of LPG production is Is provided.
  • the present invention provides a method for producing liquid liquefied petroleum gas containing propane or butane as a main component (the method for producing LPG 1-2). [0015] Further, according to the present invention, in the production process of liquid and petroleum gas! /,hand,
  • the content of monoacid I ⁇ oxygen in the feed gas, the total amount of carbon monoxide and carbon dioxide and hydrogen, 3 30 mol 0/0 above the 1-2 method of LPG production is Is provided.
  • the synthesis gas obtained in the synthesis gas production process was separated from the gas power containing lower paraffin in the separation process, and was recycled as a raw material in the lower paraffin production process in the recycling process.
  • a raw material gas containing a carbon dioxide-containing gas a low-grade paraffin-containing process for producing a raffin-containing gas containing carbon dioxide, wherein the main component of the contained hydrocarbon is propane or butane;
  • the lower paraffin-containing gas obtained is also separated from the diacid carbon-containing gas containing diacid carbon, and the liquefied petroleum gas containing propane or butane as a main component is separated.
  • the present invention provides a method for producing liquid liquefied petroleum gas containing propane or butane as a main component (second LPG production method).
  • the above-mentioned second method for producing LPG is provided, wherein the content of carbon monoxide in the raw material gas is 3 to 30 mol% with respect to the total amount of carbon monoxide, carbon dioxide and hydrogen. .
  • a catalyst in the presence of a catalyst, it contains carbon monoxide, hydrogen and carbon dioxide, and the content of carbon dioxide is 5 to 5% with respect to the total amount of carbon monoxide, carbon dioxide and hydrogen.
  • a method for producing a liquid liquefied petroleum gas containing propane or butane as a main component (3-1-3 LPG production method) is provided.
  • the content of monoacid I ⁇ oxygen in the feed gas, the total amount of carbon monoxide and carbon dioxide and hydrogen, 3 30 mol 0/0 above the 3-1 method of LPG production is Is provided.
  • Propane or butane is converted from a raw material gas containing carbon monoxide, hydrogen, and carbon dioxide in the presence of a catalyst and having a carbon dioxide content of 0.2 to 1 mole per mole of carbon monoxide.
  • the method of producing LPG is Is provided.
  • the synthesis gas refers to a mixed gas containing hydrogen and carbon monoxide, and is not limited to a mixed gas composed of hydrogen and carbon monoxide.
  • the synthesis gas may be a mixed gas containing, for example, carbon dioxide, water, methane, ethane, ethylene and the like.
  • the synthesis gas obtained by reforming natural gas usually contains carbon dioxide and water vapor in addition to hydrogen and carbon monoxide.
  • the synthesis gas may be a water gas from which coal coat power is also produced.
  • lower olefins are formed by the polymerization of the carbene, and It is believed that the in is hydrogenated to lower paraffin (LPG).
  • carbon dioxide is added to the synthesis gas and used as a raw material gas.
  • the content of carbon dioxide in the raw material gas is preferably 5 to 35 mol%, more preferably 7 to 17 mol%, based on the total amount of carbon monoxide, carbon dioxide and hydrogen. preferable.
  • the content of carbon dioxide in the raw material gas should be 0.2-1 monole per 1 mol of carbon monoxide, and 0.3-0.7 monole. Especially preferred! / ⁇ .
  • LPG By setting the composition of the source gas within the above range, LPG can be produced more easily and more economically. Specifically, it is possible to significantly suppress the generation of carbon dioxide without significantly reducing the yields of hydrocarbons and propane and butane.
  • the reaction represented by the above formula (5) is an equilibrium reaction, by adding carbon dioxide to the synthesis gas to obtain a raw material gas for LPG synthesis, By-product of carbon dioxide is suppressed.
  • the synthesis gas particularly, a synthesis gas produced by a steam reforming method, a combined reforming method, or an autothermal reforming method of natural gas (methane) is preferably mixed with carbon dioxide in an amount in the above range.
  • the lower paraffin-containing gas produced by the LPG synthesis reaction usually contains by-product carbon dioxide as a by-product.
  • LPG can be produced more economically.
  • carbon dioxide added to the source gas is a by-product of the LPG synthesis reaction.
  • the amount of carbon dioxide generated in the present process that is, the amount of carbon dioxide discharged outside the system is greatly reduced. Therefore, according to the second method for producing LPG of the present invention, LPG can be produced more economically. Further, in terms of environmental friendliness, the second method for producing LPG of the present invention is more preferable.
  • FIG. 1 shows a main configuration of an example of an LPG manufacturing apparatus suitable for carrying out the first or second LPG manufacturing method of the present invention. It is a process flow diagram.
  • FIG. 2 is a process flow chart showing a main configuration of an example of an LPG manufacturing apparatus suitable for carrying out a second LPG manufacturing method of the present invention.
  • FIG. 3 is a graph showing the changes over time in the yields of hydrocarbons and carbon dioxide and the composition distribution of generated hydrocarbons in Example 3.
  • FIG. 4 is a graph showing the change over time in the yield of hydrocarbons and carbon dioxide and the composition distribution of the generated hydrocarbons in Example 4.
  • FIG. 5 is a graph showing the change over time in the yield of hydrocarbons and carbon dioxide and the composition distribution of the generated hydrocarbons in Example 5.
  • a synthesis gas is produced from a carbon-containing raw material.
  • the carbon-containing raw material and at least one selected from the group consisting of H 0, O and CO power are used.
  • syngas is produced.
  • the carbon-containing raw material is a substance containing carbon, and is a group consisting of H0, O, and CO power.
  • That can react with at least one selected to produce H and CO
  • the carbon-containing raw material known raw materials for synthesis gas can be used.
  • lower hydrocarbons such as methaneethane and the like, and natural gas, naphtha, coal and the like can be used.
  • the content of catalyst poisoning substances such as sulfur and sulfur compounds is small. If the carbon-containing raw material contains a catalyst poisoning substance, a step of removing the catalyst poisoning substance such as desulfurization can be performed before the synthesis gas production step, if necessary.
  • the synthesis gas reacts the above-described carbon-containing raw material with at least one selected from the group consisting of H0, O, and CO power.
  • Synthetic gas is produced by a known method, for example, a steam reforming method, a combined reforming method or an autothermal reforming method of natural gas (methane).
  • the content ratio (on a molar basis) of hydrogen to carbon monoxide in the synthesis gas produced in the synthesis gas production process is preferably 1.5 [H ZCO] or more, 1.8 [H ZCO]. That's all
  • the content ratio of hydrogen to carbon monoxide (based on mol) in the produced synthesis gas is preferably 3 [HZCO] or less, and more preferably 2.3 [HZCO] or less.
  • the content of carbon monoxide in the synthesis gas produced in the synthesis gas production process is as follows: 20 mol% or more is preferable, and 25 mol% or more is more preferable. Further, the content of carbon monoxide in the produced synthetic gas is preferably 40 mol% or less, more preferably 35 mol% or less.
  • the synthesis gas having the above composition is widely produced, and is used, for example, as a raw material gas for methanol synthesis.
  • a shift reactor is provided downstream of a reformer, which is a reactor for producing a synthesis gas, as described above, and a synthesis reaction is performed by a shift reaction (CO + H0 ⁇ CO + H).
  • composition can be adjusted to the above range.
  • Oxygen and the supply ratio with at least one selected from the group consisting of
  • the type of synthesis gas production catalyst and other reaction conditions may be appropriately selected.
  • a synthesis gas having a composition within the above range can be produced, for example, by the following method.
  • a reforming catalyst comprising a composite oxide having a composition represented by the following formula (I)
  • a carbon-containing raw material particularly, natural gas, methane
  • oxygen, carbon dioxide, and steam Water vapor
  • Water vapor a carbon-containing raw material
  • a carbon-containing raw material particularly, natural gas, methane
  • oxygen, carbon dioxide, and steam Water vapor
  • a (dioxide carbon + steam) Z carbon ratio of 0.5-3 an oxygen Z carbon ratio of 0.2-1
  • an outlet of the reactor By reacting at a temperature of 900-1100 ° C. and a pressure of 5-60 kg / cm 2 , the synthesis gas used in the present invention can be produced.
  • M is selected from the group consisting of Group 6A, Group 7A, Group 8 transition elements excluding Co and Ni, Group 1B, Group 2B, Group 4B and lanthanoid elements
  • the (carbon dioxide + steam) Z carbon ratio in the raw material gas introduced into the reactor is 0.5—
  • the temperature at the outlet of the reactor is preferably 950-1050 ° C.
  • the pressure at the outlet of the reactor is preferably 15-20 kgZcm 2 .
  • the space velocity of the raw material gas is usually 500 to 200,000 hr- 1 and 1000-1000OOhr- 1 power S female ⁇ , 1000-70000hr- 1 power female! / ⁇ .
  • MgO and CaO have a rock salt type crystal structure, and some of the Mg or Ca atoms located in the lattice are Co, Ni or M. It is a type of substituted solid solution that forms a single phase.
  • M is manganese, molybdenum, rhodium, ruthenium, platinum, palladium
  • it is at least one element selected from the group consisting of copper, silver, zinc, tin, lead, lanthanum and cerium.
  • M (a) is «0 ⁇ a ⁇ 0.1, preferably 0 ⁇ a ⁇ 0.05 0 ⁇ a ⁇ 0
  • M content (a) exceeds 0.1, the activity of the reforming reaction decreases.
  • the cobalt content (b) is 0 ⁇ b ⁇ 0.3, preferably 0 ⁇ b ⁇ 0.25, and more preferably 0 ⁇ b ⁇ 0.2.
  • the cobalt content (b) exceeds 0.3, it is difficult to sufficiently obtain the effect of preventing carbonaceous deposition.
  • the nickel content (c) is 0 ⁇ c ⁇ 0.3, preferably 0 ⁇ c ⁇ 0.25, and more preferably 0 ⁇ c ⁇ 0.2. If the nickel content (c) exceeds 0.3, the effect of preventing carbonaceous deposition cannot be sufficiently obtained.
  • the total amount (b + c) of the cobalt content (b) and the nickel content (c) is 0.001 ⁇ (b + c) ⁇ 0.3, and 0.001 ⁇ (b + c) ⁇ 0.25 S is preferable, and 0.001 ⁇ (b + c) ⁇ 0.2 is more preferable.
  • the total content (b + c) exceeds 0.3, the effect of preventing carbonaceous deposition is not sufficiently obtained.
  • the total content (b + c) is less than 0.001, the reaction activity decreases.
  • the total amount (d + e) of the magnesium content (d) and the calcium content (e) is 0.6 ⁇ (d + e ) ⁇ 0.9998, 0.7 ⁇ (d + e) ⁇ 0.9998, S is preferred, and 0.77 ⁇ (d + e) ⁇ 0.9998 is more preferred than force! / ⁇ .
  • the magnesium content (d) is 0 ⁇ d ⁇ 0.999, and 0.2 ⁇ d ⁇ 0.9998, and 0.337 ⁇ d ⁇ 0.9998. Better than being a power! / ,.
  • the content of canolesh (e) is 0 ⁇ e ⁇ 0.999, preferably 0 ⁇ e ⁇ 0.5, and more preferably 0 ⁇ e ⁇ 0.3.
  • the catalyst may not contain calcium.
  • the total amount (d + e) of the magnesium content (d) and the calcium content (e) is a balance between the M content (a), the cobalt content (b), and the nickel content (c). Is determined by (d + e) is a force that exerts an excellent effect on the reforming reaction at any ratio within the above range. If the content of calcium and M (a) is large, it is highly effective in suppressing carbonaceous deposition. However, there is a tendency for the catalytic activity to be lower than when magnesium is high. From the viewpoint of activity, the calcium content (e) is preferably 0.5 or less, and the M content (a) is preferably 0.1 or less.
  • the reforming catalyst used preferably has at least one of M, Co and Ni highly dispersed in the composite oxidized product.
  • the dispersion is defined as a ratio of the number of atoms exposed on the catalyst surface to the total number of atoms of the supported metal. That is, if the number of atoms of the Co, Ni or M metal element or its compound is A, and the number of these atoms exposed on the particle surface is B, BZA is the degree of dispersion.
  • Examples of a method for producing such a reforming catalyst include an impregnation-supporting method, a coprecipitation method, a sol-gel method (hydrolysis method), and a uniform precipitation method.
  • the above-mentioned reforming catalyst is subjected to an activation treatment before being used for production of synthesis gas.
  • the activation treatment is performed in the presence of a reducing gas such as hydrogen gas in a temperature range of 500 to 1000 ° C, preferably 600 to 1000 ° C, and more preferably 650 to 1000 ° C for about 0.5 to 30 hours. This is done by heating the catalyst.
  • the reducing gas may be diluted with an inert gas such as nitrogen gas.
  • This activation treatment can be performed in a reactor for performing a reforming reaction. The By this activation treatment, the catalytic activity is developed.
  • a carbon-containing raw material (particularly, natural gas or methane) is partially oxidized so that at least 600% of the carbon-containing raw material containing an unreacted carbon-containing raw material is contained.
  • a mixed gas having a temperature of ° C is generated, and the unreacted carbon-containing raw material contained in the high-temperature mixed gas also becomes a metal oxide having an electronegativity of metal ions of 13 or less.
  • Rhodium, ruthenium, iridium, palladium, and at least one metal (catalytic metal) selected from the group consisting of platinum metals are also supported on the carrier.
  • the specific surface area is 25 m 2 Zg or less.
  • a method of producing a synthesis gas by reacting carbon dioxide and Z or steam under a pressurized condition in the presence of 0.0005 to 0.1 mol% of a catalyst with respect to the oxide is used, and the electronegativity of metal ions is 13 or less.
  • At least one metal (catalytic metal) selected from the group consisting of rhodium, ruthenium, iridium, palladium, and platinum is supported on a support made of a metal oxide. The specific surface area is 25 m 2 Zg or less.
  • the carbon-containing raw material in the mixed gas is partially oxidized to obtain unreacted carbon-containing material.
  • a method of producing a mixed gas including a raw material and having a temperature of at least 600 ° C and reacting the unreacted carbon-containing raw material with carbon dioxide gas and / or steam under pressurized conditions.
  • the catalyst metal may be supported in a metal state, or may be supported in a state of a metal compound such as an oxide.
  • the metal oxide used as the carrier may be a single metal oxide! / Or a composite metal oxide.
  • the electronegativity of metal ions in the carrier metal oxide is 13 or less, preferably 12 or less, more preferably 10 or less. If the electronegativity of the metal ion in the metal oxidized product exceeds 13, carbon precipitation becomes remarkable when the catalyst is used. In addition, the lower limit of the electronegativity of metal ions in the metal oxide sulfide for a carrier is usually about 4.
  • the metal oxide is a composite metal oxide
  • the average metal ion electronegativity is used, and the value is calculated based on the electronegativity of each metal ion contained in the composite metal oxide. The sum of the values obtained by multiplying by the mole fraction of each of the oxides therein.
  • the electronegativity (Xo) of a metal uses Pauling's electronegativity. Pauling's electronegativity is described in Table 15.4 of "Ryo Fujishiro, Moore Physical Chemistry (2) (4th edition), Tokyo Kagaku Dojin, p. 707 (1974)". The electronegativity (Xi) of the metal ion in the metal oxidized product is described in detail in, for example, “Catalysis Society of Japan, Catalyst Course, Vol. 2, p. 145 (1985)”.
  • Examples of such a metal oxide include metal oxides containing one or more metals such as Mg, Ca, Ba, Zn, Al, Zr, and La.
  • Specific examples of such metal oxide films include magnesium (MgO), calcium oxide (CaO), barium oxide (BaO), zinc oxide ( ⁇ ), alumina (Al 2 O 3), and zircon ( Single metal oxides such as ZrO), lanthanum oxide (LaO), and Mg
  • the specific surface area of the catalyst to be used is 25 m 2 Zg or less, preferably 20 m 2 Zg or less, more preferably 15 mg or less, particularly preferably 10 m 2 Zg or less.
  • the lower limit of the specific surface area of the catalyst used is usually about 0.01 m 2 Zg.
  • the specific surface area of the catalyst is substantially the same as the specific surface area of the metal oxide as a carrier. Therefore, the specific surface area of the metal oxide as a carrier is not more than 25 m 2 Zg, 20m 2 Zg is preferably less instrument 15 m 2 Zg less less more preferably tool 10 mV g is particularly preferred. Further, the lower limit of the specific surface area of the metal oxide as a carrier is usually, 0. 01m is about 2 Zg.
  • the specific surface area of the metal oxide sulfide as a catalyst or a carrier is measured at a temperature of 15 ° C. by a BET method.
  • the catalyst having a specific surface area of 25 m 2 / g or less is prepared by calcining the metal oxide as a carrier at 300 to 1300 ° C, preferably 650 to 1200 ° C before supporting the catalyst metal, Thereafter, the catalyst metal support obtained can be obtained by further calcination at 600 to 1300 ° C, preferably 650 to 1200 ° C.
  • the catalyst metal can be obtained by supporting a catalyst metal on a metal oxide as a carrier and then calcining the obtained catalyst metal-supported material at 600 to 1300 ° C, preferably 650 to 1200 ° C. By controlling the firing temperature and the firing time, it is possible to control the specific surface area of the resulting metal oxide or catalyst or carrier.
  • the amount of the catalytic metal supported on the metal oxide serving as the support is 0.0005 to 0.1 mol% in terms of metal.
  • the amount of the catalytic metal supported on the metal oxide as a support is preferably 0.001 mol% or more, more preferably 0.002 mol% or more, in terms of metal. Further, the amount of the catalytic metal supported on the metal oxide as the carrier is preferably 0.09 mol% or less in terms of metal.
  • the above-mentioned catalyst has a small specific surface area of the catalyst and a very small amount of supported catalyst metal, it has a sufficient synthesis gasification activity for the carbon-containing raw material and a carbon deposition activity. Is significantly suppressed.
  • Such a catalyst can be prepared according to a known method.
  • a method for producing a catalyst for example, a metal oxide serving as a carrier is dispersed in water, a catalyst metal salt or an aqueous solution thereof is added and mixed, and then the metal oxide supporting a catalyst metal is separated from the aqueous solution. , Drying and baking (impregnation method), exhausting the metal oxide as a carrier, adding a small amount of a metal salt solution for the pore volume little by little to make the carrier surface uniformly wet, then drying and baking (Incipient-wetness method).
  • a carbon-containing raw material particularly, natural gas or methane
  • steam water vapor
  • Z or diacid carbon in the presence of the catalyst as described above. Syngas can be produced.
  • C is 600-1000.
  • C power S preferred ⁇ .
  • the reaction pressure is 5-40 kg / cm 2 G, preferably 5-30 kg / cm 2 G.
  • gas space velocity is 1, 000- 10, a OOOhr- 1, 2, 000- 8, OOOhr- 1 force frame arbitrarily.
  • the content of CO in the raw material gas introduced into the reactor is 1 mole of carbon in the carbon-containing raw material.
  • the reaction temperature is 600 to 1200.
  • C is 600-1000.
  • C power S preferred ⁇ .
  • the gas hourly space velocity (GHSV) is 1,000-10, OOOhr- 1 , and 2,000-8, OOOhr is preferable.
  • the content of steam in the raw material gas introduced into the reactor is 20-0.5 mol of steam (H 0) per mol of carbon in the carbon-containing raw material, and 10-1 mol is preferable.
  • One mole is more preferred.
  • the mixing ratio of the team and CO is not particularly limited, but H 2 O / CO (molar ratio) is usually 0.
  • the energy required for the reforming reaction is such that a part of the carbon-containing material that is a reaction material for the reforming is partially oxidized (partially burned). Is supplied by combustion heat generated at that time.
  • the partial oxidation reaction of the carbon-containing raw material is carried out under the conditions of a temperature of 600 to 1500 ° C, preferably 700 to 1300 ° C, and a pressure of 5 to 50 kgZcm 2 G, preferably 10 to 40 kgZcm 2 G. .
  • Oxygen is used as an oxidizing agent for partially oxidizing the carbon-containing raw material.
  • an oxygen-containing gas such as air or oxygen-enriched air is used.
  • the oxygen content in the raw material gas introduced into the reactor is 0.1 to 14 in terms of the atomic ratio of oxygen to carbon (OZC) in the carbon-containing raw material, and is preferably 0.5-2.
  • a high-temperature mixed gas containing at least 600 ° C, preferably 700 to 1300 ° C, containing the unreacted carbon-containing raw material is obtained.
  • a synthesis gas can be produced.
  • Diacidi carbon and Z or stee May be added to and mixed with the mixed gas obtained by the partial oxidation of the carbon-containing raw material, or may be added and mixed in advance with the carbon-containing raw material to be subjected to the partial oxidation reaction. ⁇ . In the latter case, it is possible to simultaneously perform the partial oxidation of the carbon-containing raw material and the reforming reaction.
  • the reforming reaction of the carbon-containing raw material can be carried out in various types of reactors, but is usually preferably carried out in a fixed bed system or a fluidized bed system.
  • a catalyst for lower paraffin production
  • a lower paraffin-containing gas in which the main component of the contained hydrocarbon is propane or butane from the raw material gas containing the synthesis gas obtained and carbon dioxide
  • a lower paraffin-containing gas in which the main component of the contained hydrocarbon is propane or butane from the raw material gas containing the synthesis gas obtained and carbon dioxide
  • a liquid oil gas containing propane or butane as a main component is produced.
  • the synthesis gas obtained in the above synthesis gas production step is mixed with the lower paraffin in the separation step described later.
  • a lower paraffin-containing gas containing carbon dioxide wherein the main component of the contained hydrocarbon is propane or butane. If necessary, the raw material gas may be further mixed with carbon dioxide.
  • the carbon dioxide-containing gas separated from the lower paraffin-containing gas may be entirely recycled as a raw material in the lower paraffin production step, or a part of the gas may be removed from the system. It may be extracted and the remainder may be recycled as raw materials for the lower-grade paraffin production process. Further, a part of the carbon dioxide-containing gas separated from the lower paraffin-containing gas in the separation step can be recycled to the synthesis gas production step.
  • the carbon dioxide-containing gas may contain, for example, hydrogen, carbon monoxide, ethane, ethylene, methane, and the like, in addition to carbon dioxide.
  • Examples of the catalyst for producing lower paraffins include one or more methanol synthesis catalyst components.
  • Catalysts containing one or more zeolite catalyst components are included.
  • the methanol synthesis catalyst component is a catalyst in the reaction of CO + 2H ⁇ CH OH.
  • the zeolite catalyst component refers to a zeolite that exhibits a catalytic action in a condensation reaction of methanol to a hydrocarbon and a condensation reaction of Z or dimethyl ether to a hydrocarbon.
  • methanol is synthesized from carbon monoxide and hydrogen on the methanol synthesis catalyst component.
  • dimethyl ether is also produced by the dehydration of methanol.
  • the synthesized methanol is converted into a lower olefin hydrocarbon whose main component is propylene or butene at an active site in the pores of the zeolite catalyst component.
  • carbene H C:
  • lower olefins are formed by polymerization of the carbene.
  • the generated lower-olefin is a zeolite catalyst component. From the pores and rapidly hydrogenated on the methanol synthesis catalyst component to become paraffins whose main component is propane or butane.
  • the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is preferably 0.1 or more, more preferably 0.5 or more. It is particularly preferred that the ratio is 0.8 or more. Further, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; based on mass) is preferably 3 or less, more preferably 2.5 or less. It is particularly preferable that the number is 2 or less.
  • the methanol synthesis catalyst component has a function as a methanol synthesis catalyst and a function as a catalyst for hydrogenating olefins. Further, the zeolite catalyst component has a function as a solid acid zeolite catalyst whose acidity is adjusted for the condensation reaction of methanol and Z or dimethyl ether to a hydrocarbon. For this reason, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is reflected in the relative ratio between the methanol synthesis function and the hydrogenation function of the olefin, and the function of generating hydrocarbons from methanol, possessed by the catalyst.
  • the carbon monoxide and hydrogen are sufficiently converted to methanol by a methanol synthesis catalyst component.
  • the produced methanol must be sufficiently converted by the zeolite catalyst component into olefins whose main component is propylene or butene, and the main component is propane or butane by the methanol synthesis catalyst component. I have to transfer it to paraffin.
  • the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is set to 0.1 or more, more preferably 0.5 or more. Carbon and hydrogen can be converted to methanol at a higher conversion ratio. Further, by setting the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; mass basis) to 0.8 or more, the generated methanol can be more selectively converted to propane or butane. Paraffins as main components You can make it roll.
  • the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is set to 3 or less, more preferably 2.5 or less, and particularly preferably 2 or less.
  • the produced methanol can be converted into paraffins whose main component is propane or butane at a higher conversion.
  • the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is not limited to the above range, and can be appropriately determined depending on the types of the methanol synthesis catalyst component and the zeolite catalyst component to be used.
  • Specific examples of the methanol synthesis catalyst component include Cu-Zn, Cu-Zn-Cr, and Cu-Zn.
  • Cu-Zn system such as Al system, Cu-Zn-Ag system, Cu-Zn-Mn-V system, Cu-Zn-Mn-Cr system, Cu-Zn-Mn-Al-Cr system and the third component Ni-Zn-based, Mo-based, Ni-carbon-based, and noble metal-based materials such as Pd.
  • a commercially available methanol synthesis catalyst can be used.
  • Preferable examples of the methanol synthesis catalyst component include Cu—Zn-based methanol such as copper oxide zinc oxide, copper oxide zinc oxide aluminum (alumina), copper oxide zinc oxide zinc oxide, and the like. Synthesis catalyst.
  • Pd-based methanol synthesis catalysts include, among others, those in which 0.1 to 10% by weight of Pd is supported on a carrier such as silica, 0.1 to 10% by weight of Pd on a carrier such as silica, alkali metals such as Ca, Those carrying at least one element selected from the group consisting of alkaline earth metals and lanthanoid metal elements in an amount of 5% by weight or less (excluding 0% by weight) are preferred.
  • Pd may not be contained in the form of a metal, but may be contained in the form of, for example, an oxide, a nitrate, or a salted sardine.
  • a Pd-based methanol synthesis catalyst can be formed by, for example, performing a hydrogen reduction treatment before the reaction. It is preferable to convert Pd in the metal to palladium metal.
  • olefin hydrogenation catalyst component such as Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, or Pt
  • the catalyst for hydrogenation of olefins refers to those which have a catalytic action in the hydrogenation reaction of olefins to paraffins.
  • the olefin hydrogenation catalyst component is supported on a Zn—Cr-based methanol synthesis catalyst, Pd and Z or Pt, more preferably Pd is supported on a 0.005--5 wt% Zn—Cr-based methanol synthesis catalyst.
  • the Zn—Cr-based methanol synthesis catalyst is usually a complex oxide containing Zn and Cr, and the complex oxide contains an element other than Zn, Cr and O, for example, Si, A1 and the like. It may be.
  • Pd and Pt may not be contained in the form of a metal, but may be contained in the form of an oxide, a nitrate, a chloride, or the like. In this case, it is preferable to convert Pd and Pt to metal palladium and metal platinum before the reaction, for example, by performing a hydrogen reduction treatment from the viewpoint of obtaining higher catalytic activity.
  • the zeolite catalyst component is not particularly limited as long as it is a zeolite that has a catalytic action in the condensation reaction of methanol to a hydrocarbon and the condensation reaction of Z or dimethyl ether to a hydrocarbon. Also, it is better to use commercially available products.
  • zeolite catalyst component a medium-pore zeolite or a large-pore zeolite having three-dimensional expansion of pores through which reactive molecules can diffuse is preferable.
  • these include, for example, ZSM-5, MCM-22, beta, and Y-type.
  • small-pore zeolites such as SAPO-34, which generally exhibit high selectivity and high selectivity for condensation reactions to methanol and Z or dimethyl ether or lower olefin hydrocarbons, or in pores such as mordenite
  • ZSM-5 and MCM-22 which show higher selectivity and higher selectivity for condensation reaction of methanol and Z or dimethylethercaprol with alkyl-substituted aromatic hydrocarbons, than the non-three-dimensional diffusion of reactive molecules
  • zeolites in which the reaction molecules are three-dimensionally diffused in the pores, such as medium-pore zeolites or large-pore zeolites such as the beta and Y types.
  • the medium pore zeolite has a pore diameter mainly formed by a 10-membered ring.
  • zeolite refers to zeolite
  • large pore zeolite refers to zeolite having a pore diameter of 0.66-0.76 nm formed mainly by a 12-membered ring.
  • the pore diameter of the zeolite catalyst component is more preferably 0.5 nm or more from the viewpoint of the selectivity of the C3 component and the C4 component in the gaseous product.
  • the skeletal pore diameter of the zeolite catalyst component is more preferably 0.76 nm or less from the viewpoint of suppressing generation of liquid products such as aromatic compounds such as benzene and gasoline components such as C5 component.
  • zeolite catalyst component a so-called high silica zeolite, specifically, SiO /
  • Zeolites with an Al O molar ratio of 10 150 are preferred.
  • SiO / Al O molar ratio is 10 150
  • the produced methanol can be more selectively converted to an olefin having propylene or butene as a main component, and further a paraffin having propane or butane as a main component.
  • the SiO / AlO molar ratio of zeolite should be less than 20.
  • the upper part is more preferable, and 30 or more is particularly preferable.
  • the zeolite SiO / Al O molar ratio is
  • the molar ratio of SiO / AlO is 10-150
  • Medium-pore zeolites or large-pore zeolites in which the dispersible pores are three-dimensionally spread are particularly preferred.
  • Such materials include, for example, solid acid zeolites such as USY and high silica type beta.
  • zeolite catalyst component a solid acid zeolite as described above whose acidity has been adjusted by ion exchange or the like is used.
  • the zeolite catalyst component examples include zeolites containing metals such as alkali metals, alkaline earth metals, and transition metals, zeolites ion-exchanged with these metals, and zeolites carrying these metals and the like.
  • the power of the proton type zeolite is preferred.
  • the catalytic activity is further increased, and propane and Z or butane can be produced at high conversion and high selectivity. Can be synthesized.
  • the preferred zeolite catalyst component varies depending on the methanol synthesis catalyst component to be combined.
  • USY zeolite When used in combination with a Cu-Zn-based methanol synthesis catalyst, USY zeolite is preferred as the zeolite catalyst component. USY zeolite having a SiO / AlO molar ratio of 10-150 is preferred.
  • a USY zeolite having a SiO / AlO molar ratio of 10-50.
  • the zeolite catalyst component is preferably j8-zeolite, a proton-type j8-zeola having a SiO / AlO molar ratio of 10-150.
  • the preferred zeolite catalyst component is j8-zeolite, particularly preferably the SiO 2 / Al 2 O 3 molar ratio. Is a proton type zeolite having 10-150, more preferably SiO
  • Proton-type j8-zeolites having a molar ratio of 30-50 AlO / Al O are exemplified.
  • a catalyst prepared by separately preparing a methanol synthesis catalyst component and a zeolite catalyst component and mixing them is preferable.
  • a catalyst prepared by separately preparing the methanol synthesis catalyst component and the zeolite catalyst component it is easy to optimally design the composition, structure, and physical properties for each function.
  • Some methanol synthesis catalysts require a reduction treatment to be activated before use.
  • a reduction treatment can be performed to activate the methanol synthesis catalyst component.
  • the treatment conditions of this reduction treatment can be appropriately determined according to the type of the methanol synthesis catalyst component and the like.
  • the lower paraffin-producing catalyst is produced by uniformly mixing the methanol synthesis catalyst component and the zeolite catalyst component, and then molding as necessary.
  • the method of mixing and molding the two catalyst components is not particularly limited, but a dry method is preferred. Mixing of both catalyst components by wet method • When molding, transfer of compound between both catalyst components, such as methanol synthesis catalyst The migration of the basic component in the component to the acid site in the zeolite catalyst component 'neutralization' may change the properties and the like optimized for the respective functions of both catalyst components.
  • Examples of the method for forming the catalyst include an extrusion molding method and a tablet molding method.
  • the methanol synthesis catalyst component and the zeolite catalyst component to be mixed are preferably in the form of granules, rather than in the form of powder, which preferably have a somewhat large particle diameter.
  • the powder refers to a powder having an average particle diameter of 10 / zm or less
  • the granule refers to a powder having an average particle diameter of 100m or more.
  • Granular, ie, a methanol synthesis catalyst component having an average particle diameter of 100 ⁇ m or more, and zeolite catalyst component, which is similarly condyle, ie, an average particle diameter of 100 m or more, are mixed and molded as necessary.
  • the average particle size of the methanol synthesis catalyst component and the average particle size of the zeolite catalyst component to be mixed are more preferably 200 m or more, particularly preferably 500 ⁇ m or more.
  • the average particle diameter of the methanol synthesis catalyst component and the average particle diameter of the zeolite catalyst component to be mixed are preferably 5 mm or less, more preferably 2 mm or less.
  • the average particle diameter of the methanol synthesis catalyst component to be mixed and the average particle diameter of the zeolite catalyst component are preferably the same.
  • each catalyst component is mechanically pulverized as necessary, and the average particle size is adjusted to, for example, about 0.5 to 2 m, and then uniformly mixed. Mold as needed.
  • all the desired catalyst components are added, mixed until uniform while mechanically pulverizing, and the average particle size is adjusted to, for example, about 0.5 to 2 m, and then molded if necessary.
  • each catalyst component is usually prepared in advance by a tableting method and an extrusion method. It is molded by a known molding method such as a molding method, and is mechanically pulverized if necessary, and the average particle diameter is preferably adjusted to about 100 m to 5 mm, and then both are uniformly mixed. Then, if necessary, the mixture is molded again, and the lower To manufacture a catalyst for the production of
  • the lower paraffin-producing catalyst may contain other additive components as needed as long as the desired effect is not impaired.
  • the gas fed into the reactor that is, the raw material gas, was separated from the synthesis gas and carbon dioxide obtained in the above-described synthesis gas production step, or from the lower paraffin-containing gas in the separation step described below. Gas containing carbon dioxide.
  • the content of carbon monoxide in the gas fed into the reactor is determined in consideration of securing a pressure (partial pressure) of carbon monoxide suitable for the reaction and improving the unit consumption of raw materials. It is preferably at least 3 mol%, more preferably at least 3.3 mol%, based on the total amount of carbon oxide, carbon dioxide and hydrogen.
  • the content of carbon monoxide in the gas fed into the reactor is such that the conversion rate of carbon monoxide becomes sufficiently higher, so that carbon monoxide, Is preferably 30 mol% or less, more preferably 28 mol% or less, based on the total amount of
  • the content of carbon dioxide in the gas fed into the reactor is determined based on the total amount of mono-orientated carbon, di-orientated carbon and hydrogen from the viewpoint of improving the CO unit consumption. 5 mol% or more is preferable 7 mol% or more is more preferable 8 mol% or more is particularly preferable.
  • the content of carbon dioxide in the gas sent into the reactor is controlled by carbon monoxide and carbon dioxide in order to reduce the amount of CO generated.
  • 35 mol% or less is preferable, and 30 mol% or less is more preferable, and 17 mol% or less is especially preferable with respect to the total amount of carbon and hydrogen.
  • the content of carbon dioxide in the gas fed into the reactor is preferably 0.2 mol or more per 1 mol of carbon dioxide from the viewpoint of suppressing the amount of carbon dioxide generated.
  • the magus is more preferably at least 0.3 mol.
  • the content of carbon dioxide in the gas fed into the reactor is preferably 1 mol or less, more preferably 0.7 mol or less, based on 1 mol of carbon dioxide from the viewpoint of productivity. preferable.
  • the content of hydrogen in the gas fed into the reactor is preferably 1.2 mol or more per 1 mol of carbon monoxide from the viewpoint that carbon monoxide reacts more sufficiently. 1. More than 5 moles is more preferred. Further, the content of hydrogen in the gas fed into the reactor is more preferably 3.5 mol or less, more preferably 3 mol or less, per 1 mol of carbon monoxide from the viewpoint of economy.
  • the content of the carbon dioxide-containing gas in the gas fed into the reactor is such that the composition of the gas fed into the reactor is preferably within the above range. It can be determined as appropriate.
  • the gas fed into the reactor may include, for example, water, methane, ethane, ethylene, an inert gas, and the like, in addition to carbon monoxide, hydrogen, and carbon dioxide.
  • the gas sent to the reactor may be the synthesis gas and carbon dioxide obtained in the above-mentioned synthesis gas production process, or the carbon dioxide-containing gas in which the lower paraffin-containing gas power is also separated in the separation process described below.
  • the gas may contain other components as necessary.
  • the gas fed into the reactor is the synthesis gas obtained in the above-described synthesis gas production step, and the dioxin-containing carbon-containing gas separated from the lower paraffin-containing gas in the separation step described below. If necessary, predetermined components may be separated.
  • the reaction temperature is preferably 270 ° C or higher, more preferably 300 ° C or higher, since the methanol synthesis catalyst component and the zeolite catalyst component each show sufficiently higher activities. Further, the reaction temperature is preferably 420 ° C or lower, more preferably 400 ° C or lower, in view of the limit temperature for use of the catalyst and the ease of removing and recovering the reaction heat.
  • reaction temperature is preferably 310 ° C or higher, more preferably 330 ° C or higher. Also in this case, the reaction temperature is preferably 420 ° C or lower, more preferably 400 ° C or lower.
  • a suitable reaction temperature depends on the type of the catalyst to be used.
  • the reaction temperature is too high! /, More preferably, specifically, 340 ° C. or lower.
  • the reaction temperature is particularly preferably 340 ° C. or higher.
  • the reaction pressure is more preferably 2 MPa or more, which is preferably IMPa or more, since the methanol synthesis catalyst component exhibits a sufficiently high activity.
  • the reaction pressure is 10
  • MPa or less is preferred. 7 MPa or less is more preferred.
  • Gas hourly space velocity in terms of economic efficiency, or 500 hr _1 is preferable instrument 2000Hr- 1 or more is more preferable.
  • the gas space velocity depends on the methanol synthesis catalyst component and the zeolite catalyst component.
  • LOOOOhr- 1 hereinafter is preferably tool 5000Hr- 1 or less is more preferable.
  • the gas fed into the reactor is split and fed into the reactor, thereby controlling the reaction temperature.
  • the reaction can be carried out in a fixed bed, a fluidized bed, a moving bed, or the like.
  • fixed beds there are a multi-stage reactor such as an internal multi-stage reactor, a multi-tube reactor, a multi-stage reactor including multiple heat exchanges, a multi-stage cooling radial flow system, a double-tube heat system, and the like.
  • Other reactors such as an exchange system, a built-in cooling coil system, and a mixed flow system can be used.
  • the catalyst for producing lower paraffin can be used after being diluted with an inert and stable heat conductor, such as silica or alumina, for the purpose of controlling the temperature. Further, the catalyst for producing lower paraffin can be used by coating it on the heat exchange surface for the purpose of controlling the temperature.
  • an inert and stable heat conductor such as silica or alumina
  • the liquid-shape petroleum gas obtained in the liquid-shape petroleum gas production process and the lower paraffin-containing gas before separation of water and the like, or the lower paraffin-containing gas obtained in the lower paraffin-producing process are included.
  • the main component of the hydrocarbons used is propane or butane. From the viewpoint of the liquid-riding properties, the larger the total content of propane and butane in the liquid-riding petroleum gas or the lower paraffin-containing gas, the better. According to the present invention, it is possible to obtain a liquid crystal gas or a lower paraffin-containing gas having a total content of propane and butane of 75% or more, more preferably 80% or more (including 100%) based on carbon.
  • the liquid paraffin-containing gas obtained in the liquid paraffin production process and the lower paraffin-containing gas before separation of water and the like, or in the lower paraffin production process preferably contains more propane than butane from the viewpoint of flammability and vapor pressure characteristics.
  • LPG Liquefied petroleum gas
  • a lower paraffin-containing gas in which the main component of the hydrocarbon contained is propane or butane is produced, and if necessary, water or propane is produced.
  • Liquefied petroleum gas (LPG) is produced by separating low boiling components that are substances having a boiling point or sublimation point lower than the boiling point, and high boiling components that are substances having a boiling point higher than that of butane. Separation of water, low-boiling components and high-boiling components can be performed by a known method. In addition, pressurization and / or cooling may be performed as necessary in order to obtain liquid gas.
  • the content of low boiling components in LPG is reduced to 5 mol% or less (including 0 mol%) by separation.
  • the total content of propane and butane in the LPG thus produced can be 95 mol% or more, and further 98 mol% or more (including 100 mol%).
  • the content of propane in the LPG produced is 60 mol% or more, further it can be 65 mol% or more (including 100 mol 0/0).
  • an LPG of the present invention it is possible to produce an LPG having a composition suitable for propane gas widely used as a fuel for home and business use.
  • the separation step of the second LPG production method in the above-mentioned lower paraffin production step, water and the like are separated from the lower paraffin-containing gas obtained as necessary, and then the carbon dioxide is removed. Is separated to obtain a liquefied petroleum gas (LPG) containing propane or butane as a main component. Pressurization and Z or cooling may be performed as necessary in order to obtain a liquid oil gas.
  • LPG liquefied petroleum gas
  • the lower paraffin-containing gas obtained in the lower paraffin production step includes, in addition to carbon dioxide, unreacted raw materials such as hydrogen and carbon monoxide, and by-products such as ethane, methane, and ethylene. Contains low boiling components with low boiling points or sublimation points Be turned. These low-boiling components may also be separated at the same time as carbon dioxide-containing gas.
  • Separation of the carbon dioxide-containing gas can be performed by a known method such as gas-liquid separation, absorption separation, and distillation. More specifically, the separation can be performed by gas-liquid separation or absorption separation at normal temperature under pressure, gas-liquid separation or absorption separation by cooling, or a combination thereof. Further, it can be carried out by membrane separation or adsorption separation, and can also be carried out by combining these with gas-liquid separation, absorption separation, and distillation.
  • Lower paraffin-containing gas power From the separated carbon dioxide-containing gas, components other than carbon dioxide, for example, the above-mentioned low-boiling components can be separated as necessary. Separation of low-boiling components and the like can be performed by a known method.
  • the lower paraffin-containing gas Before separating the carbon dioxide-containing gas or after separating the carbon dioxide-containing gas, the lower paraffin-containing gas is converted into a substance having a boiling point higher than that of butane, such as a high boiling point component, for example, a high boiling point component. Paraffin gas or the like may be separated. Separation of the high boiling component can be performed by a known method such as gas-liquid separation, absorption separation, and distillation.
  • the content of low boiling components in LPG is preferably 5 mol% or less (including 0 mol%) by separation.
  • the content of propane in the LPG produced is 60 mol% or more, further it can be 65 mol% or more (including 100 mol 0/0).
  • the second LPG production method of the present invention it is possible to produce LPG having a composition suitable for propane gas which is widely used as a fuel for home and business use.
  • the carbon dioxide-containing gas separated from the lower paraffin-containing gas in the above separation process is recycled to the lower paraffin production process.
  • All of the carbon dioxide-containing gas separated from the lower paraffin-containing gas may be recycled to the lower-paraffin production process, or part of the gas may be extracted to the outside of the system or recycled to the synthesis gas production process. The rest may be recycled to the lower paraffin manufacturing process.
  • the carbon dioxide-containing gas can be separated into only a desired component, that is, carbon dioxide, and recycled to the lower paraffin production process.
  • FIG. 1 shows an example of an LPG production apparatus suitable for carrying out the first LPG production method of the present invention.
  • methane is supplied to the reformer 11 via the line 13 as a carbon-containing raw material.
  • steam is supplied to the line 13 to perform steam reforming.
  • the reformer 11 includes a reforming catalyst 11a. Further, the reformer 11 includes a heating means (not shown) for supplying heat required for reforming.
  • methane is reformed in the presence of the reforming catalyst 11a, and a synthesis gas containing hydrogen, carbon monoxide, carbon dioxide, and water vapor is obtained.
  • the synthesis gas thus obtained is supplied to the reactor 12 via the lines 14 and 15. Also, carbon dioxide is supplied to the line 15 via the line 16.
  • the reactor 12 is provided with a lower paraffin production catalyst 12a.
  • a lower paraffin-containing gas containing propane and butane is synthesized from a raw material gas containing synthesis gas and carbon dioxide in the presence of a lower paraffin-producing catalyst 12a.
  • the synthesized lower paraffin-containing gas is subjected to pressurization and cooling after removing water and the like as necessary, and LPG as a product is obtained from line 17.
  • LPG may remove hydrogen and the like by gas-liquid separation or the like.
  • the LPG manufacturing apparatus is provided with a booster, a heat exchange, a valve, an instrumentation control device, and the like as necessary.
  • FIG. 2 shows an example of an LPG production apparatus suitable for carrying out the second LPG production method of the present invention.
  • methane is supplied to the reformer 21 via the line 24 as a carbon-containing raw material. Also, although not shown, steam is supplied to the line 24 for performing steam reforming.
  • a reforming catalyst 21a is provided in the reformer 21. Further, the reformer 21 includes a heating means (not shown) for supplying heat required for reforming.
  • methane is reformed in the presence of the reforming catalyst 21a, and a synthesis gas containing hydrogen, carbon monoxide, carbon dioxide, and water vapor is obtained.
  • the synthesis gas thus obtained is supplied to the reactor 22 via the lines 25 and 26. Further, a carbon dioxide-containing gas containing carbon dioxide is supplied from a separator 23 to a line 26 via a recycling line 29.
  • the reactor 22 is provided with a lower paraffin production catalyst 22a. In the reactor 22, in the presence of the lower paraffin production catalyst 22a, a raw paraffin containing propane and butane, and a lower paraffin-containing gas containing butane are synthesized.
  • the synthesized lower-paraffin-containing gas is supplied to a separator 23, which is a distillation column, through a line 27 after removing water and the like as necessary. Then, a substance having a boiling point equal to or higher than the boiling point of propane, that is, LPG as a product, is obtained by pressure distillation at room temperature, and a substance having a boiling point or sublimation point lower than the boiling point of propane, that is, a low boiling point. The components are obtained as residual gas. In this way, a product LPG is obtained from the line 28. On the other hand, the residual gas (low-boiling point component) obtained from the top is recycled to the reactor 22 through the recycling line 29 as a carbon dioxide-containing gas containing carbon dioxide.
  • the LPG manufacturing apparatus is provided with a booster, a heat exchange, a valve, an instrumentation control device, and the like as necessary.
  • LPG was manufactured using the LPG manufacturing apparatus shown in FIG.
  • the reforming catalyst catalyst for producing synthesis gas
  • the catalyst for producing lower paraffin those prepared as follows were used.
  • Ru-impregnated body was obtained by repeatedly dropping an aqueous solution of ruthenium (III) chloride hydrate (Ru content: 1.0% by weight) into calcined MgO little by little and shaking. Then, the Ru-impregnated body was dried in air at 120 ° C. for 2.5 hours, and then calcined in air at 920 ° C. for 2 hours to obtain a reforming catalyst (Ru-supported MgO catalyst). The resulting R u supporting MgO catalyst, the supported amount of Ru is 0. 0 6 mol% with 1. 5 X 10- 3 g, mol in terms relative to MgO lg, surface area of 9. 6 m 2 Zg .
  • methanol synthesis catalyst component a commercially available Cu—Zn methanol synthesis catalyst (manufactured by Nippon Zoohemie Co., Ltd.) that was mechanically powdered was used.
  • a zeolite catalyst component a separately prepared proton type ZSM-5 zeolite having a SiO / AlO molar ratio of 14.5 (pore diameter: short).
  • This methanol synthesis catalyst component and a zeolite catalyst component of the same weight are uniformly mixed, press-molded and sized, and then reduced in a hydrogen stream at 300 ° C for 3 hours to produce lower paraffin. A catalyst was obtained.
  • Synthesis was added 18Z 100 fold volume of the secondary Sani ⁇ carbon gas to a synthesis gas obtained gas production step Te Contact ⁇ , hydrogen 52.6 mole 0/0, carbon monoxide 25.9 mole 0 / 0 , carbon dioxide 1
  • a gas consisting of 5.5 mol% and methane 6.0 mol% was passed through the lower paraffin production catalyst layer.
  • the reaction conditions were as follows: reaction temperature 325 ° C, reaction pressure 2.0MPa, GHSV3000hr- 1.
  • the product (lower paraffin-containing gas) was analyzed by gas chromatography to find that the conversion of carbon monoxide to hydrocarbons was 50%, and the conversion of carbon monoxide to carbon dioxide was a shift reaction. 0%.
  • the generated hydrocarbons were propane and butane in 75% on a carbon basis, with propane and butane being 56% propane and 4% butane power on a carbon basis.
  • LPG was produced in the same manner as in Example 1 except that a gas containing lower paraffin was produced without supplying carbon dioxide from the line 16.
  • the gas containing lower paraffin before the separation of the low-boiling components was analyzed by gas chromatography.
  • the conversion of carbon monoxide was 70%, and the shift reaction of carbon monoxide to carbon dioxide was confirmed.
  • the conversion ratio was 35%, and the conversion ratio to hydrocarbon was 35%.
  • 76% was propane and butane on a carbon basis, and the breakdown of propane and butane was 55% for propane and 45% for butane on a carbon basis.
  • LPG was manufactured using the LPG manufacturing apparatus shown in FIG.
  • the reforming catalyst catalyst for producing synthesis gas
  • the catalyst for producing lower paraffin those prepared in the same manner as in Example 1 were used.
  • the reaction conditions were a reaction temperature of 870 ° C., a reaction pressure of 2. lMPa, and a GHSV (gas hourly space velocity) of 2000 hr- 1 .
  • the product (synthesis gas) was analyzed by gas chromatography to find that the composition was 62 mol% of hydrogen, 31 mol% of carbon monoxide, 4.8 mol% of carbon dioxide, and 2.2 mol% of methane.
  • reaction conditions were a reaction temperature of 325 ° C, a reaction pressure of 2. OMPa, and GHSV of 3000 hr- 1 .
  • the separated carbon dioxide-containing gas was pressurized to 2.5MPa by a compressor, and then recycled as a raw material in a low-grade paraffin production process.
  • Example 2 except that the gas containing carbon dioxide separated from the gas containing lower paraffin was not recycled to the reactor 22 by the recycling line 29 and the gas containing lower paraffin was produced.
  • LPG was produced in the same manner as in 2.
  • a catalyst (also referred to as “PdZZn—Cr”) prepared as follows, in which 1% by weight of Pd was supported on a Zn—Cr-based methanol synthesis catalyst, was mechanically powdered. (Average particle size: 0.7 m) was used.
  • a Pd-containing solution was prepared by adding 1 ml of water.
  • the prepared Pd-containing solution was charged with 20 g of a Zn—Cr-based methanol synthesis catalyst, and impregnated with the Pd-containing solution.
  • the Zn-Cr-based methanol synthesis catalyst impregnated with the Pd-containing solution was dried in a dryer at 120 ° C for 12 hours, and further calcined in air at 450 ° C for 2 hours.
  • Into a methanol synthesis catalyst component was prepared by adding 1 ml of water.
  • the prepared Pd-containing solution was charged with 20 g of a Zn—Cr-based methanol synthesis catalyst, and impregnated with the Pd-containing solution.
  • the Zn-Cr-based methanol synthesis catalyst impregnated with the Pd-containing solution was dried in a dryer at 120 ° C for 12 hours, and further calcined in air at 450 ° C for 2 hours.
  • zeolite catalyst component a commercially available proton type 13-having a molar ratio of SiO ZA1 O of 37.1 was used. Zeolite (manufactured by Tosoichi Co., Ltd.) mechanically powdered (average particle size: 0.7 m) was used.
  • the catalyst was reduced in a hydrogen stream at 400 ° C. for 3 hours before the reaction.
  • LPG synthesis reaction was performed by flowing through the catalyst layer at a space velocity of 2000 hr— ⁇ WZF: ⁇ Og'hZmol).
  • Fig. 4 shows the results (yields of hydrocarbons and carbon dioxide and changes over time in the composition distribution of generated hydrocarbons).
  • the addition of diacid carbon to the raw material gas did not significantly reduce the yields of hydrocarbons and propane and butane. The production of carbon was significantly suppressed.
  • a catalyst (also referred to as “PdZZn—Cr”) prepared as follows, in which 1% by weight of Pd was supported on a Zn—Cr-based methanol synthesis catalyst, was mechanically powdered. (Average particle size: 0.7 m) was used.
  • a Pd-containing solution was prepared by adding 1 ml of water.
  • the prepared Pd-containing solution was charged with 20 g of a Zn—Cr-based methanol synthesis catalyst, and impregnated with the Pd-containing solution.
  • the Zn-Cr-based methanol synthesis catalyst impregnated with the Pd-containing solution was dried in a dryer at 120 ° C for 12 hours, and further calcined in air at 450 ° C for 2 hours.
  • Into a methanol synthesis catalyst component was prepared by adding 1 ml of water.
  • the prepared Pd-containing solution was charged with 20 g of a Zn—Cr-based methanol synthesis catalyst, and impregnated with the Pd-containing solution.
  • the Zn-Cr-based methanol synthesis catalyst impregnated with the Pd-containing solution was dried in a dryer at 120 ° C for 12 hours, and further calcined in air at 450 ° C for 2 hours.
  • zeolite catalyst component As a zeolite catalyst component, a commercially available proton type 13-having a molar ratio of SiO ZA1 O of 37.1 was used.
  • Zeolite manufactured by Tosoichi Co., Ltd. loaded with 1% by weight of Pd and mechanically powdered (average particle size: 0.7 m) was used.
  • Pd was supported on a / 3-zeolite as follows.
  • the solution was dissolved in 10 ml. Further, 150 ml of ion-exchanged water was added to this solution to prepare a solution to be used for ion exchange.
  • the ion exchange was carried out using 10 g of 13-zeolite by heating and stirring at 60 to 70 ° C for 6 hours.
  • the ion-exchanged sample was repeatedly filtered and washed with ion-exchanged water until chlorine ions were no longer observed in the filtrate, dried at 120 ° C for 12 hours, and calcined in air at 500 ° C for 2 hours.
  • the catalyst was reduced in a hydrogen stream at 400 ° C. for 3 hours before the reaction.
  • a raw material gas consisting of hydrogen, carbon monoxide and carbon dioxide was passed through the catalyst layer at a reaction temperature of 400 ° C and a reaction pressure of 5.
  • IMPa to perform an LPG synthesis reaction.
  • the composition of the source gas and WZF were changed as follows during the reaction.
  • LPG having a high propane and / or butane concentration can be produced more easily and more economically from a carbon-containing raw material such as natural gas or a synthesis gas. Can be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A method for producing a liquefied petroleum gas containing propane or butane as a main component, which comprises preparing a synthesis gas from a carbon-containing raw material such as natural gas, and then forming the LPG gas containing propane or butane as a main component from a material gas containing the above resulting synthesis gas and carbon dioxide in the presence of a catalyst. The method allows the production of LPG with more ease with improved economy.

Description

明 細 書  Specification
プロパンまたはブタンを主成分とする液ィ匕石油ガスの製造方法  Method for producing liquid distillery petroleum gas containing propane or butane as a main component
技術分野  Technical field
[0001] 本発明は、合成ガスから、主成分がプロパンまたはブタンである液ィ匕石油ガスを製 造する方法に関する。また、本発明は、天然ガス等の含炭素原料から、主成分がプ 口パンまたはブタンである液ィ匕石油ガスを製造する方法に関する。  [0001] The present invention relates to a method for producing a shiroi petroleum gas whose main component is propane or butane from synthesis gas. Further, the present invention relates to a method for producing a liquid petroleum gas whose main component is pulp bread or butane from a carbon-containing raw material such as natural gas.
背景技術  Background art
[0002] 液化石油ガス (LPG)は、常温常圧下ではガス状を呈する石油系もしくは天然ガス 系炭化水素を圧縮し、あるいは同時に冷却して液状にしたものをいい、その主成分 はプロパンまたはブタンである。液体の状態で貯蔵および輸送が可能な LPGは可搬 性に優れ、供給にパイプラインを必要とする天然ガスとは違い、ボンベに充填した状 態でどのような場所にでも供給することができるという特徴がある。そのため、プロパン を主成分とする LPG、すなわちプロパンガスが、家庭用 ·業務用の燃料として広く用 いられている。現在、日本国内においても、プロパンガスは約 2, 500万世帯(全世帯 の 50%以上)に供給されている。また、 LPGは、家庭用'業務用燃料以外にも、カセ ットコンロ、使い捨てライター等の移動体用の燃料 (主に、ブタンガス)、工業用燃料、 自動車用燃料としても使用されて ヽる。  [0002] Liquefied petroleum gas (LPG) refers to a gaseous petroleum or natural gas-based hydrocarbon that exhibits a gaseous state at normal temperature and pressure, or is simultaneously cooled to a liquid state, and its main component is propane or butane. It is. LPG, which can be stored and transported in a liquid state, is highly portable and can be supplied anywhere in a cylinder filled state unlike natural gas, which requires a pipeline for supply There is a feature. For this reason, propane-based LPG, that is, propane gas, is widely used as a fuel for domestic and commercial use. At present, propane gas is supplied to about 25 million households in Japan (more than 50% of all households). LPG is also used as a fuel for mobile objects (mainly butane gas) such as cassette stoves and disposable lighters, industrial fuels, and automotive fuels, in addition to household and commercial fuels.
[0003] 従来、 LPGは、 1)湿性天然ガス力 回収する方法、 2)原油のスタビラィズ (蒸気圧 調整)工程から回収する方法、 3)石油精製工程などで生成されるものを分離'抽出 する方法などにより生産されている。  [0003] Conventionally, LPG has been 1) a method of recovering wet natural gas power, 2) a method of recovering crude oil from a stabilizing (vapor pressure adjustment) process, and 3) separating and extracting products produced in a petroleum refining process and the like. It is produced by methods.
[0004] LPG、特に家庭用 ·業務用の燃料として用いられるプロパンガスは将来的にも需要 が見込め、工業的に実施可能な、新規な製造方法を確立できれば非常に有用であ る。  [0004] LPG, especially propane gas used as a fuel for home and business use, is expected to be expected in the future and is very useful if a new production method that can be implemented industrially can be established.
[0005] LPGの製造方法として、特許文献 1には、 Cu— Zn系、 Cr Zn系、 Pd系等のメタノ ール合成触媒、具体的には、 CuO-ZnO-Al O触媒、 PdZSiO触媒と、平均孔  [0005] As a method for producing LPG, Patent Document 1 discloses a Cu—Zn-based, CrZn-based, Pd-based, etc. methanol synthesis catalyst, specifically, a CuO—ZnO—AlO catalyst, a PdZSiO catalyst. , Average hole
2 3 2  2 3 2
径が略 10A ( lnm)以上のゼォライト、具体的には Y型ゼオライトよりなるメタノール転 化触媒とを物理的に混合した混合触媒の存在下で、水素および一酸化炭素よりなる 合成ガスを反応させて、液ィ匕石油ガス、あるいは、これに近い組成の炭化水素混合 物を製造する方法が開示されている。 It consists of hydrogen and carbon monoxide in the presence of a mixed catalyst physically mixed with a zeolite having a diameter of about 10 A (lnm) or more, specifically a methanol conversion catalyst consisting of Y-type zeolite. A method is disclosed in which a synthesis gas is reacted to produce a liquid hydrocarbon gas or a hydrocarbon mixture having a composition similar thereto.
[0006] し力しながら、上記の特許文献 1に記載の方法により得られる生成物中の二酸ィ匕炭 素の含有量は十分に低いとは言い難い。炭化水素の収率が最も高い 36. 0%の時 の二酸化炭素の収率は 33. 9%である。炭化水素の収率が 35. 7%の時の二酸ィ匕 炭素の収率は 30. 7%である。二酸化炭素は利用価値が低ぐまた、その再利用も 困難であるため、二酸ィ匕炭素が多量に副生することは経済的に好ましくない。  [0006] However, it is difficult to say that the content of carbon dioxide in the product obtained by the method described in Patent Document 1 is sufficiently low. When the yield of hydrocarbons is the highest at 36.0%, the yield of carbon dioxide is 33.9%. When the yield of hydrocarbon is 35.7%, the yield of carbon dioxide is 30.7%. Since carbon dioxide has a low utility value and is difficult to reuse, it is not economically preferable that a large amount of carbon dioxide is by-produced.
[0007] 上記の特許文献 1に記載の実施例では、液化石油ガス (LPG)合成の原料ガスとし て、 H ZCOのモル比が 2Z1である合成ガスを用いている。そして、特許文献 1には [0007] In the example described in Patent Document 1 described above, a synthesis gas having a HZCO molar ratio of 2Z1 is used as a raw material gas for liquefied petroleum gas (LPG) synthesis. And patent document 1
2 2
、本実施例ではいずれの触媒系を用いても炭化水素に匹敵する量の二酸ィ匕炭素を 生成するが、これは炭化水素に伴って生成した水が未反応の一酸ィ匕炭素と COシフ ト反応をするためであり(CO+H 0→CO +H )、予め適当量の COを合成ガス中  However, in this example, even when any of the catalyst systems was used, an amount of dioxygenated carbon equivalent to that of hydrocarbons was produced. This is for performing a CO shift reaction (CO + H 0 → CO + H), and an appropriate amount of CO
2 2 2 2  2 2 2 2
に共存させておけばその副生を制御できると記載されている。し力しながら、特許文 献 1には、合成ガス中に共存させておく COに関し、その量を含めて何ら具体的に記  It is described that the co-production can be controlled by co-existing with. However, Patent Document 1 specifically describes CO that coexists in syngas, including its amount.
2  2
載されていない。  Not listed.
[0008] また、 LPGの製造方法として、非特許文献 1には、メタノール合成用触媒である 4w t%Pd/SiO、 Cu— Zn— A1混合酸化物 [Cu:Zn:Al=40 : 23 : 37 (原子比)]または  [0008] As a method for producing LPG, Non-Patent Document 1 discloses 4wt% Pd / SiO, a mixed oxide of Cu—Zn—A1 [Cu: Zn: Al = 40: 23: 37 (atomic ratio)] or
2  2
Cu系低圧メタノール合成用触媒 (商品名: BASF S3— 85)と、 450°Cで 1時間水蒸 気処理した、 SiO ZA1 O = 7. 6の高シリカ Y型ゼオライトと力も成るハイブリッド触  Hybrid catalyst consisting of Cu-based low-pressure methanol synthesis catalyst (trade name: BASF S3-85), water-steamed at 450 ° C for 1 hour, and high silica Y-type zeolite (SiO ZA1 O = 7.6)
2 2 3  2 2 3
媒を用い、合成ガスからメタノール、ジメチルエーテルを経由して C2— C4のパラフィ ンを選択率 69— 85%で製造する方法が開示されている。し力しながら、この非特許 文献 1に記載の方法は、上記の特許文献 1に記載の方法と同様、得られる生成物中 の二酸ィヒ炭素の含有量が十分に低 、とは言 、難 、。  A method for producing C2-C4 paraffin from a synthesis gas via a methanol and dimethyl ether with a selectivity of 69-85% using a solvent is disclosed. However, the method described in Non-Patent Document 1 does not say that the content of carbon dioxide in the obtained product is sufficiently low as in the method described in Patent Document 1 described above. , Difficult,.
[0009] このように、合成ガス力も LPGを製造するプロセス、さらには、天然ガス等の含炭素 原料力 LPGを製造するプロセスの実用化のためには、経済性の向上、より具体的 には、 LPG合成における二酸ィ匕炭素の副生を抑制することが望まれている。 [0009] As described above, in order to commercialize the process for producing LPG, the process for producing LPG, and also for the process for producing LPG for carbon-containing raw materials such as natural gas, the economic efficiency must be improved, and more specifically, LPG must be improved. It is desired to suppress the by-product of carbon dioxide in LPG synthesis.
特許文献 1 :特開昭 61-23688号公報  Patent Document 1: JP-A-61-23688
非特干文献 1: Selective synthesis of LPG from Synthesis Gas , Kaor u Fujimoto et al. , Bull. Chem. Soc. Jpn. , 58, p. 3059—3060 (1985) 発明の開示 Non-Patent Document 1: Selective synthesis of LPG from Synthesis Gas, Kaor u Fujimoto et al., Bull. Chem. Soc. Jpn., 58, p. 3059-3060 (1985) Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 本発明の目的は、合成ガスから、プロパンおよび Zまたはブタンの濃度が高い LP Gを、より容易に、より経済的に製造することができる方法を提供することである。 [0010] An object of the present invention is to provide a method capable of easily and more economically producing LPG having a high concentration of propane and Z or butane from synthesis gas.
[ooii] 本発明の他の目的は、天然ガスなどの含炭素原料から、プロパンおよび Zまたは ブタンの濃度が高い LPGを、より容易に、より経済的に製造することができる方法を 提供することである。  [ooii] Another object of the present invention is to provide a method for easily and economically producing LPG having a high concentration of propane and Z or butane from a carbon-containing raw material such as natural gas. It is.
課題を解決するための手段  Means for solving the problem
[0012] 本発明によれば、 According to the present invention,
ω含炭素原料から合成ガスを製造する合成ガス製造工程と、  a synthesis gas production process for producing a synthesis gas from an ω carbon-containing raw material,
(ii)触媒の存在下、合成ガス製造工程にお ヽて得られた合成ガスと二酸化炭素と を含み、二酸化炭素の含有量が、一酸ィ匕炭素と二酸ィ匕炭素と水素との合計量に対し て、 5— 35モル%である原料ガスから、プロパンまたはブタンを主成分とする液化石 油ガスを製造する液化石油ガス製造工程と  (ii) In the presence of a catalyst, contains the synthesis gas obtained in the synthesis gas production step and carbon dioxide, and the content of carbon dioxide is the same as that of mono-orientated carbon, di-orientated carbon and hydrogen. A liquefied petroleum gas production process for producing a liquefied petroleum gas containing propane or butane as a main component from a source gas that is 5 to 35 mol% based on the total
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法 (第 1 - 1の LPGの製造方法)が提供される。  The present invention provides a method for producing liquid liquefied petroleum gas containing propane or butane as a main component (1-1-1 method for producing LPG).
[0013] また、本発明によれば、液ィ匕石油ガス製造工程にお!/、て、 [0013] Further, according to the present invention, the liquid-dyeing petroleum gas production process! /,hand,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル0 /0である上記の第 1—1の LPGの製造方法が提供される。 The content of monoacid I匕炭oxygen in the feed gas, the total amount of carbon monoxide and carbon dioxide and hydrogen, 3 30 mol 0/0 above the 1-1 method of LPG production is Is provided.
[0014] また、本発明によれば、 According to the present invention,
(i)含炭素原料から合成ガスを製造する合成ガス製造工程と、  (i) a synthesis gas production process of producing a synthesis gas from a carbon-containing raw material,
(ii)触媒の存在下、合成ガス製造工程にお ヽて得られた合成ガスと二酸化炭素と を含み、二酸化炭素の含有量が、一酸ィ匕炭素 1モルに対して、 0. 2— 1モルである 原料ガスから、プロパンまたはブタンを主成分とする液ィ匕石油ガスを製造する液ィ匕石 油ガス製造工程と  (ii) In the presence of a catalyst, contains the synthesis gas obtained in the synthesis gas production process and carbon dioxide, and the content of carbon dioxide is 0.2— A liquid gas production process for producing liquid gas containing propane or butane as a main component from a 1 mol raw material gas;
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法 (第 1 - 2の LPGの製造方法)が提供される。 [0015] また、本発明によれば、液ィ匕石油ガス製造工程にお!/、て、 The present invention provides a method for producing liquid liquefied petroleum gas containing propane or butane as a main component (the method for producing LPG 1-2). [0015] Further, according to the present invention, in the production process of liquid and petroleum gas! /,hand,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル0 /0である上記の第 1—2の LPGの製造方法が提供される。 The content of monoacid I匕炭oxygen in the feed gas, the total amount of carbon monoxide and carbon dioxide and hydrogen, 3 30 mol 0/0 above the 1-2 method of LPG production is Is provided.
[0016] さらに、本発明によれば、 Further, according to the present invention,
(i)含炭素原料から合成ガスを製造する合成ガス製造工程と、  (i) a synthesis gas production process of producing a synthesis gas from a carbon-containing raw material,
(ii)触媒の存在下、合成ガス製造工程において得られた合成ガスと、分離工程に ぉ 、て低級パラフィン含有ガス力も分離され、リサイクル工程にぉ 、て低級パラフィン 製造工程の原料としてリサイクルされた二酸化炭素含有ガスとを含む原料ガスから、 二酸化炭素を含み、含まれる炭化水素の主成分がプロパンまたはブタンである低級 ノ《ラフィン含有ガスを製造する低級パラフィン製造工程と、  (ii) In the presence of the catalyst, the synthesis gas obtained in the synthesis gas production process was separated from the gas power containing lower paraffin in the separation process, and was recycled as a raw material in the lower paraffin production process in the recycling process. From a raw material gas containing a carbon dioxide-containing gas, a low-grade paraffin-containing process for producing a raffin-containing gas containing carbon dioxide, wherein the main component of the contained hydrocarbon is propane or butane;
(iii)低級パラフィン製造工程にお 、て得られた低級パラフィン含有ガス力も二酸ィ匕 炭素を含む二酸ィ匕炭素含有ガスを分離し、プロパンまたはブタンを主成分とする液 化石油ガスを得る分離工程と、  (iii) In the lower paraffin production step, the lower paraffin-containing gas obtained is also separated from the diacid carbon-containing gas containing diacid carbon, and the liquefied petroleum gas containing propane or butane as a main component is separated. A separating step to obtain;
(iv)分離工程にぉ 、て低級パラフィン含有ガスから分離された二酸化炭素含有ガ スの一部または全部を、低級パラフィン製造工程の原料としてリサイクルするリサイク ル工程と  (iv) in the separation step, a recycling step in which part or all of the carbon dioxide-containing gas separated from the lower paraffin-containing gas is recycled as a raw material in the lower paraffin production step.
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法 (第 2の LPGの製造方法)が提供される。  The present invention provides a method for producing liquid liquefied petroleum gas containing propane or butane as a main component (second LPG production method).
[0017] また、本発明によれば、低級パラフィン製造工程において、 [0017] Further, according to the present invention, in the lower paraffin production step,
原料ガス中の二酸化炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 5— 35モル%である上記の第 2の LPGの製造方法が提供される。  The above-mentioned second method for producing LPG, wherein the content of carbon dioxide in the raw material gas is 5-35 mol% with respect to the total amount of carbon monoxide, carbon dioxide and hydrogen.
[0018] また、本発明によれば、液ィ匕石油ガス製造工程にお!/、て、 [0018] Further, according to the present invention, the process for producing a liquid oil petroleum gas! /,hand,
原料ガス中の二酸化炭素の含有量が、一酸ィ匕炭素 1モルに対して、 0. 2— 1モル である上記の第 2の LPGの製造方法が提供される。  The above-mentioned second method for producing LPG, wherein the content of carbon dioxide in the raw material gas is 0.2-1 mol per 1 mol of carbon monoxide.
[0019] また、本発明によれば、低級パラフィン製造工程にお!/、て、 [0019] Further, according to the present invention, the low-grade paraffin production process! /,hand,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル%である上記の第 2の LPGの製造方法が提供される。  The above-mentioned second method for producing LPG is provided, wherein the content of carbon monoxide in the raw material gas is 3 to 30 mol% with respect to the total amount of carbon monoxide, carbon dioxide and hydrogen. .
[0020] さらに、本発明によれば、 (i)触媒の存在下、一酸化炭素と水素と二酸化炭素とを含み、二酸化炭素の含有 量が、一酸ィ匕炭素と二酸ィ匕炭素と水素との合計量に対して、 5— 35モル%である原 料ガスから、プロパンまたはブタンを主成分とする液ィ匕石油ガスを製造する液ィ匕石油 ガス製造工程 Further, according to the present invention, (i) In the presence of a catalyst, it contains carbon monoxide, hydrogen and carbon dioxide, and the content of carbon dioxide is 5 to 5% with respect to the total amount of carbon monoxide, carbon dioxide and hydrogen. A liquid manufacturing process for producing a liquid gas containing propane or butane as a main component from a raw material gas of 35 mol%.
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法 (第 3 - 1の LPGの製造方法)が提供される。  A method for producing a liquid liquefied petroleum gas containing propane or butane as a main component (3-1-3 LPG production method) is provided.
[0021] また、本発明によれば、液ィ匕石油ガス製造工程において、  [0021] Further, according to the present invention, in the production process of liquid petroleum gas,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル0 /0である上記の第 3—1の LPGの製造方法が提供される。 The content of monoacid I匕炭oxygen in the feed gas, the total amount of carbon monoxide and carbon dioxide and hydrogen, 3 30 mol 0/0 above the 3-1 method of LPG production is Is provided.
[0022] また、本発明によれば、  According to the present invention,
(i)触媒の存在下、一酸化炭素と水素と二酸化炭素とを含み、二酸化炭素の含有 量力 一酸化炭素 1モルに対して、 0. 2— 1モルである原料ガスから、プロパンまたは ブタンを主成分とする液化石油ガスを製造する液化石油ガス製造工程  (i) Propane or butane is converted from a raw material gas containing carbon monoxide, hydrogen, and carbon dioxide in the presence of a catalyst and having a carbon dioxide content of 0.2 to 1 mole per mole of carbon monoxide. Liquefied petroleum gas production process to produce liquefied petroleum gas as the main component
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法 (第 3 - 2の LPGの製造方法)が提供される。  And a method for producing a liquid liquefied petroleum gas containing propane or butane as a main component (the third method for producing LPG).
[0023] また、本発明によれば、液ィ匕石油ガス製造工程にお!/、て、  Further, according to the present invention, in the production process of liquid oil and gas! /,hand,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル0 /0である上記の第 3—2の LPGの製造方法が提供される。 The content of monoacid I匕炭oxygen in the feed gas, the total amount of carbon monoxide and carbon dioxide and hydrogen, 3 30 mol 0/0 above 3-2 The method of producing LPG is Is provided.
[0024] ここで、合成ガスとは、水素と一酸ィ匕炭素とを含む混合ガスを指し、水素および一酸 化炭素からなる混合ガスに限られない。合成ガスは、例えば、二酸化炭素、水、メタン 、ェタン、エチレンなどを含む混合ガスであってもよい。天然ガスを改質して得られる 合成ガスは、通常、水素と一酸化炭素とに加えて二酸化炭素や水蒸気を含む。また 、合成ガスは、石炭コータス力も製造される水性ガスであってもよい。  [0024] Here, the synthesis gas refers to a mixed gas containing hydrogen and carbon monoxide, and is not limited to a mixed gas composed of hydrogen and carbon monoxide. The synthesis gas may be a mixed gas containing, for example, carbon dioxide, water, methane, ethane, ethylene and the like. The synthesis gas obtained by reforming natural gas usually contains carbon dioxide and water vapor in addition to hydrogen and carbon monoxide. Also, the synthesis gas may be a water gas from which coal coat power is also produced.
発明の効果  The invention's effect
[0025] 一酸ィ匕炭素と水素とを反応させてプロパンまたはブタンを主成分とする液ィ匕石油ガ スを製造する場合、まず、下記式(1)に従って一酸ィ匕炭素と水素とからメタノールが 合成され、次に、下記式(2)に従ってメタノールの脱水によりカルベン (H C : )が生成  [0025] In the case of producing a liquid-based petroleum gas containing propane or butane as a main component by reacting hydrogen-containing carbon and hydrogen, first, the hydrogen-containing gas is reacted with hydrogen according to the following formula (1). Is synthesized from methanol, and then carbene (HC :) is generated by dehydration of methanol according to the following formula (2).
2 し、このカルベンの重合によって低級ォレフィンが生成し、さらに生成した低級ォレフ インが水素化されて低級パラフィン (LPG)になると考えられる。 However, lower olefins are formed by the polymerization of the carbene, and It is believed that the in is hydrogenated to lower paraffin (LPG).
[0026] [化 1] [0026] [Formula 1]
CO + 2H2→ CH3OH ( 1 ) CO + 2H 2 → CH 3 OH (1)
[0027] [化 2]  [0027] [Formula 2]
CH3OH → H2C: + H20 ( 2 ) また、この時、メタノールの脱水 2量ィ匕により、ジメチルエーテルも生成する。 CH 3 OH → H 2 C: + H 20 (2) At this time, dimethyl ether is also produced by dehydration of methanol.
[0028] 従来、フィッシャー ·トロプシュ合成 (FT合成)やメタノール合成にぉ 、ては、原料ガ スとして、一酸ィ匕炭素と水素とを CO : H = 1 : 1. 8— 1 : 2. 5 (モル比)で含む合成ガ Conventionally, in Fischer-Tropsch synthesis (FT synthesis) or methanol synthesis, CO: H = 1: 1.8—1: 2: 2 is used as raw material gases by mixing carbon monoxide and hydrogen. Synthetic gas containing 5 (molar ratio)
2  2
スがよく使用されている。  Is often used.
[0029] それに対し、本発明では、合成ガスに二酸ィ匕炭素を添加し、これを原料ガスとして 使用する。原料ガス中の二酸化炭素の含有量は、一酸化炭素と二酸化炭素と水素と の合計量に対して、 5— 35モル%とすることが好ましぐ 7— 17モル%とすることが特 に好ましい。また、原料ガス中の二酸化炭素の含有量は、一酸ィ匕炭素 1モルに対し て、 0. 2— 1モノレとすること力 子ましく、 0. 3— 0. 7モノレとすること力特に好まし!/ヽ。  [0029] On the other hand, in the present invention, carbon dioxide is added to the synthesis gas and used as a raw material gas. The content of carbon dioxide in the raw material gas is preferably 5 to 35 mol%, more preferably 7 to 17 mol%, based on the total amount of carbon monoxide, carbon dioxide and hydrogen. preferable. Also, the content of carbon dioxide in the raw material gas should be 0.2-1 monole per 1 mol of carbon monoxide, and 0.3-0.7 monole. Especially preferred! / ヽ.
[0030] 原料ガスの組成を上記の範囲にすることによって、より容易に、より経済的に LPGを 製造することができる。具体的には、炭化水素の収率、プロパンおよびブタンの収率 を大きく低下させることなぐ二酸ィ匕炭素の生成を大幅に抑制することができる。  [0030] By setting the composition of the source gas within the above range, LPG can be produced more easily and more economically. Specifically, it is possible to significantly suppress the generation of carbon dioxide without significantly reducing the yields of hydrocarbons and propane and butane.
[0031] その理由は、以下のように考えられる。  [0031] The reason is considered as follows.
[0032] 下記式(3)のように、プロパン製造のための化学量論から言えば、合成ガスの組成 は H ZCO (モル比) = 7Z3 2. 33力 S好ましい。また、下記式(4)のように、ブタン As represented by the following formula (3), in terms of stoichiometry for producing propane, the composition of the synthesis gas is preferably H ZCO (molar ratio) = 7Z3 2.33 force S. Also, as shown in the following equation (4),
2 2
製造のための化学量論力 言えば、合成ガスの組成は H /CO (モル比) = 9Z4=2  Stoichiometry for production Speaking of the composition of synthesis gas, H / CO (molar ratio) = 9Z4 = 2
2  2
. 25が好ましい。一方、合成ガス力も LPGへの転換反応においては、下記式(3)、 ( 4)に示されるように、水が副生する。この副生する水は、下記式(5)のように、一酸ィ匕 炭素と反応し、水素が生成すると考えられる。下記式 (5)に示される反応は、シフト反 応と言われるものである。 [0033] [化 3] 25 is preferred. On the other hand, as for the synthesis gas power in the conversion reaction to LPG, water is by-produced as shown in the following formulas (3) and (4). It is considered that this by-produced water reacts with carbon monoxide as shown in the following formula (5) to generate hydrogen. The reaction represented by the following equation (5) is called a shift reaction. [0033] [Formula 3]
3CO + 7H2→ C3H8 + 3H20 ( 3 ) 3CO + 7H 2 → C 3 H 8 + 3H 2 0 (3)
[0034] [化 4] [0034] [Formula 4]
4CO + 9H2→ C4H10 + 4H20 ( 4 ) 4CO + 9H 2 → C 4 H 10 + 4H 2 0 (4)
[0035] [化 5] [0035] [Formula 5]
CO + H20 C02 + H2 ( 5 ) 上記式(5)に示される反応は平衡反応であるから、合成ガスに二酸化炭素を添カロ して LPG合成の原料ガスとすることにより、二酸ィ匕炭素の副生が抑制される。さらに は、合成ガス、特に、天然ガス (メタン)の水蒸気改質法、複合改質法あるいは自己熱 改質法により製造される合成ガスに好ましくは上記の範囲の量の二酸ィ匕炭素を添カロ して原料ガスとすることにより、 LPGへの転換反応において副生する水と反応して一 酸化炭素が減少し、水素が増加するのが抑制され、 LPG (プロパンおよび Zまたは ブタン)の合成に最適な原料ガス組成が得られ、その結果、目的生成物であるプロパ ンおよびブタンの収率を十分に高く維持しつつ、二酸化炭素の副生量を大幅に減少 させることができると考えられる。 CO + H 2 0 C 0 2 + H 2 (5) Since the reaction represented by the above formula (5) is an equilibrium reaction, by adding carbon dioxide to the synthesis gas to obtain a raw material gas for LPG synthesis, By-product of carbon dioxide is suppressed. Furthermore, the synthesis gas, particularly, a synthesis gas produced by a steam reforming method, a combined reforming method, or an autothermal reforming method of natural gas (methane) is preferably mixed with carbon dioxide in an amount in the above range. By adding the calorie as raw material gas, it reacts with water produced as a by-product in the conversion reaction to LPG, reducing carbon monoxide and suppressing an increase in hydrogen, and suppressing the increase of LPG (propane and Z or butane). It is thought that the optimal source gas composition for the synthesis can be obtained, and as a result, the amount of carbon dioxide by-product can be significantly reduced while maintaining the yields of the target products propane and butane sufficiently high. Can be
[0036] 原料ガス中の二酸ィ匕炭素の含有量が上記の範囲よりも少ない場合、上記の合成ガ スにニ酸ィ匕炭素を添加する効果が十分には得られない。一方、原料ガス中の二酸化 炭素の含有量が上記の範囲よりも多い場合、反応生成ガスに含まれる二酸化炭素の 量が多くなつてくるのに加えて、目的生成物であるプロパンおよびブタンの収率も低 下してくる傾向がある。 [0036] When the content of carbon dioxide in the raw material gas is less than the above range, the effect of adding carbon dioxide to the above synthetic gas cannot be sufficiently obtained. On the other hand, when the content of carbon dioxide in the raw material gas is larger than the above range, the amount of carbon dioxide contained in the reaction product gas increases, and in addition, the yield of propane and butane as target products increases. Rates also tend to fall.
[0037] また、 LPG合成反応により製造される低級パラフィン含有ガスは、通常、副生物で ある二酸ィ匕炭素を含む。本発明の第 2の LPGの製造方法のように、このような二酸ィ匕 炭素を低級パラフィン含有ガスから分離し、合成ガスに添加する二酸化炭素として使 用することにより、より経済的に LPGを製造することができる。すなわち、前述の通り、 原料ガス中の二酸ィ匕炭素の含有量を上記の範囲にすることによって、目的生成物で あるプロパンおよびブタンの収率を十分に高く維持しつつ、二酸化炭素の副生量を 大幅に減少させることができる。一方、原料ガスに添加する二酸ィ匕炭素は LPG合成 反応において副生するものである。従って、本プロセスにおいて生成する二酸ィ匕炭 素の量、すなわち系外に排出される二酸ィ匕炭素の量は大幅に減少する。そのため、 本発明の第 2の LPGの製造方法によれば、さらに経済的に LPGを製造することがで きる。また、環境の面力もも、本発明の第 2の LPGの製造方法はより好ましいものであ る。 [0037] In addition, the lower paraffin-containing gas produced by the LPG synthesis reaction usually contains by-product carbon dioxide as a by-product. By separating such carbon dioxide from lower paraffin-containing gas and using it as carbon dioxide added to synthesis gas as in the second method for producing LPG of the present invention, LPG can be produced more economically. Can be manufactured. That is, as described above, by keeping the content of carbon dioxide in the raw material gas in the above range, the yield of propane and butane, which are the target products, can be maintained sufficiently high while the carbon dioxide side effect is maintained. Production It can be greatly reduced. On the other hand, carbon dioxide added to the source gas is a by-product of the LPG synthesis reaction. Therefore, the amount of carbon dioxide generated in the present process, that is, the amount of carbon dioxide discharged outside the system is greatly reduced. Therefore, according to the second method for producing LPG of the present invention, LPG can be produced more economically. Further, in terms of environmental friendliness, the second method for producing LPG of the present invention is more preferable.
図面の簡単な説明  Brief Description of Drawings
[0038] [図 1]図 1は、本発明の第 1 1の LPGの製造方法あるいは第 1 2の LPGの製造方法 を実施するのに好適な LPG製造装置の一例について、主要な構成を示すプロセス フロー図である。  [FIG. 1] FIG. 1 shows a main configuration of an example of an LPG manufacturing apparatus suitable for carrying out the first or second LPG manufacturing method of the present invention. It is a process flow diagram.
[図 2]図 2は、本発明の第 2の LPGの製造方法を実施するのに好適な LPG製造装置 の一例について、主要な構成を示すプロセスフロー図である。  FIG. 2 is a process flow chart showing a main configuration of an example of an LPG manufacturing apparatus suitable for carrying out a second LPG manufacturing method of the present invention.
[図 3]図 3は、実施例 3における、炭化水素および二酸化炭素の収率と生成した炭化 水素の組成分布の経時変化を示すグラフである。  FIG. 3 is a graph showing the changes over time in the yields of hydrocarbons and carbon dioxide and the composition distribution of generated hydrocarbons in Example 3.
[図 4]図 4は、実施例 4における、炭化水素および二酸化炭素の収率と生成した炭化 水素の組成分布の経時変化を示すグラフである。  FIG. 4 is a graph showing the change over time in the yield of hydrocarbons and carbon dioxide and the composition distribution of the generated hydrocarbons in Example 4.
[図 5]図 5は、実施例 5における、炭化水素および二酸化炭素の収率と生成した炭化 水素の組成分布の経時変化を示すグラフである。  FIG. 5 is a graph showing the change over time in the yield of hydrocarbons and carbon dioxide and the composition distribution of the generated hydrocarbons in Example 5.
符号の説明  Explanation of symbols
[0039] 11 改質器 [0039] 11 Reformer
11a 改質触媒 (合成ガス製造用触媒)  11a Reforming catalyst (Synthesis gas production catalyst)
12 反応器  12 reactor
12a 低級パラフィン製造用触媒  12a Catalyst for lower paraffin production
13、 14、 15、 16、 17 ライン  13, 14, 15, 16, 17 lines
21 改質器  21 Reformer
21a 改質触媒 (合成ガス製造用触媒)  21a Reforming catalyst (Synthesis gas production catalyst)
22 反応器  22 reactor
22a 低級パラフィン製造用触媒 23 分離器 22a Catalyst for lower paraffin production 23 Separator
24、 25、 26、 27、 28 ライン  24, 25, 26, 27, 28 lines
29 リサイクルライン  29 Recycling line
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0040] 〔合成ガス製造工程〕 [Syngas Production Process]
合成ガス製造工程では、含炭素原料から合成ガスを製造する。通常、合成ガス製 造工程では、含炭素原料と、 H 0、 Oおよび CO力 なる群より選択される少なくとも  In the synthesis gas production process, a synthesis gas is produced from a carbon-containing raw material. Usually, in the synthesis gas production process, the carbon-containing raw material and at least one selected from the group consisting of H 0, O and CO power are used.
2 2 2  2 2 2
一種とから、合成ガスを製造する。  From one type, syngas is produced.
[0041] 含炭素原料としては、炭素を含む物質であって、 H 0、 Oおよび CO力 なる群よ [0041] The carbon-containing raw material is a substance containing carbon, and is a group consisting of H0, O, and CO power.
2 2 2  2 2 2
り選択される少なくとも一種と反応して Hおよび COを生成可能なものを用いることが  That can react with at least one selected to produce H and CO
2  2
できる。含炭素原料としては、合成ガスの原料として公知のものを用いることができ、 例えば、メタンゃェタン等の低級炭化水素など、また、天然ガス、ナフサ、石炭などを 用!、ることができる。  it can. As the carbon-containing raw material, known raw materials for synthesis gas can be used. For example, lower hydrocarbons such as methaneethane and the like, and natural gas, naphtha, coal and the like can be used.
[0042] 本発明では、通常、合成ガス製造工程、および、液ィ匕石油ガス製造工程ある!、は 低級パラフィン製造工程において触媒を用いるため、含炭素原料 (天然ガス、ナフサ 、石炭など)としては、硫黄や硫黄化合物などの触媒被毒物質の含有量が少ないも のが好ましい。また、含炭素原料に触媒被毒物質が含まれる場合には、必要に応じ て、合成ガス製造工程に先立ち脱硫など、触媒被毒物質を除去する工程を行うこと ができる。  [0042] In the present invention, since there are usually a synthesis gas production process and a liquid gas production process! It is preferable that the content of catalyst poisoning substances such as sulfur and sulfur compounds is small. If the carbon-containing raw material contains a catalyst poisoning substance, a step of removing the catalyst poisoning substance such as desulfurization can be performed before the synthesis gas production step, if necessary.
[0043] 合成ガスは、合成ガス製造用触媒 (改質触媒)の存在下で、上記のような含炭素原 料と、 H 0、 Oおよび CO力もなる群より選択される少なくとも一種とを反応させること [0043] In the presence of a synthesis gas producing catalyst (reforming catalyst), the synthesis gas reacts the above-described carbon-containing raw material with at least one selected from the group consisting of H0, O, and CO power. To make
2 2 2 2 2 2
により製造される。合成ガスは、公知の方法、例えば、天然ガス (メタン)の水蒸気改 質法、複合改質法あるいは自己熱改質法により製造される。  It is manufactured by Synthetic gas is produced by a known method, for example, a steam reforming method, a combined reforming method or an autothermal reforming method of natural gas (methane).
[0044] 合成ガス製造工程において製造される合成ガス中の一酸ィ匕炭素に対する水素の 含有比率 (モル基準)は、 1. 5[H ZCO]以上が好ましぐ 1. 8[H ZCO]以上がよ [0044] The content ratio (on a molar basis) of hydrogen to carbon monoxide in the synthesis gas produced in the synthesis gas production process is preferably 1.5 [H ZCO] or more, 1.8 [H ZCO]. That's all
2 2  twenty two
り好ましい。また、製造される合成ガス中の一酸化炭素に対する水素の含有比率 (モ ル基準)は、 3[H ZCO]以下が好ましぐ 2. 3[H ZCO]以下がより好ましい。  More preferred. Further, the content ratio of hydrogen to carbon monoxide (based on mol) in the produced synthesis gas is preferably 3 [HZCO] or less, and more preferably 2.3 [HZCO] or less.
2 2  twenty two
[0045] また、合成ガス製造工程において製造される合成ガス中の一酸ィ匕炭素の含有量は 、 20モル%以上が好ましぐ 25モル%以上がより好ましい。また、製造される合成ガ ス中の一酸化炭素の含有量は、 40モル%以下が好ましぐ 35モル%以下がより好ま しい。 [0045] The content of carbon monoxide in the synthesis gas produced in the synthesis gas production process is as follows: 20 mol% or more is preferable, and 25 mol% or more is more preferable. Further, the content of carbon monoxide in the produced synthetic gas is preferably 40 mol% or less, more preferably 35 mol% or less.
[0046] 合成ガスの組成を上記の範囲にすることにより、次の液ィ匕石油ガス製造工程または 低級パラフィン製造工程にお 、て、得られた合成ガスと二酸化炭素 (ある 、は二酸化 炭素含有ガス)とを混合して原料ガスを調製した場合、好適な組成の原料ガスが得ら れ、その結果、より容易に、より経済的に LPGを製造することができる。  [0046] By setting the composition of the synthesis gas to the above range, the obtained synthesis gas and carbon dioxide (some are carbon dioxide-containing) in the next liquid petroleum gas production step or lower paraffin production step. ), A raw material gas having a suitable composition can be obtained. As a result, LPG can be produced more easily and more economically.
[0047] なお、上記のような組成の合成ガスは広く製造されており、例えば、メタノール合成 の原料ガスとして使用されて 、る。  [0047] The synthesis gas having the above composition is widely produced, and is used, for example, as a raw material gas for methanol synthesis.
[0048] また、例えば、上記のような原料力も合成ガスを製造する反応器である改質器の下 流にシフト反応器を設け、シフト反応 (CO+H 0→CO +H )によって合成ガスの  [0048] Further, for example, a shift reactor is provided downstream of a reformer, which is a reactor for producing a synthesis gas, as described above, and a synthesis reaction is performed by a shift reaction (CO + H0 → CO + H). of
2 2 2  2 2 2
組成を上記の範囲に調整することもできる。  The composition can be adjusted to the above range.
[0049] 組成が上記の範囲である合成ガスを製造するためには、含炭素原料と水 (スチーム[0049] In order to produce a synthesis gas having a composition within the above range, a carbon-containing raw material and water (steam) are required.
)、酸素および二酸ィ匕炭素力 なる群より選択される少なくとも一種との供給量比、用), Oxygen and the supply ratio with at least one selected from the group consisting of
V、る合成ガス製造用触媒の種類や、その他の反応条件を適宜選択すればょ 、。 V. The type of synthesis gas production catalyst and other reaction conditions may be appropriately selected.
[0050] 組成が上記の範囲である合成ガスは、例えば、次のような方法によって製造するこ とがでさる。 [0050] A synthesis gas having a composition within the above range can be produced, for example, by the following method.
[0051] 下記式 (I)で表される組成を有する複合酸化物からなる改質触媒の存在下、含炭 素原料 (特に、天然ガス、メタン)と酸素と二酸ィ匕炭素とスチーム (水蒸気)とを、反応 器に導入する原料ガス中の(二酸ィ匕炭素 +スチーム) Zカーボン比を 0. 5— 3、酸素 Zカーボン比を 0. 2— 1とし、かつ、反応器出口での温度を 900— 1100°C、圧力を 5— 60kg/cm2として反応させることにより、本発明にお ヽて用いられる合成ガスを 製造することができる。 [0051] In the presence of a reforming catalyst comprising a composite oxide having a composition represented by the following formula (I), a carbon-containing raw material (particularly, natural gas, methane), oxygen, carbon dioxide, and steam ( Water vapor) into the raw material gas to be introduced into the reactor with a (dioxide carbon + steam) Z carbon ratio of 0.5-3, an oxygen Z carbon ratio of 0.2-1 and an outlet of the reactor. By reacting at a temperature of 900-1100 ° C. and a pressure of 5-60 kg / cm 2 , the synthesis gas used in the present invention can be produced.
[0052] aM - bCo - cNi - dMg - eCa - f O (I)  [0052] aM-bCo-cNi-dMg-eCa-fO (I)
(式中、 Mは第 6A族元素、第 7A族元素、 Coおよび Niを除く第 8族遷移元素、第 1B 族元素、第 2B族元素、第 4B族元素およびランタノイド元素力 なる群より選ばれる 少なくとも 1種の元素を表す。 a, b, c, dおよび eは各元素の原子比率を表し、 a + b + c + d+e= lのとき、 0≤a≤0. 1、 0. 001≤ (b + c)≤0. 3、 0≤b≤0. 3、 0≤c≤0 . 3、 0. 6≤ (d+e)≤0. 999、 0< d≤0. 999、 0≤e≤0. 999であり、 fは各元素力 S 酸素と電荷均衡を保つのに必要な数である。 ) (Wherein, M is selected from the group consisting of Group 6A, Group 7A, Group 8 transition elements excluding Co and Ni, Group 1B, Group 2B, Group 4B and lanthanoid elements) A, b, c, d, and e represent the atomic ratio of each element, and when a + b + c + d + e = l, 0≤a≤0.1, 0. 001≤ (b + c) ≤0.3, 0≤b≤0.3, 0≤c≤0 3, 0.6 ≤ (d + e) ≤ 0.999, 0 <d ≤ 0.999, 0 ≤ e ≤ 0.999, and f is required to maintain charge balance with each elemental force S oxygen It is a number. )
反応器に導入する原料ガス中の(二酸ィ匕炭素 +スチーム) Zカーボン比は、 0. 5— The (carbon dioxide + steam) Z carbon ratio in the raw material gas introduced into the reactor is 0.5—
2程度が好ましい。また、反応器の出口の温度は、 950— 1050°Cが好ましい。反応 器の出口の圧力は、 15— 20kgZcm2が好ましい。 About 2 is preferred. The temperature at the outlet of the reactor is preferably 950-1050 ° C. The pressure at the outlet of the reactor is preferably 15-20 kgZcm 2 .
[0053] 原料ガスの空間速度は、通常、 500— 200000hr— 1であり、 1000— lOOOOOhr— 1 力 S女子まし <、 1000— 70000hr— 1力 り女子まし!/ヽ。 [0053] The space velocity of the raw material gas is usually 500 to 200,000 hr- 1 and 1000-1000OOhr- 1 power S female <, 1000-70000hr- 1 power female! / ヽ.
[0054] 上記式 (I)で表される組成を有する複合酸化物は、 MgO、 CaOが岩塩型結晶構造 をとり、その格子に位置する Mgまたは Ca原子の一部が Co、 Niあるいは Mに置換し た一種の固溶体であって、単相をなすものである。 In the composite oxide having the composition represented by the above formula (I), MgO and CaO have a rock salt type crystal structure, and some of the Mg or Ca atoms located in the lattice are Co, Ni or M. It is a type of substituted solid solution that forms a single phase.
[0055] 上記式(I)中、 Mは、マンガン、モリブデン、ロジウム、ルテニウム、白金、パラジウムIn the above formula (I), M is manganese, molybdenum, rhodium, ruthenium, platinum, palladium
、銅、銀、亜鉛、錫、鉛、ランタンおよびセリウム力 なる群より選ばれる少なくとも 1種 の元素であることが好まし 、。 Preferably, it is at least one element selected from the group consisting of copper, silver, zinc, tin, lead, lanthanum and cerium.
[0056] Mの含有量(a) «0≤a≤0. 1であり、 0≤a≤0. 05であることが好ましぐ 0≤a≤0[0056] The content of M (a) is «0≤a≤0.1, preferably 0≤a≤0.05 0≤a≤0
. 03であることがより好ましい。 Mの含有量 (a)が 0. 1を超えると、リフォーミング反応 の活性が低下してくる。 03 is more preferable. If the M content (a) exceeds 0.1, the activity of the reforming reaction decreases.
[0057] コバルト含有量(b)は 0≤b≤0. 3であり、 0≤b≤0. 25であることが好ましぐ 0≤b ≤0. 2であることがより好ましい。コバルト含有量 (b)が 0. 3を超えると、炭素質析出 防止効果が十分には得られにくくなる。  [0057] The cobalt content (b) is 0≤b≤0.3, preferably 0≤b≤0.25, and more preferably 0≤b≤0.2. When the cobalt content (b) exceeds 0.3, it is difficult to sufficiently obtain the effect of preventing carbonaceous deposition.
[0058] ニッケル含有量(c)は 0≤c≤0. 3であり、 0≤c≤0. 25であることが好ましぐ 0≤c ≤0. 2であることがより好ましい。ニッケル含有量 (c)が 0. 3を超えると、炭素質析出 防止効果が十分には得られにくくなる。  [0058] The nickel content (c) is 0 ≤ c ≤ 0.3, preferably 0 ≤ c ≤ 0.25, and more preferably 0 ≤ c ≤ 0.2. If the nickel content (c) exceeds 0.3, the effect of preventing carbonaceous deposition cannot be sufficiently obtained.
[0059] また、コバルト含有量 (b)とニッケル含有量(c)との合計量 (b + c)は 0. 001≤(b + c)≤0. 3であり、 0. 001≤ (b + c)≤0. 25であること力 S好ましく、 0. 001≤ (b + c) ≤0. 2であることがより好ましい。合計含有量 (b + c)が 0. 3を超えると、炭素質析出 防止効果が十分には得られに《なる。一方、合計含有量 (b + c)が 0. 001未満で は、反応活性が低下してくる。  [0059] Further, the total amount (b + c) of the cobalt content (b) and the nickel content (c) is 0.001≤ (b + c) ≤0.3, and 0.001≤ (b + c) ≤0.25 S is preferable, and 0.001≤ (b + c) ≤0.2 is more preferable. When the total content (b + c) exceeds 0.3, the effect of preventing carbonaceous deposition is not sufficiently obtained. On the other hand, when the total content (b + c) is less than 0.001, the reaction activity decreases.
[0060] マグネシウム含有量(d)とカルシウム含有量(e)との合計量(d+e)は 0. 6≤ (d+e )≤0. 9998であり、 0. 7≤(d+e)≤0. 9998であること力 S好ましく、 0. 77≤ (d+e) ≤0. 9998であること力より好まし!/ヽ。 [0060] The total amount (d + e) of the magnesium content (d) and the calcium content (e) is 0.6≤ (d + e ) ≤0.9998, 0.7≤ (d + e) ≤0.9998, S is preferred, and 0.77≤ (d + e) ≤0.9998 is more preferred than force! /ヽ.
[0061] このうち、マグネシウム含有量(d)は 0< d≤0. 999であり、 0. 2≤d≤0. 9998であ ること力 子ましく、 0. 37≤d≤0. 9998であること力より好まし!/、。また、カノレシゥム含 有量(e)は 0≤e< 0. 999であり、 0≤e≤0. 5であること力好ましく、 0≤e≤0. 3であ ることがより好ましい。この触媒は、カルシウムを含有しないものであってもよい。  [0061] Among these, the magnesium content (d) is 0 <d≤0.999, and 0.2≤d≤0.9998, and 0.337≤d≤0.9998. Better than being a power! / ,. Further, the content of canolesh (e) is 0≤e <0.999, preferably 0≤e≤0.5, and more preferably 0≤e≤0.3. The catalyst may not contain calcium.
[0062] マグネシウム含有量 (d)とカルシウム含有量 (e)との合計量 (d+e)は、 M含有量 (a )、コバルト含有量 (b)およびニッケル含有量(c)とのバランスで決められる。 (d+e) は上記範囲内であればいかなる割合でもリフォーミング反応に優れた効果を発揮す る力 カルシウムお)と M (a)の含有量が多いと、炭素質析出の抑制に高い効果があ るものの、マグネシウム )が多い場合に比べて触媒活性が低くなる傾向がある。活 性の点からは、カルシウム含有量 (e)が 0. 5以下であり、 M含有量 (a)が 0. 1以下で あることが好ましい。  [0062] The total amount (d + e) of the magnesium content (d) and the calcium content (e) is a balance between the M content (a), the cobalt content (b), and the nickel content (c). Is determined by (d + e) is a force that exerts an excellent effect on the reforming reaction at any ratio within the above range. If the content of calcium and M (a) is large, it is highly effective in suppressing carbonaceous deposition. However, there is a tendency for the catalytic activity to be lower than when magnesium is high. From the viewpoint of activity, the calcium content (e) is preferably 0.5 or less, and the M content (a) is preferably 0.1 or less.
[0063] 用いる改質触媒は、 M、 Coおよび Niの少なくとも 1種が複合酸ィ匕物中で高分散化 されていることが好ましい。ここで、分散とは、担持された金属の全原子数に対する触 媒表面に露出している原子数の比として定められるものである。すなわち、 Co、 Niあ るいは Mの金属元素またはその化合物の原子数を Aとし、これらの原子のうち粒子表 面に露出している原子の数を Bとすると、 BZAが分散度となる。 M、 Coおよび Niの 少なくとも 1種が複合酸ィ匕物中で高分散化されている改質触媒を用いることにより、さ らに高活性となって反応が化学量論的に進行し、炭素質 (カーボン)の析出がより効 果的に防止される。  [0063] The reforming catalyst used preferably has at least one of M, Co and Ni highly dispersed in the composite oxidized product. Here, the dispersion is defined as a ratio of the number of atoms exposed on the catalyst surface to the total number of atoms of the supported metal. That is, if the number of atoms of the Co, Ni or M metal element or its compound is A, and the number of these atoms exposed on the particle surface is B, BZA is the degree of dispersion. By using a reforming catalyst in which at least one of M, Co and Ni is highly dispersed in the composite oxide, the reaction becomes more highly active, the reaction proceeds stoichiometrically, Precipitation of carbon (carbon) is more effectively prevented.
[0064] このような改質触媒を製造する方法としては、例えば、含浸担持法、共沈法、ゾルー ゲル法 (加水分解法)、均一沈澱法などが挙げられる。  [0064] Examples of a method for producing such a reforming catalyst include an impregnation-supporting method, a coprecipitation method, a sol-gel method (hydrolysis method), and a uniform precipitation method.
[0065] 上記の改質触媒は、通常、合成ガスの製造に使用する前に、活性化処理を行う。  [0065] Usually, the above-mentioned reforming catalyst is subjected to an activation treatment before being used for production of synthesis gas.
活性化処理は、水素ガスなどの還元性気体の存在下、 500— 1000°C、好ましくは 6 00— 1000°C、より好ましくは 650— 1000°Cの温度範囲で 0. 5— 30時間程度、触 媒を加熱することにより行う。還元性気体は、窒素ガスなどの不活性ガスで希釈され ていてもよい。この活性ィ匕処理は、リフォーミング反応を行う反応器内で行うこともでき る。この活性ィ匕処理により、触媒活性が発現する。 The activation treatment is performed in the presence of a reducing gas such as hydrogen gas in a temperature range of 500 to 1000 ° C, preferably 600 to 1000 ° C, and more preferably 650 to 1000 ° C for about 0.5 to 30 hours. This is done by heating the catalyst. The reducing gas may be diluted with an inert gas such as nitrogen gas. This activation treatment can be performed in a reactor for performing a reforming reaction. The By this activation treatment, the catalytic activity is developed.
[0066] 本発明にお 、て用いられる合成ガスを製造する他の方法としては、含炭素原料 (特 に、天然ガス、メタン)を部分酸化して、未反応の含炭素原料を含む少なくとも 600°C の温度を有する混合ガスを生成させ、次いで、この高温の混合ガス中に含まれる未 反応の含炭素原料に、金属イオンの電気陰性度が 13以下である金属酸ィ匕物力もな る担体にロジウム、ルテニウム、イリジウム、パラジウムおよび白金力もなる群より選ば れる少なくとも 1種の金属 (触媒金属)を担持させた、比表面積 25m2Zg以下、触媒 金属の担持量が金属換算量で担体金属酸化物に対して 0. 0005-0. 1モル%の 触媒の存在下において、加圧条件下で炭酸ガスおよび Zまたはスチームを反応させ て合成ガスを製造する方法が挙げられる。また、含炭素原料 (特に、天然ガス、メタン )と、酸素含有ガス (空気、酸素など)と、炭酸ガスおよび Zまたはスチームとからなる 混合ガスを用い、金属イオンの電気陰性度が 13以下である金属酸ィ匕物からなる担体 にロジウム、ルテニウム、イリジウム、パラジウムおよび白金力もなる群より選ばれる少 なくとも 1種の金属 (触媒金属)を担持させた、比表面積 25m2Zg以下、触媒金属の 担持量が金属換算量で担体金属酸化物に対して 0. 0005— 0. 1モル%の触媒の 存在下において、該混合ガス中の含炭素原料を部分酸化して、未反応の含炭素原 料を含む少なくとも 600°Cの温度を有する混合ガスを生成させるとともに、この未反応 の含炭素原料に加圧条件下で炭酸ガスおよび/またはスチームを反応させて合成 ガスを製造する方法が挙げられる。 [0066] In the present invention, as another method for producing a synthesis gas used in the present invention, a carbon-containing raw material (particularly, natural gas or methane) is partially oxidized so that at least 600% of the carbon-containing raw material containing an unreacted carbon-containing raw material is contained. A mixed gas having a temperature of ° C is generated, and the unreacted carbon-containing raw material contained in the high-temperature mixed gas also becomes a metal oxide having an electronegativity of metal ions of 13 or less. Rhodium, ruthenium, iridium, palladium, and at least one metal (catalytic metal) selected from the group consisting of platinum metals are also supported on the carrier.The specific surface area is 25 m 2 Zg or less. A method of producing a synthesis gas by reacting carbon dioxide and Z or steam under a pressurized condition in the presence of 0.0005 to 0.1 mol% of a catalyst with respect to the oxide. In addition, a mixed gas consisting of a carbon-containing raw material (especially natural gas and methane), an oxygen-containing gas (air, oxygen, etc.), carbon dioxide and Z or steam is used, and the electronegativity of metal ions is 13 or less. At least one metal (catalytic metal) selected from the group consisting of rhodium, ruthenium, iridium, palladium, and platinum is supported on a support made of a metal oxide.The specific surface area is 25 m 2 Zg or less. In the presence of a catalyst in an amount of 0.0005 to 0.1 mol% of the supported metal oxide in terms of metal in terms of metal, the carbon-containing raw material in the mixed gas is partially oxidized to obtain unreacted carbon-containing material. A method of producing a mixed gas including a raw material and having a temperature of at least 600 ° C and reacting the unreacted carbon-containing raw material with carbon dioxide gas and / or steam under pressurized conditions. Be
[0067] ここで、触媒金属は、金属状態で担持されていてもよいし、酸化物などの金属化合 物の状態で担持されていてもよい。また、担体として用いる金属酸ィ匕物は、単一金属 酸化物であってもよ!/、し、複合金属酸化物であってもよ ヽ。  Here, the catalyst metal may be supported in a metal state, or may be supported in a state of a metal compound such as an oxide. Further, the metal oxide used as the carrier may be a single metal oxide! / Or a composite metal oxide.
[0068] 担体用金属酸ィ匕物中の金属イオンの電気陰性度は 13以下であり、 12以下が好ま しぐ 10以下がより好ましい。金属酸ィ匕物中の金属イオンの電気陰性度が 13を超え ると、その触媒の使用に際して炭素析出が著しくなつてくる。また、担体用金属酸ィ匕 物中の金属イオンの電気陰性度の下限値は、通常、 4程度である。  [0068] The electronegativity of metal ions in the carrier metal oxide is 13 or less, preferably 12 or less, more preferably 10 or less. If the electronegativity of the metal ion in the metal oxidized product exceeds 13, carbon precipitation becomes remarkable when the catalyst is used. In addition, the lower limit of the electronegativity of metal ions in the metal oxide sulfide for a carrier is usually about 4.
[0069] なお、金属酸ィ匕物中の金属イオンの電気陰性度は、次式により定義されるものであ る。 [0070] Xi= (l + 2i)Xo [0069] The electronegativity of the metal ion in the metal oxide is defined by the following equation. [0070] Xi = (l + 2i) Xo
Xi:金属イオンの電気陰性度、  Xi: electronegativity of metal ion,
Xo :金属の電気陰性度、  Xo: electronegativity of metal,
i:金属イオンの荷電子数。  i: the number of valence electrons of the metal ion.
[0071] 金属酸化物が複合金属酸化物である場合は、平均の金属イオン電気陰性度を用 い、その値は、複合金属酸化物中に含まれる各金属イオンの電気陰性度に複合酸 化物中の各酸化物のモル分率を掛けた値の合計値とする。 [0071] When the metal oxide is a composite metal oxide, the average metal ion electronegativity is used, and the value is calculated based on the electronegativity of each metal ion contained in the composite metal oxide. The sum of the values obtained by multiplying by the mole fraction of each of the oxides therein.
[0072] 金属の電気陰性度 (Xo)は Paulingの電気陰性度を用いる。 Paulingの電気陰性 度は、「藤代亮ー訳、ムーア物理化学 (下)(第 4版)、東京化学同人, p. 707 (1974 )」の表 15. 4に記載されている。金属酸ィ匕物中の金属イオンの電気陰性度 (Xi)につ いては、例えば、「触媒学会編、触媒講座、第 2卷、 p. 145 (1985)」に詳述されてい る。 [0072] The electronegativity (Xo) of a metal uses Pauling's electronegativity. Pauling's electronegativity is described in Table 15.4 of "Ryo Fujishiro, Moore Physical Chemistry (2) (4th edition), Tokyo Kagaku Dojin, p. 707 (1974)". The electronegativity (Xi) of the metal ion in the metal oxidized product is described in detail in, for example, “Catalysis Society of Japan, Catalyst Course, Vol. 2, p. 145 (1985)”.
[0073] このような金属酸化物としては、 Mg、 Ca、 Ba、 Zn、 Al、 Zr、 La等の金属を 1種以上 含む金属酸化物が挙げられる。このような金属酸ィ匕物として、具体的には、マグネシ ァ(MgO)、酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化亜鉛 (Ζηθ)、アルミ ナ(Al O )、ジルコ-ァ(ZrO )、酸化ランタン(La O )等の単一金属酸化物や、 Mg [0073] Examples of such a metal oxide include metal oxides containing one or more metals such as Mg, Ca, Ba, Zn, Al, Zr, and La. Specific examples of such metal oxide films include magnesium (MgO), calcium oxide (CaO), barium oxide (BaO), zinc oxide (Ζηθ), alumina (Al 2 O 3), and zircon ( Single metal oxides such as ZrO), lanthanum oxide (LaO), and Mg
2 3 2 2 3 2 3 2 2 3
O/CaO, MgO/BaO、 MgO/ZnO、 MgO/Al O、 MgO/ZrO、 CaO/Ba  O / CaO, MgO / BaO, MgO / ZnO, MgO / Al O, MgO / ZrO, CaO / Ba
2 3 2  2 3 2
0、 CaO/ZnO、 CaO/Al O、 CaO/ZrO、 BaO/ZnO、 BaO/Al O、 BaO  0, CaO / ZnO, CaO / Al O, CaO / ZrO, BaO / ZnO, BaO / Al O, BaO
2 3 2 2 3 2 3 2 2 3
/ZrO、 ZnO/Al O、 ZnO/ZrO、 Al O /ZrO、 La O /MgO, La O /Al/ ZrO, ZnO / Al O, ZnO / ZrO, Al O / ZrO, La O / MgO, La O / Al
2 2 3 2 2 3 2 2 3 2 32 2 3 2 2 3 2 2 3 2 3
O、 La O ZCaO等の複合金属酸ィ匕物が挙げられる。 O, La O ZCaO and other complex metal oxides.
2 3 2 3  2 3 2 3
[0074] 用いる触媒の比表面積は 25m2Zg以下であり、 20m2Zg以下が好ましぐ 15m g以下がより好ましぐ 10m2Zg以下が特に好ましい。また、用いる触媒の比表面積 の下限値は、通常、 0. 01m2Zg程度である。触媒の比表面積を上記の範囲にする ことにより、触媒の炭素析出活性をより十分に抑制することができる。 The specific surface area of the catalyst to be used is 25 m 2 Zg or less, preferably 20 m 2 Zg or less, more preferably 15 mg or less, particularly preferably 10 m 2 Zg or less. The lower limit of the specific surface area of the catalyst used is usually about 0.01 m 2 Zg. By setting the specific surface area of the catalyst within the above range, the carbon deposition activity of the catalyst can be more sufficiently suppressed.
[0075] ここで用いる触媒にぉ 、て、触媒の比表面積と担体である金属酸ィ匕物の比表面積 とは実質的にほぼ同じである。したがって、担体である金属酸化物の比表面積は 25 m2Zg以下であり、 20m2Zg以下が好ましぐ 15m2Zg以下がより好ましぐ 10mV g以下が特に好ましい。また、担体である金属酸化物の比表面積の下限値は、通常、 0. 01m2Zg程度である。 [0075] For the catalyst used here, the specific surface area of the catalyst is substantially the same as the specific surface area of the metal oxide as a carrier. Therefore, the specific surface area of the metal oxide as a carrier is not more than 25 m 2 Zg, 20m 2 Zg is preferably less instrument 15 m 2 Zg less less more preferably tool 10 mV g is particularly preferred. Further, the lower limit of the specific surface area of the metal oxide as a carrier is usually, 0. 01m is about 2 Zg.
[0076] なお、ここで、触媒または担体である金属酸ィ匕物の比表面積は、 BET法により、温 度 15°Cで測定されたものである。  Here, the specific surface area of the metal oxide sulfide as a catalyst or a carrier is measured at a temperature of 15 ° C. by a BET method.
[0077] 比表面積が 25m2/g以下の触媒は、触媒金属の担持前に担体である金属酸ィ匕物 を 300— 1300°C、好ましくは 650— 1200°Cで焼成し、触媒金属担持後、得られた 触媒金属担持物をさらに 600— 1300°C、好ましくは 650— 1200°Cで焼成すること によって得ることができる。また、担体である金属酸化物に触媒金属を担持後、得ら れた触媒金属担持物を 600— 1300°C、好ましくは 650°C— 1200°Cで焼成すること によっても得ることができる。焼成温度と焼成時間とを制御することによって、得られる 触媒または担体である金属酸ィ匕物の比表面積を制御することができる。 [0077] The catalyst having a specific surface area of 25 m 2 / g or less is prepared by calcining the metal oxide as a carrier at 300 to 1300 ° C, preferably 650 to 1200 ° C before supporting the catalyst metal, Thereafter, the catalyst metal support obtained can be obtained by further calcination at 600 to 1300 ° C, preferably 650 to 1200 ° C. Alternatively, the catalyst metal can be obtained by supporting a catalyst metal on a metal oxide as a carrier and then calcining the obtained catalyst metal-supported material at 600 to 1300 ° C, preferably 650 to 1200 ° C. By controlling the firing temperature and the firing time, it is possible to control the specific surface area of the resulting metal oxide or catalyst or carrier.
[0078] 担体である金属酸化物に対する触媒金属の担持量は、金属換算量で、 0. 0005 一 0. 1モル%である。担体である金属酸化物に対する触媒金属の担持量は、金属 換算量で、 0. 001モル%以上が好ましぐ 0. 002モル%以上がより好ましい。また、 担体である金属酸化物に対する触媒金属の担持量は、金属換算量で、 0. 09モル %以下が好ましい。  [0078] The amount of the catalytic metal supported on the metal oxide serving as the support is 0.0005 to 0.1 mol% in terms of metal. The amount of the catalytic metal supported on the metal oxide as a support is preferably 0.001 mol% or more, more preferably 0.002 mol% or more, in terms of metal. Further, the amount of the catalytic metal supported on the metal oxide as the carrier is preferably 0.09 mol% or less in terms of metal.
[0079] 上記のような触媒は、触媒の比表面積が小さぐかつ、触媒金属の担持量が非常 に少量であるため、含炭素原料に対する十分な合成ガス化活性を有すると共に、炭 素析出活性が著しく抑制されたものである。  [0079] Since the above-mentioned catalyst has a small specific surface area of the catalyst and a very small amount of supported catalyst metal, it has a sufficient synthesis gasification activity for the carbon-containing raw material and a carbon deposition activity. Is significantly suppressed.
[0080] このような触媒は、公知の方法に従って調製することができる。触媒を製造する方 法としては、例えば、担体である金属酸化物を水中に分散させ、触媒金属塩または その水溶液を添加、混合した後、触媒金属が担持された金属酸化物を水溶液から分 離し、乾燥、焼成する方法 (含浸法)や、担体である金属酸化物を排気後、細孔容積 分の金属塩溶液を少量ずつ加え、担体表面を均一に濡れた状態にした後、乾燥、 焼成する方法(incipient— wetness法)などが挙げられる。  [0080] Such a catalyst can be prepared according to a known method. As a method for producing a catalyst, for example, a metal oxide serving as a carrier is dispersed in water, a catalyst metal salt or an aqueous solution thereof is added and mixed, and then the metal oxide supporting a catalyst metal is separated from the aqueous solution. , Drying and baking (impregnation method), exhausting the metal oxide as a carrier, adding a small amount of a metal salt solution for the pore volume little by little to make the carrier surface uniformly wet, then drying and baking (Incipient-wetness method).
[0081] 上記のような触媒の存在下、含炭素原料 (特に、天然ガス、メタン)とスチーム (水蒸 気)および Zまたは二酸ィ匕炭素とを反応させることにより、本発明において用いられる 合成ガスを製造することができる。  [0081] In the present invention, a carbon-containing raw material (particularly, natural gas or methane) is reacted with steam (water vapor) and Z or diacid carbon in the presence of the catalyst as described above. Syngas can be produced.
[0082] 含炭素原料と二酸化炭素とを反応させる方法 (COリフォーミング)の場合、反応温 度 ίま 500— 1200。Cであり、 600— 1000。C力 S好まし ヽ。反応圧力 ίま 5— 40kg/cm2 Gであり、 5— 30kg/cm2Gが好ましい。また、この反応を固定床方式で行う場合、ガ ス空間速度(GHSV)は 1, 000— 10, OOOhr— 1であり、 2, 000— 8, OOOhr— 1力 子ま しい。反応器に導入する原料ガス中の COの含有量は、含炭素原料中の炭素 1モル [0082] In the case of a method of reacting a carbon-containing raw material with carbon dioxide (CO reforming), the reaction temperature Degree 500-1200. C is 600-1000. C power S preferred ヽ. The reaction pressure is 5-40 kg / cm 2 G, preferably 5-30 kg / cm 2 G. When performing the reaction in a fixed bed system, gas space velocity (GHSV) is 1, 000- 10, a OOOhr- 1, 2, 000- 8, OOOhr- 1 force frame arbitrarily. The content of CO in the raw material gas introduced into the reactor is 1 mole of carbon in the carbon-containing raw material.
2  2
当たり、 CO 20—0. 5モルであり、 10 1モルが好ましい。  CO per 20-0.5 mol, preferably 101 mol.
2  2
[0083] 含炭素原料とスチームとを反応させる方法 (スチームリフォーミング)の場合、反応 温度 ίま 600— 1200。Cであり、 600— 1000。C力 S好まし ヽ。反応圧力 ίま 1一 40kg/c m2Gであり、 5— 30kg/cm2Gが好ましい。また、この反応を固定床方式で行う場合 、ガス空間速度(GHSV)は 1, 000— 10, OOOhr— 1であり、 2, 000— 8, OOOhr— 好ましい。反応器に導入する原料ガス中のスチームの含有量は、含炭素原料中の炭 素 1モル当たり、スチーム(H 0) 20— 0. 5モルであり、 10— 1モルが好ましぐ 1. 5 [0083] In the case of a method of reacting a carbon-containing raw material with steam (steam reforming), the reaction temperature is 600 to 1200. C is 600-1000. C power S preferred ヽ. A reaction pressure ί or 1 one 40kg / cm 2 G, 5- 30kg / cm 2 G are preferred. When this reaction is carried out in a fixed bed system, the gas hourly space velocity (GHSV) is 1,000-10, OOOhr- 1 , and 2,000-8, OOOhr is preferable. The content of steam in the raw material gas introduced into the reactor is 20-0.5 mol of steam (H 0) per mol of carbon in the carbon-containing raw material, and 10-1 mol is preferable. Five
2  2
一 1モルがより好ましい。  One mole is more preferred.
[0084] スチームと COの混合物を含炭素原料に反応させて合成ガスを製造する場合、ス When producing a synthesis gas by reacting a mixture of steam and CO with a carbon-containing raw material,
2  2
チームと COとの混合割合は特に限定されないが、通常、 H O/CO (モル比)は 0  The mixing ratio of the team and CO is not particularly limited, but H 2 O / CO (molar ratio) is usually 0.
2 2 2  2 2 2
. 1一 10である。  One is ten.
[0085] この合成ガスの製造方法においては、上記リフォーミング反応に必要とされるエネ ルギ一は、リフォーミングの反応原料である含炭素原料の一部を部分酸ィ匕 (部分燃 焼)させ、その際に生じる燃焼熱により補給される。  [0085] In this synthesis gas production method, the energy required for the reforming reaction is such that a part of the carbon-containing material that is a reaction material for the reforming is partially oxidized (partially burned). Is supplied by combustion heat generated at that time.
[0086] 含炭素原料の部分酸化反応は、 600— 1500°C、好ましくは 700— 1300°Cの温度 および 5— 50kgZcm2G、好ましくは 10— 40kgZcm2Gの圧力の条件下で実施さ れる。含炭素原料を部分酸化させるための酸化剤としては酸素が用いられるが、この 酸素源としては、純酸素の他に、空気、富酸素化空気などの酸素含有ガスが用いら れる。反応器に導入する原料ガス中の酸素の含有量は、含炭素原料中の炭素に対 する酸素の原子比(OZC)で、 0. 1一 4であり、 0. 5— 2が好ましい。 [0086] The partial oxidation reaction of the carbon-containing raw material is carried out under the conditions of a temperature of 600 to 1500 ° C, preferably 700 to 1300 ° C, and a pressure of 5 to 50 kgZcm 2 G, preferably 10 to 40 kgZcm 2 G. . Oxygen is used as an oxidizing agent for partially oxidizing the carbon-containing raw material. As the oxygen source, in addition to pure oxygen, an oxygen-containing gas such as air or oxygen-enriched air is used. The oxygen content in the raw material gas introduced into the reactor is 0.1 to 14 in terms of the atomic ratio of oxygen to carbon (OZC) in the carbon-containing raw material, and is preferably 0.5-2.
[0087] この含炭素原料の部分酸化により、未反応の含炭素原料を含む、少なくとも 600°C 、好ましくは 700— 1300°Cの高温の混合ガスが得られる。この混合ガス中の未反応 の含炭素原料に対して、上記の条件で二酸化炭素および Zまたはスチームを反応さ せることにより、合成ガスを製造することができる。二酸ィ匕炭素および Zまたはスチー ムは、含炭素原料の部分酸ィ匕により得られた混合ガスに添加して反応させてもよぐ また、部分酸化反応に供する含炭素原料にあらかじめ添加 ·混合してお!ヽてもよ ヽ。 後者の場合には、含炭素原料の部分酸ィ匕とリフォーミング反応とを同時に行うことが 可能となる。 [0087] By the partial oxidation of the carbon-containing raw material, a high-temperature mixed gas containing at least 600 ° C, preferably 700 to 1300 ° C, containing the unreacted carbon-containing raw material is obtained. By reacting unreacted carbon-containing raw material in the mixed gas with carbon dioxide and Z or steam under the above conditions, a synthesis gas can be produced. Diacidi carbon and Z or stee May be added to and mixed with the mixed gas obtained by the partial oxidation of the carbon-containing raw material, or may be added and mixed in advance with the carbon-containing raw material to be subjected to the partial oxidation reaction.ヽ. In the latter case, it is possible to simultaneously perform the partial oxidation of the carbon-containing raw material and the reforming reaction.
[0088] 含炭素原料のリフォーミング反応は、各種の反応器形式で実施することができるが 、通常、固定床方式、流動床方式で実施することが好ましい。  [0088] The reforming reaction of the carbon-containing raw material can be carried out in various types of reactors, but is usually preferably carried out in a fixed bed system or a fluidized bed system.
[0089] 〔液ィ匕石油ガス製造工程、低級パラフィン製造工程〕  [Liquid oil petroleum gas production process, low-grade paraffin production process]
第 1 1の LPGの製造方法および第 1 2の LPGの製造方法(両者を併せて第 1のし PGの製造方法とも言う。)の液ィ匕石油ガス製造工程では、触媒 (低級パラフィン製造 用触媒)の存在下、上記の合成ガス製造工程にお!、て得られた合成ガスと二酸化炭 素とを含む原料ガスから、含まれる炭化水素の主成分がプロパンまたはブタンである 低級パラフィン含有ガスを製造し、必要に応じて水分や、プロパンの沸点より低い沸 点または昇華点を持つ物質である低沸点成分、ブタンの沸点より高!、沸点を持つ物 質である高沸点成分などを分離して、プロパンまたはブタンを主成分とする液ィ匕石油 ガスを製造する。  In the liquid and petroleum gas production process of the first and second LPG production methods and the first and second LPG production methods (both are also referred to as the first production method of LPG), a catalyst (for lower paraffin production) is used. In the presence of (catalyst) in the above synthesis gas production process, a lower paraffin-containing gas in which the main component of the contained hydrocarbon is propane or butane from the raw material gas containing the synthesis gas obtained and carbon dioxide If necessary, separates water, low-boiling components that have a boiling point or sublimation point lower than that of propane, higher than that of butane, and high-boiling components that have a boiling point. As a result, a liquid oil gas containing propane or butane as a main component is produced.
[0090] 第 2の LPGの製造方法の低級パラフィン製造工程では、触媒 (低級パラフィン製造 用触媒)の存在下、上記の合成ガス製造工程において得られた合成ガスと、後述の 分離工程において低級パラフィン含有ガスから分離された二酸化炭素含有ガスとを 含む原料ガスから、二酸化炭素を含み、含まれる炭化水素の主成分がプロパンまた はブタンである低級パラフィン含有ガスを製造する。なお、必要に応じて、原料ガスに さらに二酸ィ匕炭素を混合することもできる。  [0090] In the lower paraffin production step of the second LPG production method, in the presence of a catalyst (a catalyst for producing lower paraffin), the synthesis gas obtained in the above synthesis gas production step is mixed with the lower paraffin in the separation step described later. From the raw material gas containing the carbon dioxide-containing gas separated from the content gas, a lower paraffin-containing gas containing carbon dioxide, wherein the main component of the contained hydrocarbon is propane or butane. If necessary, the raw material gas may be further mixed with carbon dioxide.
[0091] ここで、分離工程にぉ 、て低級パラフィン含有ガスから分離された二酸化炭素含有 ガスは、全部を低級パラフィン製造工程の原料としてリサイクルしてもよいし、また、一 部を系外に抜き出し、残りを低級パラフィン製造工程の原料としてリサイクルしてもよ い。また、分離工程において低級パラフィン含有ガスから分離された二酸化炭素含 有ガスは、一部を合成ガス製造工程にリサイクルすることもできる。  [0091] Here, in the separation step, the carbon dioxide-containing gas separated from the lower paraffin-containing gas may be entirely recycled as a raw material in the lower paraffin production step, or a part of the gas may be removed from the system. It may be extracted and the remainder may be recycled as raw materials for the lower-grade paraffin production process. Further, a part of the carbon dioxide-containing gas separated from the lower paraffin-containing gas in the separation step can be recycled to the synthesis gas production step.
[0092] また、二酸化炭素含有ガスは、二酸化炭素以外に、例えば、水素、一酸化炭素、ェ タン、エチレン、メタンなどを含むものであってもよい。 [0093] 分離工程において低級パラフィン含有ガスから分離した二酸化炭素含有ガスから、 二酸化炭素以外の成分を分離した後、低級パラフィン製造工程の原料としてリサイク ノレすることちでさる。 [0092] The carbon dioxide-containing gas may contain, for example, hydrogen, carbon monoxide, ethane, ethylene, methane, and the like, in addition to carbon dioxide. [0093] After separating components other than carbon dioxide from the carbon dioxide-containing gas separated from the lower paraffin-containing gas in the separation step, it is more likely to recycle as a raw material in the lower paraffin production step.
[0094] 低級パラフィン製造用触媒としては、例えば、 1種以上のメタノール合成触媒成分と [0094] Examples of the catalyst for producing lower paraffins include one or more methanol synthesis catalyst components.
1種以上のゼォライト触媒成分とを含有する触媒が挙げられる。 Catalysts containing one or more zeolite catalyst components are included.
[0095] ここで、メタノール合成触媒成分とは、 CO + 2H→CH OHの反応において触媒 [0095] Here, the methanol synthesis catalyst component is a catalyst in the reaction of CO + 2H → CH OH.
2 3  twenty three
作用を示すものを指す。また、ゼォライト触媒成分とは、メタノールの炭化水素への縮 合反応および Zまたはジメチルエーテルの炭化水素への縮合反応において触媒作 用を示すゼォライトを指す。  Refers to those that show action. The zeolite catalyst component refers to a zeolite that exhibits a catalytic action in a condensation reaction of methanol to a hydrocarbon and a condensation reaction of Z or dimethyl ether to a hydrocarbon.
[0096] この低級パラフィン製造用触媒の存在下で一酸化炭素と水素とを反応させると、下 記式 (6)で示されるような反応が起こり、主成分がプロパンまたはブタンであるバラフ イン類を製造することができる。  [0096] When carbon monoxide is reacted with hydrogen in the presence of the lower paraffin-producing catalyst, a reaction represented by the following formula (6) occurs, and paraffins whose main component is propane or butane are obtained. Can be manufactured.
[0097] [化 6]  [0097] [Formula 6]
CO
Figure imgf000020_0001
CO
Figure imgf000020_0001
CH30H - 、 CH3OCH3 CH 3 0H-, CH 3 OCH 3
HLC: ( 6 ) H2 HLC: (6) H 2
OLEFIN—— LPG まず、メタノール合成触媒成分上で一酸化炭素と水素とからメタノールが合成され る。この時、メタノールの脱水 2量ィ匕により、ジメチルエーテルも生成する。次いで、合 成されたメタノールはゼオライト触媒成分の細孔内の活性点にて主成分がプロピレン またはブテンである低級ォレフィン炭化水素に転換される。この反応では、メタノール の脱水によってカルベン(H C : )が生成し、このカルベンの重合によって低級ォレフ  OLEFIN --- LPG First, methanol is synthesized from carbon monoxide and hydrogen on the methanol synthesis catalyst component. At this time, dimethyl ether is also produced by the dehydration of methanol. Next, the synthesized methanol is converted into a lower olefin hydrocarbon whose main component is propylene or butene at an active site in the pores of the zeolite catalyst component. In this reaction, carbene (H C:) is generated by dehydration of methanol, and lower olefins are formed by polymerization of the carbene.
2  2
インが生成すると考えられる。そして、生成した低級ォレフィンはゼオライト触媒成分 の細孔内から抜け出し、メタノール合成触媒成分上で速やかに水素化されて主成分 がプロパンまたはブタンであるパラフィン類となる。 Is considered to be generated. Then, the generated lower-olefin is a zeolite catalyst component. From the pores and rapidly hydrogenated on the methanol synthesis catalyst component to become paraffins whose main component is propane or butane.
[0098] ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率 (メタノール合成 触媒成分 Zゼォライト触媒成分;質量基準)は、 0. 1以上であることが好ましぐ 0. 5 以上であることがより好ましぐ 0. 8以上であることが特に好ましい。また、ゼォライト触 媒成分に対するメタノール合成触媒成分の含有比率 (メタノール合成触媒成分 Zゼ オライト触媒成分;質量基準)は、 3以下であることが好ましぐ 2. 5以下であることが より好ましぐ 2以下であることが特に好ましい。ゼォライト触媒成分に対するメタノー ル合成触媒成分の含有比率を上記の範囲にすることにより、より高選択率、高収率 でプロパンおよび Zまたはブタンを製造することができる。  [0098] The content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; based on mass) is preferably 0.1 or more, more preferably 0.5 or more. It is particularly preferred that the ratio is 0.8 or more. Further, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; based on mass) is preferably 3 or less, more preferably 2.5 or less. It is particularly preferable that the number is 2 or less. By setting the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component in the above range, propane and Z or butane can be produced with higher selectivity and higher yield.
[0099] メタノール合成触媒成分は、メタノール合成触媒としての機能と、ォレフィンの水素 添加触媒としての機能とを有する。また、ゼォライト触媒成分は、メタノールおよび Z またはジメチルエーテルの炭化水素への縮合反応に対して酸性が調整された固体 酸ゼオライト触媒としての機能を有する。そのため、ゼォライト触媒成分に対するメタ ノール合成触媒成分の含有比率は、触媒の持つメタノール合成機能およびォレフィ ンの水素添加機能とメタノールからの炭化水素生成機能との相対比に反映される。 本発明にお 、て一酸ィ匕炭素と水素とを反応させて主成分がプロパンまたはブタンで あるパラフィン類を製造するにあたり、一酸化炭素と水素とをメタノール合成触媒成分 によって十分にメタノールに転ィ匕しなければならず、かつ、生成したメタノールをゼォ ライト触媒成分によって十分に主成分がプロピレンまたはブテンであるォレフィンに転 化し、それをメタノール合成触媒成分によって主成分がプロパンまたはブタンである パラフィン類に転ィ匕しなければならな ヽ。  [0099] The methanol synthesis catalyst component has a function as a methanol synthesis catalyst and a function as a catalyst for hydrogenating olefins. Further, the zeolite catalyst component has a function as a solid acid zeolite catalyst whose acidity is adjusted for the condensation reaction of methanol and Z or dimethyl ether to a hydrocarbon. For this reason, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is reflected in the relative ratio between the methanol synthesis function and the hydrogenation function of the olefin, and the function of generating hydrocarbons from methanol, possessed by the catalyst. In the present invention, in producing paraffins whose main components are propane or butane by reacting carbon monoxide with hydrogen, the carbon monoxide and hydrogen are sufficiently converted to methanol by a methanol synthesis catalyst component. The produced methanol must be sufficiently converted by the zeolite catalyst component into olefins whose main component is propylene or butene, and the main component is propane or butane by the methanol synthesis catalyst component. I have to transfer it to paraffin.
[0100] ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率 (メタノール合成 触媒成分 Zゼォライト触媒成分;質量基準)を 0. 1以上、より好ましくは 0. 5以上にす ることにより、一酸ィ匕炭素と水素とをより高転ィ匕率でメタノールに転ィ匕させることができ る。また、ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率 (メタノー ル合成触媒成分 Zゼォライト触媒成分;質量基準)を 0. 8以上にすることにより、生 成したメタノールをより選択的にプロパンまたはブタンを主成分とするパラフィン類に 転ィ匕させることができる。 [0100] The content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; mass basis) is set to 0.1 or more, more preferably 0.5 or more. Carbon and hydrogen can be converted to methanol at a higher conversion ratio. Further, by setting the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; mass basis) to 0.8 or more, the generated methanol can be more selectively converted to propane or butane. Paraffins as main components You can make it roll.
[0101] 一方、ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率 (メタノール 合成触媒成分 Zゼォライト触媒成分;質量基準)を 3以下、より好ましくは 2. 5以下、 特に好ましくは 2以下にすることにより、生成したメタノールをより高転化率で主成分 がプロパンまたはブタンであるパラフィン類に転ィ匕させることができる。  [0101] On the other hand, the content ratio of the methanol synthesis catalyst component to the zeolite catalyst component (methanol synthesis catalyst component Z zeolite catalyst component; by mass) is set to 3 or less, more preferably 2.5 or less, and particularly preferably 2 or less. In addition, the produced methanol can be converted into paraffins whose main component is propane or butane at a higher conversion.
[0102] なお、ゼォライト触媒成分に対するメタノール合成触媒成分の含有比率は、上記の 範囲に限定されるものではなぐ使用するメタノール合成触媒成分およびゼォライト 触媒成分の種類などに応じて適宜決めることができる。  [0102] The content ratio of the methanol synthesis catalyst component to the zeolite catalyst component is not limited to the above range, and can be appropriately determined depending on the types of the methanol synthesis catalyst component and the zeolite catalyst component to be used.
[0103] メタノール合成触媒成分としては、 CO + 2H→CH OHの反応において触媒作用  [0103] As a catalyst component for methanol synthesis, it has a catalytic action in the reaction of CO + 2H → CH OH.
2 3  twenty three
を示すものであれば特に限定されず、公知のメタノール合成触媒を使用することがで きる。  Is not particularly limited as long as the catalyst shows the following, and a known methanol synthesis catalyst can be used.
[0104] メタノール合成触媒成分として、具体的には、 Cu— Zn系、 Cu— Zn— Cr系、 Cu— Zn  [0104] Specific examples of the methanol synthesis catalyst component include Cu-Zn, Cu-Zn-Cr, and Cu-Zn.
Al系、 Cu— Zn— Ag系、 Cu— Zn—Mn— V系、 Cu— Zn—Mn—Cr系、 Cu— Zn—Mn— Al— Cr系などの Cu— Zn系およびそれに第三成分が加わったもの、あるいは、 Ni— Zn 系のもの、 Mo系のもの、 Ni 炭素系のもの、さらには Pdなど貴金属系のものなどが 挙げられる。また、メタノール合成触媒として市販されているものを使用することもでき る。  Cu-Zn system such as Al system, Cu-Zn-Ag system, Cu-Zn-Mn-V system, Cu-Zn-Mn-Cr system, Cu-Zn-Mn-Al-Cr system and the third component Ni-Zn-based, Mo-based, Ni-carbon-based, and noble metal-based materials such as Pd. Also, a commercially available methanol synthesis catalyst can be used.
[0105] 好まし ヽメタノール合成触媒成分としては、酸化銅一酸化亜鉛、酸化銅一酸化亜鉛 酸ィ匕アルミニウム(アルミナ)、酸化銅 酸ィ匕亜鉛 酸ィ匕クロムなどの Cu— Zn系メタノ ール合成触媒が挙げられる。  [0105] Preferable examples of the methanol synthesis catalyst component include Cu—Zn-based methanol such as copper oxide zinc oxide, copper oxide zinc oxide aluminum (alumina), copper oxide zinc oxide zinc oxide, and the like. Synthesis catalyst.
[0106] 他の好ましいメタノール合成触媒成分としては、 Pd系メタノール合成触媒が挙げら れる。 Pd系メタノール合成触媒としては、中でも、シリカ等の担体に Pdを 0. 1— 10重 量%担持したもの、シリカ等の担体に Pdを 0. 1— 10重量%、 Ca等のアルカリ金属、 アルカリ土類金属およびランタノイド金属力 なる群より選択される少なくとも一種を 5 重量%以下 (0重量%を除く)担持したものが好ま 、。  [0106] Other preferred methanol synthesis catalyst components include Pd-based methanol synthesis catalysts. Pd-based methanol synthesis catalysts include, among others, those in which 0.1 to 10% by weight of Pd is supported on a carrier such as silica, 0.1 to 10% by weight of Pd on a carrier such as silica, alkali metals such as Ca, Those carrying at least one element selected from the group consisting of alkaline earth metals and lanthanoid metal elements in an amount of 5% by weight or less (excluding 0% by weight) are preferred.
[0107] なお、 Pdは金属の形で含まれていなくてもよぐ例えば、酸化物、硝酸塩、塩ィ匕物 などの形で含まれていてもよい。その場合、より高い触媒活性が得られる点から、反 応前に、例えば、水素還元処理などをすることによって、 Pd系メタノール合成触媒成 分中の Pdを金属パラジウムに転ィ匕させることが好ましい。 [0107] Note that Pd may not be contained in the form of a metal, but may be contained in the form of, for example, an oxide, a nitrate, or a salted sardine. In that case, since a higher catalytic activity can be obtained, a Pd-based methanol synthesis catalyst can be formed by, for example, performing a hydrogen reduction treatment before the reaction. It is preferable to convert Pd in the metal to palladium metal.
[0108] 他の好ましいメタノール合成触媒成分としては、 Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir , Pt等のォレフィン水素化触媒成分を Zn— Cr系メタノール合成触媒に担持したもの が挙げられる。ここで、ォレフィン水素化触媒成分とは、ォレフィンのパラフィンへの水 素化反応において触媒作用を示すものを指す。ォレフィン水素化触媒成分を Zn - C r系メタノール合成触媒に担持したものとしては、中でも、 Pdおよび Zまたは Pt、より 好ましくは Pdを 0. 005— 5重量%Zn— Cr系メタノール合成触媒に担持したものが好 ましい。なお、 Zn— Cr系メタノール合成触媒は、通常、 Znおよび Crを含む複合酸ィ匕 物であり、この複合酸化物は、 Zn、 Crおよび O以外の元素、例えば、 Si, A1等を含ん でいてもよい。 [0108] Other preferable methanol synthesis catalyst components include those in which an olefin hydrogenation catalyst component such as Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, or Pt is supported on a Zn-Cr-based methanol synthesis catalyst. No. Here, the catalyst for hydrogenation of olefins refers to those which have a catalytic action in the hydrogenation reaction of olefins to paraffins. Among the catalysts in which the olefin hydrogenation catalyst component is supported on a Zn—Cr-based methanol synthesis catalyst, Pd and Z or Pt, more preferably Pd is supported on a 0.005--5 wt% Zn—Cr-based methanol synthesis catalyst. What is done is preferred. The Zn—Cr-based methanol synthesis catalyst is usually a complex oxide containing Zn and Cr, and the complex oxide contains an element other than Zn, Cr and O, for example, Si, A1 and the like. It may be.
[0109] なお、 Pd, Ptは金属の形で含まれていなくてもよぐ例えば、酸化物、硝酸塩、塩ィ匕 物などの形で含まれていてもよい。その場合、より高い触媒活性が得られる点から、 反応前に、例えば、水素還元処理などをすることによって、 Pd, Ptを金属パラジウム 、金属白金に転ィ匕させることが好ましい。  [0109] Note that Pd and Pt may not be contained in the form of a metal, but may be contained in the form of an oxide, a nitrate, a chloride, or the like. In this case, it is preferable to convert Pd and Pt to metal palladium and metal platinum before the reaction, for example, by performing a hydrogen reduction treatment from the viewpoint of obtaining higher catalytic activity.
[oiio] ゼォライト触媒成分としては、メタノールの炭化水素への縮合反応および Zまたは ジメチルエーテルの炭化水素への縮合反応において触媒作用を示すゼォライトであ れば特に限定されず、いずれも使用することができ、また、市販されているものを使 用することちでさる。  [oiio] The zeolite catalyst component is not particularly limited as long as it is a zeolite that has a catalytic action in the condensation reaction of methanol to a hydrocarbon and the condensation reaction of Z or dimethyl ether to a hydrocarbon. Also, it is better to use commercially available products.
[0111] ゼォライト触媒成分としては、反応分子の拡散が可能な細孔の広がりが 3次元であ る中細孔ゼオライトまたは大細孔ゼオライトが好ましい。このようなものとしては、例え ば、 ZSM— 5、 MCM— 22や、ベータ、 Y型などが挙げられる。本発明においては、一 般にメタノールおよび Zまたはジメチルエーテル力 低級ォレフィン炭化水素への縮 合反応に高 、選択性を示す SAPO— 34などの小細孔ゼォライトある 、はモルデナィ トなどの細孔内での反応分子の拡散が 3次元でないゼォライトよりも、一般にメタノー ルおよび Zまたはジメチルエーテルカゝらアルキル置換芳香族炭化水素への縮合反 応に高 、選択性を示す ZSM— 5、 MCM— 22などの中細孔ゼオライトあるいはベータ 、Y型などの大細孔ゼオライトなどの細孔内での反応分子の拡散が 3次元であるゼォ ライトが好ま 、。中細孔ゼオライトあるいは大細孔ゼオライトなどの細孔内での反応 分子の拡散が 3次元であるゼォライトを用いることにより、生成したメタノールをより選 択的にプロピレンまたはブテンを主成分とするォレフィン、さらにはプロパンまたはブ タンを主成分とするパラフィン類に転化させることができる。 [0111] As the zeolite catalyst component, a medium-pore zeolite or a large-pore zeolite having three-dimensional expansion of pores through which reactive molecules can diffuse is preferable. These include, for example, ZSM-5, MCM-22, beta, and Y-type. In the present invention, small-pore zeolites such as SAPO-34, which generally exhibit high selectivity and high selectivity for condensation reactions to methanol and Z or dimethyl ether or lower olefin hydrocarbons, or in pores such as mordenite In general, ZSM-5 and MCM-22, which show higher selectivity and higher selectivity for condensation reaction of methanol and Z or dimethylethercaprol with alkyl-substituted aromatic hydrocarbons, than the non-three-dimensional diffusion of reactive molecules Preference is given to zeolites in which the reaction molecules are three-dimensionally diffused in the pores, such as medium-pore zeolites or large-pore zeolites such as the beta and Y types. Reactions in pores such as medium or large pore zeolites The use of zeolite, whose molecular diffusion is three-dimensional, allows the generated methanol to be more selectively converted to olefins containing propylene or butene as a main component and paraffins containing propane or butane as a main component. Can be.
[0112] ここで、中細孔ゼオライトは、細孔径が主に 10員環によって形成される 0. 44-0. [0112] Here, the medium pore zeolite has a pore diameter mainly formed by a 10-membered ring.
65nmのゼオライトをいい、また、大細孔ゼオライトは、細孔径が主に 12員環によって 形成される 0. 66-0. 76nmのゼオライトをいう。ゼォライト触媒成分の細孔径は、ガ ス状生成物内の C3成分および C4成分選択性の点から、 0. 5nm以上がより好まし い。また、ゼォライト触媒成分の骨格細孔径は、ベンゼン等の芳香族化合物や C5成 分等のガソリン成分などの液状生成物の生成抑制の点から、 0. 76nm以下がより好 ましい。  65 nm zeolite refers to zeolite, and large pore zeolite refers to zeolite having a pore diameter of 0.66-0.76 nm formed mainly by a 12-membered ring. The pore diameter of the zeolite catalyst component is more preferably 0.5 nm or more from the viewpoint of the selectivity of the C3 component and the C4 component in the gaseous product. The skeletal pore diameter of the zeolite catalyst component is more preferably 0.76 nm or less from the viewpoint of suppressing generation of liquid products such as aromatic compounds such as benzene and gasoline components such as C5 component.
[0113] また、ゼォライト触媒成分としては、いわゆる高シリカゼォライト、具体的には SiO /  [0113] As the zeolite catalyst component, a so-called high silica zeolite, specifically, SiO /
2 2
Al Oモル比が 10 150のゼオライトが好ましい。 SiO /Al Oモル比が 10 150Zeolites with an Al O molar ratio of 10 150 are preferred. SiO / Al O molar ratio is 10 150
2 3 2 2 3 2 3 2 2 3
の高シリカゼォライトを用いることにより、生成したメタノールをより選択的にプロピレン またはブテンを主成分とするォレフィン、さらにはプロパンまたはブタンを主成分とす るパラフィン類に転ィ匕させることができる。ゼォライトの SiO /Al Oモル比は、 20以  By using the high silica zeolite, the produced methanol can be more selectively converted to an olefin having propylene or butene as a main component, and further a paraffin having propane or butane as a main component. The SiO / AlO molar ratio of zeolite should be less than 20.
2 2 3  2 2 3
上がより好ましぐ 30以上が特に好ましい。また、ゼォライトの SiO /Al Oモル比は  The upper part is more preferable, and 30 or more is particularly preferable. The zeolite SiO / Al O molar ratio is
2 2 3 2 2 3
、 100以下がより好ましぐ 50以下が特に好ましい。 Is more preferably 100 or less, and particularly preferably 50 or less.
[0114] ゼォライト触媒成分としては、 SiO /Al Oモル比が 10— 150で、反応分子の拡 [0114] As the zeolite catalyst component, the molar ratio of SiO / AlO is 10-150,
2 2 3  2 2 3
散が可能な細孔の広がりが 3次元である中細孔ゼオライトまたは大細孔ゼオライトが 特に好ましい。そのようなものとしては、例えば、 USYや高シリカタイプのベータなど の固体酸ゼオライトが挙げられる。  Medium-pore zeolites or large-pore zeolites in which the dispersible pores are three-dimensionally spread are particularly preferred. Such materials include, for example, solid acid zeolites such as USY and high silica type beta.
[0115] ゼォライト触媒成分としては、イオン交換などによって酸性を調整した上記のような 固体酸ゼオライトを用いる。  [0115] As the zeolite catalyst component, a solid acid zeolite as described above whose acidity has been adjusted by ion exchange or the like is used.
[0116] ゼォライト触媒成分としては、アルカリ金属、アルカリ土類金属、遷移金属等の金属 を含有するゼオライト、これらの金属等でイオン交換したゼォライト、あるいは、これら の金属等を担持したゼォライトなども挙げられる力 プロトン型のゼォライトが好ま U、 。適当な酸強度、酸量 (酸濃度)を有するプロトン型のゼォライトを用いることにより、 触媒活性がさらに高くなり、高転化率、高選択率でプロパンおよび Zまたはブタンを 合成することができる。 Examples of the zeolite catalyst component include zeolites containing metals such as alkali metals, alkaline earth metals, and transition metals, zeolites ion-exchanged with these metals, and zeolites carrying these metals and the like. The power of the proton type zeolite is preferred. By using a proton type zeolite having an appropriate acid strength and acid amount (acid concentration), the catalytic activity is further increased, and propane and Z or butane can be produced at high conversion and high selectivity. Can be synthesized.
[0117] 好ましいゼォライト触媒成分は、組み合わせるメタノール合成触媒成分によって異 なる。  [0117] The preferred zeolite catalyst component varies depending on the methanol synthesis catalyst component to be combined.
[0118] Cu— Zn系メタノール合成触媒と組み合わせて用いる場合、ゼォライト触媒成分とし ては USYゼォライトが好ましぐ SiO /Al Oモル比が 10— 150の USYゼォライト  [0118] When used in combination with a Cu-Zn-based methanol synthesis catalyst, USY zeolite is preferred as the zeolite catalyst component. USY zeolite having a SiO / AlO molar ratio of 10-150 is preferred.
2 2 3  2 2 3
が特に好ましぐ SiO /Al Oモル比が 10— 50の USYゼォライトがさらに好ましい。  Particularly preferred is a USY zeolite having a SiO / AlO molar ratio of 10-50.
2 2 3  2 2 3
[0119] Pd系メタノール合成触媒と組み合わせて用いる場合、ゼォライト触媒成分としては 、 j8—ゼォライトが好ましぐ SiO /Al Oモル比が 10— 150のプロトン型 j8 -ゼオラ  [0119] When used in combination with a Pd-based methanol synthesis catalyst, the zeolite catalyst component is preferably j8-zeolite, a proton-type j8-zeola having a SiO / AlO molar ratio of 10-150.
2 2 3  2 2 3
イトが特に好ましぐ SiO /Al Oモル比が 30— 50のプロトン型 |8—ゼオライトがさら  Especially preferred are protonated | 8-zeolites with a SiO / Al O molar ratio of 30-50.
2 2 3  2 2 3
に好ましい。  Preferred.
[0120] ォレフィン水素化触媒成分を Zn— Cr系メタノール合成触媒に担持したものと組み合 わせて用いる場合、好ましいゼォライト触媒成分としては、 j8—ゼオライト、特に好まし くは SiO /Al Oモル比が 10— 150のプロトン型 ゼォライト、より好ましくは SiO When the olefin hydrogenation catalyst component is used in combination with a component supported on a Zn—Cr-based methanol synthesis catalyst, the preferred zeolite catalyst component is j8-zeolite, particularly preferably the SiO 2 / Al 2 O 3 molar ratio. Is a proton type zeolite having 10-150, more preferably SiO
2 2 3 22 2 3 2
/Al Oモル比が 30— 50のプロトン型 j8—ゼオライトが挙げられる。 Proton-type j8-zeolites having a molar ratio of 30-50 AlO / Al O are exemplified.
2 3  twenty three
[0121] 低級パラフィン製造用触媒としては、メタノール合成触媒成分とゼォライト触媒成分 とを別途に調製し、これらを混合したものが好ましい。メタノール合成触媒成分とゼォ ライト触媒成分とを別途に調製することにより、各々の機能に対して、それぞれの組 成、構造、物性を最適に設計することが容易にできる。  [0121] As a catalyst for producing lower paraffin, a catalyst prepared by separately preparing a methanol synthesis catalyst component and a zeolite catalyst component and mixing them is preferable. By separately preparing the methanol synthesis catalyst component and the zeolite catalyst component, it is easy to optimally design the composition, structure, and physical properties for each function.
[0122] なお、メタノール合成触媒には、使用前に還元処理をして活性化することが必要な ものもある。本発明においては、メタノール合成触媒成分を予め還元処理して活性化 する必要は必ずしもなぐメタノール合成触媒成分とゼォライト触媒成分とを混合'成 形して低級パラフィン製造用触媒を製造した後に、反応を開始するに先立ち還元処 理をしてメタノール合成触媒成分を活性ィ匕することができる。この還元処理の処理条 件は、メタノール合成触媒成分の種類などに応じて適宜決めることができる。  [0122] Some methanol synthesis catalysts require a reduction treatment to be activated before use. In the present invention, it is not always necessary to activate the methanol synthesis catalyst component by performing a reduction treatment in advance, and after the methanol synthesis catalyst component and the zeolite catalyst component are mixed and formed to produce a lower paraffin production catalyst, the reaction is performed. Prior to the start, a reduction treatment can be performed to activate the methanol synthesis catalyst component. The treatment conditions of this reduction treatment can be appropriately determined according to the type of the methanol synthesis catalyst component and the like.
[0123] 低級パラフィン製造用触媒は、メタノール合成触媒成分とゼォライト触媒成分とを均 一に混合した後、必要に応じて成形して製造される。両触媒成分の混合'成形の方 法としては特に限定されないが、乾式の方法が好ましい。湿式で両触媒成分の混合 •成形を行った場合、両触媒成分間での化合物の移動、例えばメタノール合成触媒 成分中の塩基性成分のゼォライト触媒成分中の酸点への移動 '中和が生じることに よって、両触媒成分の各々の機能に対して最適化された物性等が変化することがあ る。触媒の成形方法としては、押出成形法、打錠成形法などが挙げられる。 [0123] The lower paraffin-producing catalyst is produced by uniformly mixing the methanol synthesis catalyst component and the zeolite catalyst component, and then molding as necessary. The method of mixing and molding the two catalyst components is not particularly limited, but a dry method is preferred. Mixing of both catalyst components by wet method • When molding, transfer of compound between both catalyst components, such as methanol synthesis catalyst The migration of the basic component in the component to the acid site in the zeolite catalyst component 'neutralization' may change the properties and the like optimized for the respective functions of both catalyst components. Examples of the method for forming the catalyst include an extrusion molding method and a tablet molding method.
[0124] 本発明にお ヽて、混合するメタノール合成触媒成分とゼォライト触媒成分とは、粒 径がある程度大きい方が好ましぐ粉末状ではなぐ顆粒状であることが好ましい。  [0124] In the present invention, the methanol synthesis catalyst component and the zeolite catalyst component to be mixed are preferably in the form of granules, rather than in the form of powder, which preferably have a somewhat large particle diameter.
[0125] ここで、粉末とは、平均粒径が 10 /z m以下のものをいい、顆粒とは、平均粒径が 10 0 m以上のものをいう。  [0125] Here, the powder refers to a powder having an average particle diameter of 10 / zm or less, and the granule refers to a powder having an average particle diameter of 100m or more.
[0126] 顆粒状、すなわち平均粒径が 100 μ m以上のメタノール合成触媒成分と、同じく顆 粒状、すなわち平均粒径が 100 m以上のゼォライト触媒成分とを混合し、必要に 応じて成形して低級パラフィン製造用触媒を製造することにより、触媒寿命がさら〖こ 長ぐ劣化がさらに少ない触媒を得ることができる。混合するメタノール合成触媒成分 の平均粒径およびゼォライト触媒成分の平均粒径は、 200 m以上がより好ましぐ 500 μ m以上が特に好まし ヽ。  [0126] Granular, ie, a methanol synthesis catalyst component having an average particle diameter of 100 µm or more, and zeolite catalyst component, which is similarly condyle, ie, an average particle diameter of 100 m or more, are mixed and molded as necessary. By producing a catalyst for producing lower paraffin, it is possible to obtain a catalyst having a longer catalyst life and less deterioration. The average particle size of the methanol synthesis catalyst component and the average particle size of the zeolite catalyst component to be mixed are more preferably 200 m or more, particularly preferably 500 μm or more.
[0127] 一方、この混合触媒の優れた性能を保つ点から、混合するメタノール合成触媒成 分の平均粒径およびゼォライト触媒成分の平均粒径は、 5mm以下が好ましぐ 2mm 以下がより好ましい。  On the other hand, from the viewpoint of maintaining the excellent performance of the mixed catalyst, the average particle diameter of the methanol synthesis catalyst component and the average particle diameter of the zeolite catalyst component to be mixed are preferably 5 mm or less, more preferably 2 mm or less.
[0128] 混合するメタノール合成触媒成分の平均粒径とゼォライト触媒成分の平均粒径とは 、同じである方が好ましい。  [0128] The average particle diameter of the methanol synthesis catalyst component to be mixed and the average particle diameter of the zeolite catalyst component are preferably the same.
[0129] 混合触媒を製造する場合、通常、それぞれの触媒成分を必要に応じて機械的に粉 砕し、平均粒径を例えば 0. 5— 2 m程度に揃えた後、均一に混合し、必要に応じ て成形する。あるいは、所望の触媒成分すベてを加え、機械的に粉砕しながら均一 になるまで混合し、平均粒径を例えば 0. 5— 2 m程度に揃え、必要に応じて成形 する。  [0129] In the case of producing a mixed catalyst, usually, each catalyst component is mechanically pulverized as necessary, and the average particle size is adjusted to, for example, about 0.5 to 2 m, and then uniformly mixed. Mold as needed. Alternatively, all the desired catalyst components are added, mixed until uniform while mechanically pulverizing, and the average particle size is adjusted to, for example, about 0.5 to 2 m, and then molded if necessary.
[0130] それに対して、顆粒状のメタノール合成触媒成分と顆粒状のゼォライト触媒成分と を混合して低級パラフィン製造用触媒を製造する場合、通常、それぞれの触媒成分 を予め打錠成形法、押出成形法などの公知の成形方法により成形し、それを必要に 応じて機械的に粉砕し、平均粒径を好ましくは 100 m— 5mm程度に揃えた後、両 者を均一に混合する。そして、この混合物を必要に応じて再度成形し、低級パラフィ ン製造用触媒を製造する。 [0130] On the other hand, when a catalyst for producing lower paraffin is produced by mixing a granular methanol synthesis catalyst component and a granular zeolite catalyst component, each catalyst component is usually prepared in advance by a tableting method and an extrusion method. It is molded by a known molding method such as a molding method, and is mechanically pulverized if necessary, and the average particle diameter is preferably adjusted to about 100 m to 5 mm, and then both are uniformly mixed. Then, if necessary, the mixture is molded again, and the lower To manufacture a catalyst for the production of
[0131] 低級パラフィン製造用触媒は、その所望の効果を損なわない範囲内で必要により 他の添加成分を含有して 、てもよ 、。  [0131] The lower paraffin-producing catalyst may contain other additive components as needed as long as the desired effect is not impaired.
[0132] 第 1の LPGの製造方法の液ィ匕石油ガス製造工程、あるいは、第 2の LPGの製造方 法の低級パラフィン製造工程では、上記のような触媒の存在下、一酸化炭素と水素と を反応させ、主成分がプロパンまたはブタンであるパラフィン類、好ましくは主成分が プロパンであるパラフィン類を製造する。 [0132] In the liquid production petroleum gas production step of the first LPG production method or the lower paraffin production step of the second LPG production method, carbon monoxide and hydrogen are produced in the presence of the above-mentioned catalyst. And are reacted to produce paraffins whose main component is propane or butane, preferably paraffins whose main component is propane.
[0133] 反応器に送入されるガス、すなわち原料ガスは、上記の合成ガス製造工程におい て得られた合成ガスと二酸化炭素、あるいは、後述の分離工程において低級パラフィ ン含有ガスから分離された二酸化炭素含有ガスとを含む。  [0133] The gas fed into the reactor, that is, the raw material gas, was separated from the synthesis gas and carbon dioxide obtained in the above-described synthesis gas production step, or from the lower paraffin-containing gas in the separation step described below. Gas containing carbon dioxide.
[0134] 反応器に送入されるガス中の一酸ィ匕炭素の含有量は、反応に好適な一酸化炭素 の圧力(分圧)の確保と、原料原単位向上との点から、一酸化炭素と二酸化炭素と水 素との合計量に対して、 3モル%以上が好ましぐ 3. 3モル%以上がより好ましい。ま た、反応器に送入されるガス中の一酸化炭素の含有量は、一酸化炭素の転化率が より十分に高くなる点から、一酸ィ匕炭素と二酸ィ匕炭素と水素との合計量に対して、 30 モル%以下が好ましぐ 28モル%以下がより好ましい。  [0134] The content of carbon monoxide in the gas fed into the reactor is determined in consideration of securing a pressure (partial pressure) of carbon monoxide suitable for the reaction and improving the unit consumption of raw materials. It is preferably at least 3 mol%, more preferably at least 3.3 mol%, based on the total amount of carbon oxide, carbon dioxide and hydrogen. In addition, the content of carbon monoxide in the gas fed into the reactor is such that the conversion rate of carbon monoxide becomes sufficiently higher, so that carbon monoxide, Is preferably 30 mol% or less, more preferably 28 mol% or less, based on the total amount of
[0135] 反応器に送入されるガス中の二酸化炭素の含有量は、 CO原料原単位向上の点か ら、一酸ィ匕炭素と二酸ィ匕炭素と水素との合計量に対して、 5モル%以上が好ましぐ 7 モル%以上がより好ましぐ 8モル%以上が特に好ましい。また、反応器に送入される ガス中の二酸化炭素の含有量は、 CO発生量低減の点から、一酸化炭素と二酸ィ匕  [0135] The content of carbon dioxide in the gas fed into the reactor is determined based on the total amount of mono-orientated carbon, di-orientated carbon and hydrogen from the viewpoint of improving the CO unit consumption. 5 mol% or more is preferable 7 mol% or more is more preferable 8 mol% or more is particularly preferable. In addition, the content of carbon dioxide in the gas sent into the reactor is controlled by carbon monoxide and carbon dioxide in order to reduce the amount of CO generated.
2  2
炭素と水素との合計量に対して、 35モル%以下が好ましぐ 30モル%以下がより好 ましぐ 17モル%以下が特に好ましい。  35 mol% or less is preferable, and 30 mol% or less is more preferable, and 17 mol% or less is especially preferable with respect to the total amount of carbon and hydrogen.
[0136] また、反応器に送入されるガス中の二酸化炭素の含有量は、二酸化炭素の生成量 を抑える点から、一酸ィ匕炭素 1モルに対して、 0. 2モル以上が好ましぐ 0. 3モル以 上がより好ましい。また、反応器に送入されるガス中の二酸化炭素の含有量は、生産 性の点から、一酸ィ匕炭素 1モルに対して、 1モル以下が好ましぐ 0. 7モル以下がより 好ましい。 [0136] The content of carbon dioxide in the gas fed into the reactor is preferably 0.2 mol or more per 1 mol of carbon dioxide from the viewpoint of suppressing the amount of carbon dioxide generated. The magus is more preferably at least 0.3 mol. Further, the content of carbon dioxide in the gas fed into the reactor is preferably 1 mol or less, more preferably 0.7 mol or less, based on 1 mol of carbon dioxide from the viewpoint of productivity. preferable.
[0137] 反応器に送入されるガス中の二酸化炭素の含有量が多くなると、副生する二酸ィ匕 炭素の量が減少する。一方で、反応器に送入されるガス中の二酸化炭素の含有量 があまりに多くなると、不要なガスの流通 (循環)量が増大する。 [0137] When the content of carbon dioxide in the gas fed into the reactor increases, the by-product The amount of carbon decreases. On the other hand, if the content of carbon dioxide in the gas sent to the reactor becomes too large, the amount of circulation (circulation) of unnecessary gas increases.
[0138] 反応器に送入されるガス中の水素の含有量は、一酸化炭素がより十分に反応する 点から、一酸ィ匕炭素 1モルに対して 1. 2モル以上が好ましぐ 1. 5モル以上がより好 ましい。また、反応器に送入されるガス中の水素の含有量は、経済性の点から、一酸 化炭素 1モルに対して 3. 5モル以下が好ましぐ 3モル以下がより好ましい。  [0138] The content of hydrogen in the gas fed into the reactor is preferably 1.2 mol or more per 1 mol of carbon monoxide from the viewpoint that carbon monoxide reacts more sufficiently. 1. More than 5 moles is more preferred. Further, the content of hydrogen in the gas fed into the reactor is more preferably 3.5 mol or less, more preferably 3 mol or less, per 1 mol of carbon monoxide from the viewpoint of economy.
[0139] 第 2の LPGの製造方法において、反応器に送入されるガス中の二酸化炭素含有ガ スの含有量は、反応器に送入されるガスの組成が好ましくは上記の範囲内になるよう に適宜決めることができる。  [0139] In the second method for producing LPG, the content of the carbon dioxide-containing gas in the gas fed into the reactor is such that the composition of the gas fed into the reactor is preferably within the above range. It can be determined as appropriate.
[0140] なお、反応器に送入されるガスは、一酸化炭素、水素および二酸化炭素以外に、 例えば、水、メタン、ェタン、エチレン、不活性ガスなどを含むものであってもよい。反 応器に送入されるガスは、上記の合成ガス製造工程にお 、て得られた合成ガスと二 酸化炭素、あるいは、後述の分離工程において低級パラフィン含有ガス力も分離さ れた二酸化炭素含有ガスに、必要に応じて、その他の成分を加えたものであってもよ い。また、反応器に送入されるガスは、上記の合成ガス製造工程において得られた 合成ガス、後述の分離工程にぉ 、て低級パラフィン含有ガスから分離された二酸ィ匕 炭素含有ガスから、必要に応じて、所定の成分を分離したものであってもよい。  [0140] The gas fed into the reactor may include, for example, water, methane, ethane, ethylene, an inert gas, and the like, in addition to carbon monoxide, hydrogen, and carbon dioxide. The gas sent to the reactor may be the synthesis gas and carbon dioxide obtained in the above-mentioned synthesis gas production process, or the carbon dioxide-containing gas in which the lower paraffin-containing gas power is also separated in the separation process described below. The gas may contain other components as necessary. Further, the gas fed into the reactor is the synthesis gas obtained in the above-described synthesis gas production step, and the dioxin-containing carbon-containing gas separated from the lower paraffin-containing gas in the separation step described below. If necessary, predetermined components may be separated.
[0141] 反応温度は、メタノール合成触媒成分とゼォライト触媒成分とが、それぞれ、より十 分に高い活性を示す点から、 270°C以上が好ましぐ 300°C以上がより好ましい。ま た、反応温度は、触媒の使用制限温度の点と、反応熱の除去,回収が容易である点 とから、 420°C以下が好ましぐ 400°C以下がより好ましい。  [0141] The reaction temperature is preferably 270 ° C or higher, more preferably 300 ° C or higher, since the methanol synthesis catalyst component and the zeolite catalyst component each show sufficiently higher activities. Further, the reaction temperature is preferably 420 ° C or lower, more preferably 400 ° C or lower, in view of the limit temperature for use of the catalyst and the ease of removing and recovering the reaction heat.
[0142] また、反応温度を高温にすることで、二酸ィ匕炭素と水素とを反応させ、ノ フィン類 を製造することも可能である。その場合、反応温度は 310°C以上が好ましぐ 330°C 以上がより好ましい。この場合も、反応温度は、 420°C以下が好ましぐ 400°C以下が より好まし 、。  [0142] Further, by raising the reaction temperature to a high temperature, it is also possible to react dihydrogen carbon and hydrogen to produce a olefin. In that case, the reaction temperature is preferably 310 ° C or higher, more preferably 330 ° C or higher. Also in this case, the reaction temperature is preferably 420 ° C or lower, more preferably 400 ° C or lower.
[0143] 好適な反応温度は、用いる触媒の種類によって異なる。メタノール合成触媒成分と して Cu— Zn系メタノール合成触媒を使用する場合、反応温度はあまり高くな!/、方が 好ましぐ具体的には、 340°C以下が好ましい。一方、メタノール合成触媒成分として Pd系メタノール合成触媒や、ォレフィン水素化触媒成分を Zn— Cr系メタノール合成 触媒に担持したものを使用する場合、反応温度は 340°C以上が特に好ましい。 [0143] A suitable reaction temperature depends on the type of the catalyst to be used. When a Cu—Zn-based methanol synthesis catalyst is used as the methanol synthesis catalyst component, the reaction temperature is too high! /, More preferably, specifically, 340 ° C. or lower. On the other hand, as a methanol synthesis catalyst component In the case of using a Pd-based methanol synthesis catalyst or a catalyst in which the olefin hydrogenation catalyst component is supported on a Zn—Cr-based methanol synthesis catalyst, the reaction temperature is particularly preferably 340 ° C. or higher.
[0144] 反応圧力は、メタノール合成触媒成分がより十分に高 ヽ活性を示す点から、 IMPa 以上が好ましぐ 2MPa以上がより好ましい。また、反応圧力は、経済性の点から、 10[0144] The reaction pressure is more preferably 2 MPa or more, which is preferably IMPa or more, since the methanol synthesis catalyst component exhibits a sufficiently high activity. The reaction pressure is 10
MPa以下が好ましぐ 7MPa以下がより好ましい。 MPa or less is preferred. 7 MPa or less is more preferred.
[0145] ガス空間速度は、経済性の点から、 500hr_1以上が好ましぐ 2000hr— 1以上がより 好ましい。また、ガス空間速度は、メタノール合成触媒成分とゼォライト触媒成分とが[0145] Gas hourly space velocity, in terms of economic efficiency, or 500 hr _1 is preferable instrument 2000Hr- 1 or more is more preferable. In addition, the gas space velocity depends on the methanol synthesis catalyst component and the zeolite catalyst component.
、それぞれ、より十分に高い転ィ匕率を示す接触時間を与える点から、 lOOOOhr— 1以 下が好ましぐ 5000hr— 1以下がより好ましい。 , Respectively, from the viewpoint of giving a contact time indicating a more sufficiently high Utati匕率, LOOOOhr- 1 hereinafter is preferably tool 5000Hr- 1 or less is more preferable.
[0146] 反応器に送入されるガスは、分割して反応器に送入し、それにより反応温度を制御 することちでさる。 [0146] The gas fed into the reactor is split and fed into the reactor, thereby controlling the reaction temperature.
[0147] 反応は固定床、流動床、移動床などで行うことができる力 反応温度の制御と触媒 の再生方法との両面力 選定することが好ましい。例えば、固定床としては、内部多 段タエンチ方式などのタエンチ型反応器、多管型反応器、複数の熱交 を内包す るなどの多段型反応器、多段冷却ラジアルフロー方式や二重管熱交換方式や冷却 コイル内蔵式や混合流方式などその他の反応器などを用いることができる。  [0147] The reaction can be carried out in a fixed bed, a fluidized bed, a moving bed, or the like. For example, as fixed beds, there are a multi-stage reactor such as an internal multi-stage reactor, a multi-tube reactor, a multi-stage reactor including multiple heat exchanges, a multi-stage cooling radial flow system, a double-tube heat system, and the like. Other reactors such as an exchange system, a built-in cooling coil system, and a mixed flow system can be used.
[0148] 低級パラフィン製造用触媒は、温度制御を目的として、シリカ、アルミナなど、あるい は、不活性で安定な熱伝導体で希釈して用いることもできる。また、低級パラフィン製 造用触媒は、温度制御を目的として、熱交 表面に塗布して用いることもできる。  [0148] The catalyst for producing lower paraffin can be used after being diluted with an inert and stable heat conductor, such as silica or alumina, for the purpose of controlling the temperature. Further, the catalyst for producing lower paraffin can be used by coating it on the heat exchange surface for the purpose of controlling the temperature.
[0149] この液ィ匕石油ガス製造工程において得られる液ィ匕石油ガス、および水分などを分 離する前の低級パラフィン含有ガス、あるいは、低級パラフィン製造工程において得 られる低級パラフィン含有ガスは、含まれる炭化水素の主成分がプロパンまたはブタ ンである。液ィ匕特性の点から、液ィ匕石油ガスまたは低級パラフィン含有ガス中のプロ パンおよびブタンの合計含有量は多いほど好ましい。本発明では、プロパンおよび ブタンの合計含有量力 炭素基準で 75%以上、さらには 80%以上(100%も含む) である液ィ匕石油ガスまたは低級パラフィン含有ガスを得ることができる。  [0149] The liquid-shape petroleum gas obtained in the liquid-shape petroleum gas production process and the lower paraffin-containing gas before separation of water and the like, or the lower paraffin-containing gas obtained in the lower paraffin-producing process are included. The main component of the hydrocarbons used is propane or butane. From the viewpoint of the liquid-riding properties, the larger the total content of propane and butane in the liquid-riding petroleum gas or the lower paraffin-containing gas, the better. According to the present invention, it is possible to obtain a liquid crystal gas or a lower paraffin-containing gas having a total content of propane and butane of 75% or more, more preferably 80% or more (including 100%) based on carbon.
[0150] さらに、液ィ匕石油ガス製造工程にお 、て得られる液ィ匕石油ガス、および水分などを 分離する前の低級パラフィン含有ガス、あるいは、低級パラフィン製造工程において 得られる低級パラフィン含有ガスは、燃焼性および蒸気圧特性の点から、ブタンより プロパンが多いことが好ましい。本発明では、プロパンの含有量力 炭素基準で 57 %以上、さらには 62%以上(100%も含む)である液ィ匕石油ガスまたは低級パラフィ ン含有ガスを得ることができる。 [0150] Furthermore, the liquid paraffin-containing gas obtained in the liquid paraffin production process and the lower paraffin-containing gas before separation of water and the like, or in the lower paraffin production process The obtained lower paraffin-containing gas preferably contains more propane than butane from the viewpoint of flammability and vapor pressure characteristics. In the present invention, it is possible to obtain a liquid gas or a liquid containing lower paraffin having a propane content of 57% or more, more preferably 62% or more (including 100%) based on carbon.
[0151] 第 1の LPGの製造方法では、以上のようにして、含まれる炭化水素の主成分がプロ パンまたはブタンである低級パラフィン含有ガスを製造し、必要に応じて水分や、プロ パンの沸点より低 、沸点または昇華点を持つ物質である低沸点成分、ブタンの沸点 より高 、沸点を持つ物質である高沸点成分などを分離して、液化石油ガス (LPG)を 製造する。水分、低沸点成分および高沸点成分の分離は、公知の方法によって行う ことができる。また、液ィ匕石油ガスを得るために、必要に応じて加圧および/または 冷却を行ってもよい。 [0151] In the first method for producing LPG, as described above, a lower paraffin-containing gas in which the main component of the hydrocarbon contained is propane or butane is produced, and if necessary, water or propane is produced. Liquefied petroleum gas (LPG) is produced by separating low boiling components that are substances having a boiling point or sublimation point lower than the boiling point, and high boiling components that are substances having a boiling point higher than that of butane. Separation of water, low-boiling components and high-boiling components can be performed by a known method. In addition, pressurization and / or cooling may be performed as necessary in order to obtain liquid gas.
[0152] 民生用としては、使用時の安全性の点から、例えば、分離によって LPG中の低沸 点成分の含有量を 5モル%以下 (0モル%も含む)とすることが好ま 、。  [0152] For consumer use, from the viewpoint of safety during use, for example, it is preferable that the content of low boiling components in LPG is reduced to 5 mol% or less (including 0 mol%) by separation.
[0153] このようにして製造される LPG中のプロパンおよびブタンの合計含有量は、 95モル %以上、さらには 98モル%以上(100モル%も含む)とすることができる。また、製造 される LPG中のプロパンの含有量は、 60モル%以上、さらには 65モル%以上(100 モル0 /0も含む)とすることができる。 [0153] The total content of propane and butane in the LPG thus produced can be 95 mol% or more, and further 98 mol% or more (including 100 mol%). The content of propane in the LPG produced is 60 mol% or more, further it can be 65 mol% or more (including 100 mol 0/0).
[0154] 本発明の第 1の LPGの製造方法によれば、家庭用 ·業務用の燃料として広く用いら れているプロパンガスに適した組成を有する LPGを製造することができる。  According to the first method for producing an LPG of the present invention, it is possible to produce an LPG having a composition suitable for propane gas widely used as a fuel for home and business use.
[0155] 〔分離工程〕  [Separation Step]
第 2の LPGの製造方法の分離工程では、上記の低級パラフィン製造工程にお!/、て 得られた低級パラフィン含有ガスから、必要に応じて水分などを分離した後、二酸ィ匕 炭素を含む二酸ィ匕炭素含有ガスを分離し、プロパンまたはブタンを主成分とする液 化石油ガス (LPG)を得る。液ィ匕石油ガスを得るために、必要に応じて加圧および Z または冷却を行ってもよい。  In the separation step of the second LPG production method, in the above-mentioned lower paraffin production step, water and the like are separated from the lower paraffin-containing gas obtained as necessary, and then the carbon dioxide is removed. Is separated to obtain a liquefied petroleum gas (LPG) containing propane or butane as a main component. Pressurization and Z or cooling may be performed as necessary in order to obtain a liquid oil gas.
[0156] 低級パラフィン製造工程において得られる低級パラフィン含有ガスには、二酸化炭 素以外に、未反応の原料である水素および一酸化炭素、副生物であるェタン、メタン 、エチレンなど、プロパンの沸点より低い沸点または昇華点を有する低沸点成分が含 まれる。これらの低沸点成分も、同時に、二酸化炭素含有ガスとして分離してもよい。 [0156] The lower paraffin-containing gas obtained in the lower paraffin production step includes, in addition to carbon dioxide, unreacted raw materials such as hydrogen and carbon monoxide, and by-products such as ethane, methane, and ethylene. Contains low boiling components with low boiling points or sublimation points Be turned. These low-boiling components may also be separated at the same time as carbon dioxide-containing gas.
[0157] 二酸化炭素含有ガスの分離は、例えば、気液分離、吸収分離、蒸留など公知の方 法によって行うことができる。より具体的には、加圧常温での気液分離や吸収分離、 冷却しての気液分離や吸収分離、あるいは、その組み合わせによって行うことができ る。また、膜分離や吸着分離によって行うこともでき、これらと気液分離、吸収分離、 蒸留との組み合わせによって行うこともできる。 [0157] Separation of the carbon dioxide-containing gas can be performed by a known method such as gas-liquid separation, absorption separation, and distillation. More specifically, the separation can be performed by gas-liquid separation or absorption separation at normal temperature under pressure, gas-liquid separation or absorption separation by cooling, or a combination thereof. Further, it can be carried out by membrane separation or adsorption separation, and can also be carried out by combining these with gas-liquid separation, absorption separation, and distillation.
[0158] 低級パラフィン含有ガス力 分離した二酸ィ匕炭素含有ガスから、必要に応じて二酸 化炭素以外の成分、例えば上記の低沸点成分を分離することもできる。低沸点成分 などの分離は、公知の方法によって行うことができる。 [0158] Lower paraffin-containing gas power [0158] From the separated carbon dioxide-containing gas, components other than carbon dioxide, for example, the above-mentioned low-boiling components can be separated as necessary. Separation of low-boiling components and the like can be performed by a known method.
[0159] また、二酸化炭素含有ガスを分離する前、あるいは、二酸化炭素含有ガスを分離し た後に、低級パラフィン含有ガスから、ブタンの沸点より高い沸点を持つ物質である 高沸点成分、例えば高沸点パラフィンガスなどを分離してもよい。高沸点成分の分離 は、気液分離、吸収分離、蒸留など、公知の方法によって行うことができる。 [0159] Before separating the carbon dioxide-containing gas or after separating the carbon dioxide-containing gas, the lower paraffin-containing gas is converted into a substance having a boiling point higher than that of butane, such as a high boiling point component, for example, a high boiling point component. Paraffin gas or the like may be separated. Separation of the high boiling component can be performed by a known method such as gas-liquid separation, absorption separation, and distillation.
[0160] 民生用としては、使用時の安全性の点から、例えば、分離によって LPG中の低沸 点成分の含有量を 5モル%以下 (0モル%も含む)とすることが好ま 、。 [0160] For consumer use, from the viewpoint of safety during use, for example, the content of low boiling components in LPG is preferably 5 mol% or less (including 0 mol%) by separation.
[0161] このようにして製造される LPG中のプロパンおよびブタンの合計含有量は、 95モル[0161] The total content of propane and butane in the LPG thus produced is 95 mol
%以上、さらには 98モル%以上(100モル%も含む)とすることができる。また、製造 される LPG中のプロパンの含有量は、 60モル%以上、さらには 65モル%以上(100 モル0 /0も含む)とすることができる。 % Or more, and 98% or more (including 100% by mole). The content of propane in the LPG produced is 60 mol% or more, further it can be 65 mol% or more (including 100 mol 0/0).
[0162] 本発明の第 2の LPGの製造方法によれば、家庭用 ·業務用の燃料として広く用いら れているプロパンガスに適した組成を有する LPGを製造することができる。 According to the second LPG production method of the present invention, it is possible to produce LPG having a composition suitable for propane gas which is widely used as a fuel for home and business use.
[0163] 〔リサイクル工程〕 [0163] [Recycling process]
第 2の LPGの製造方法のリサイクル工程では、上記の分離工程にお!、て低級パラ フィン含有ガスから分離された二酸化炭素含有ガスを、低級パラフィン製造工程にリ サイクルする。  In the recycling process of the second LPG production method, the carbon dioxide-containing gas separated from the lower paraffin-containing gas in the above separation process is recycled to the lower paraffin production process.
[0164] 低級パラフィン含有ガスから分離された二酸化炭素含有ガスは、すべて低級バラフ イン製造工程にリサイクルしてもよいし、また、一部を系外に抜き出し、あるいは、合成 ガス製造工程にリサイクルし、残りを低級パラフィン製造工程にリサイクルしてもよ 、。 二酸化炭素含有ガスは、所望の成分、すなわち二酸ィヒ炭素のみを分離して低級パ ラフィン製造工程にリサイクルすることもできる。 [0164] All of the carbon dioxide-containing gas separated from the lower paraffin-containing gas may be recycled to the lower-paraffin production process, or part of the gas may be extracted to the outside of the system or recycled to the synthesis gas production process. The rest may be recycled to the lower paraffin manufacturing process. The carbon dioxide-containing gas can be separated into only a desired component, that is, carbon dioxide, and recycled to the lower paraffin production process.
[0165] 二酸ィ匕炭素含有ガスをリサイクルするためには、適宜リサイクルラインに昇圧手段を 設ける等、公知の技術を採用することができる。  [0165] In order to recycle the carbon dioxide-containing gas, a known technique such as appropriately providing a pressure increasing means in a recycle line can be adopted.
[0166] 〔LPGの製造方法〕 [Method of Manufacturing LPG]
次に、図面を参照しながら、本発明の LPGの製造方法の一実施形態について説 明する。  Next, an embodiment of an LPG manufacturing method of the present invention will be described with reference to the drawings.
[0167] 図 1に、本発明の第 1の LPGの製造方法を実施するのに好適な LPG製造装置の 一例を示す。  FIG. 1 shows an example of an LPG production apparatus suitable for carrying out the first LPG production method of the present invention.
[0168] まず、含炭素原料としてメタンが、ライン 13を経て、改質器 11に供給される。また、 水蒸気改質を行うため、図示しないが水蒸気がライン 13に供給される。改質器 11内 には、改質触媒 11aが備えられている。また、改質器 11は、改質のために必要な熱 を供給するための加熱手段 (不図示)を備える。この改質器 11内において、改質触 媒 11aの存在下、メタンが改質され、水素、一酸化炭素、二酸化炭素および水蒸気 を含む合成ガスが得られる。  [0168] First, methane is supplied to the reformer 11 via the line 13 as a carbon-containing raw material. Although not shown, steam is supplied to the line 13 to perform steam reforming. The reformer 11 includes a reforming catalyst 11a. Further, the reformer 11 includes a heating means (not shown) for supplying heat required for reforming. In the reformer 11, methane is reformed in the presence of the reforming catalyst 11a, and a synthesis gas containing hydrogen, carbon monoxide, carbon dioxide, and water vapor is obtained.
[0169] このようにして得られた合成ガスは、ライン 14および 15を経て、反応器 12に供給さ れる。また、二酸化炭素が、ライン 16を経て、ライン 15に供給される。反応器 12内に は、低級パラフィン製造用触媒 12aが備えられている。この反応器 12内において、低 級パラフィン製造用触媒 12aの存在下、合成ガスと二酸化炭素とを含む原料ガスか らプロパン、ブタンを含む低級パラフィン含有ガスが合成される。  [0169] The synthesis gas thus obtained is supplied to the reactor 12 via the lines 14 and 15. Also, carbon dioxide is supplied to the line 15 via the line 16. The reactor 12 is provided with a lower paraffin production catalyst 12a. In this reactor 12, a lower paraffin-containing gas containing propane and butane is synthesized from a raw material gas containing synthesis gas and carbon dioxide in the presence of a lower paraffin-producing catalyst 12a.
[0170] 合成された低級パラフィン含有ガスは、必要に応じて水分等を除去した後、加圧- 冷却され、ライン 17から製品となる LPGが得られる。 LPGは、気液分離などにより水 素等を除去してもよい。  [0170] The synthesized lower paraffin-containing gas is subjected to pressurization and cooling after removing water and the like as necessary, and LPG as a product is obtained from line 17. LPG may remove hydrogen and the like by gas-liquid separation or the like.
[0171] なお、図示しないが、 LPG製造装置には、昇圧機、熱交翻、バルブ、計装制御 装置などが必要に応じて設けられる。  [0171] Although not shown, the LPG manufacturing apparatus is provided with a booster, a heat exchange, a valve, an instrumentation control device, and the like as necessary.
[0172] 図 2に、本発明の第 2の LPGの製造方法を実施するのに好適な LPG製造装置の 一例を示す。 FIG. 2 shows an example of an LPG production apparatus suitable for carrying out the second LPG production method of the present invention.
[0173] まず、含炭素原料としてメタンが、ライン 24を経て、改質器 21に供給される。また、 水蒸気改質を行うため、図示しないが水蒸気がライン 24に供給される。改質器 21内 には、改質触媒 21aが備えられている。また、改質器 21は、改質のために必要な熱 を供給するための加熱手段 (不図示)を備える。この改質器 21内において、改質触 媒 21aの存在下、メタンが改質され、水素、一酸化炭素、二酸化炭素および水蒸気 を含む合成ガスが得られる。 [0173] First, methane is supplied to the reformer 21 via the line 24 as a carbon-containing raw material. Also, Although not shown, steam is supplied to the line 24 for performing steam reforming. In the reformer 21, a reforming catalyst 21a is provided. Further, the reformer 21 includes a heating means (not shown) for supplying heat required for reforming. In the reformer 21, methane is reformed in the presence of the reforming catalyst 21a, and a synthesis gas containing hydrogen, carbon monoxide, carbon dioxide, and water vapor is obtained.
[0174] このようにして得られた合成ガスは、ライン 25および 26を経て、反応器 22に供給さ れる。また、二酸化炭素を含む二酸化炭素含有ガスが、分離器 23からリサイクルライ ン 29を経て、ライン 26に供給される。反応器 22内には、低級パラフィン製造用触媒 2 2aが備えられている。この反応器 22内において、低級パラフィン製造用触媒 22aの 存在下、合成ガスと二酸ィ匕炭素とを含む原料ガスカゝらプロパン、ブタンを含む低級パ ラフィン含有ガスが合成される。  [0174] The synthesis gas thus obtained is supplied to the reactor 22 via the lines 25 and 26. Further, a carbon dioxide-containing gas containing carbon dioxide is supplied from a separator 23 to a line 26 via a recycling line 29. The reactor 22 is provided with a lower paraffin production catalyst 22a. In the reactor 22, in the presence of the lower paraffin production catalyst 22a, a raw paraffin containing propane and butane, and a lower paraffin-containing gas containing butane are synthesized.
[0175] 合成された低級パラフィン含有ガスは、必要に応じて水分等を除去した後、ライン 2 7を経て、蒸留塔である分離器 23に供給される。そして、常温加圧蒸留により、塔底 力 プロパンの沸点以上の沸点を持つ物質、すなわち製品となる LPGが得られ、塔 頂力 プロパンの沸点より低 、沸点または昇華点を持つ物質、すなわち低沸点成分 が残ガスとして得られる。こうしてライン 28から製品となる LPGが得られる。一方、塔 頂から得られる残ガス (低沸点成分)は、二酸化炭素を含む二酸化炭素含有ガスとし て、リサイクルライン 29により、反応器 22にリサイクルされる。  [0175] The synthesized lower-paraffin-containing gas is supplied to a separator 23, which is a distillation column, through a line 27 after removing water and the like as necessary. Then, a substance having a boiling point equal to or higher than the boiling point of propane, that is, LPG as a product, is obtained by pressure distillation at room temperature, and a substance having a boiling point or sublimation point lower than the boiling point of propane, that is, a low boiling point. The components are obtained as residual gas. In this way, a product LPG is obtained from the line 28. On the other hand, the residual gas (low-boiling point component) obtained from the top is recycled to the reactor 22 through the recycling line 29 as a carbon dioxide-containing gas containing carbon dioxide.
[0176] なお、図示しないが、 LPG製造装置には、昇圧機、熱交翻、バルブ、計装制御 装置などが必要に応じて設けられる。  [0176] Although not shown, the LPG manufacturing apparatus is provided with a booster, a heat exchange, a valve, an instrumentation control device, and the like as necessary.
実施例  Example
[0177] 以下、実施例により本発明をさらに詳細に説明する。なお、本発明はこれらの実施 例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples. Note that the present invention is not limited to these examples.
[0178] 〔実施例 1〕 [Example 1]
図 1に示す LPG製造装置を用いて LPGを製造した。改質触媒 (合成ガス製造用触 媒)および低級パラフィン製造用触媒は、以下のようにして調製したものを用いた。  LPG was manufactured using the LPG manufacturing apparatus shown in FIG. As the reforming catalyst (catalyst for producing synthesis gas) and the catalyst for producing lower paraffin, those prepared as follows were used.
[0179] (改質触媒の調製) (Preparation of Reforming Catalyst)
空気中、 920°Cで 2時間焼成した酸化マグネシウムを 0. 27-0. 75mmに整粒し た後、含浸法で Ruを担持した。この Ru含浸体は、ルテニウム (III)クロライド水和物の 水溶液 (Ru含有量: 1. 0重量%)を焼成 MgOに極めて少量ずつ滴下し、混振するこ とを繰り返して得た。そして、この Ru含浸体を空気中、 120°Cで 2. 5時間乾燥した後 、空気中、 920°Cで 2時間焼成し、改質触媒 (Ru担持 MgO触媒)を得た。得られた R u担持 MgO触媒は、 Ruの担持量が MgO lgに対して 1. 5 X 10— 3g、 mol換算で 0. 0 6mol%であり、表面積が 9. 6m2Zgであった。 Magnesium oxide fired in air at 920 ° C for 2 hours is sized to 0.27-0.75mm After that, Ru was loaded by the impregnation method. The Ru-impregnated body was obtained by repeatedly dropping an aqueous solution of ruthenium (III) chloride hydrate (Ru content: 1.0% by weight) into calcined MgO little by little and shaking. Then, the Ru-impregnated body was dried in air at 120 ° C. for 2.5 hours, and then calcined in air at 920 ° C. for 2 hours to obtain a reforming catalyst (Ru-supported MgO catalyst). The resulting R u supporting MgO catalyst, the supported amount of Ru is 0. 0 6 mol% with 1. 5 X 10- 3 g, mol in terms relative to MgO lg, surface area of 9. 6 m 2 Zg .
[0180] (低級パラフィン製造用触媒の調製) (Preparation of Catalyst for Production of Lower Paraffin)
メタノール合成触媒成分としては、巿販の Cu— Zn系メタノール合成触媒(日本ズー ドへミー社製)を機械的に粉末にしたものを用いた。ゼォライト触媒成分としては、別 途調製した SiO /Al Oモル比が 14. 5のプロトン型 ZSM— 5ゼォライト(細孔径:短  As the methanol synthesis catalyst component, a commercially available Cu—Zn methanol synthesis catalyst (manufactured by Nippon Zoohemie Co., Ltd.) that was mechanically powdered was used. As a zeolite catalyst component, a separately prepared proton type ZSM-5 zeolite having a SiO / AlO molar ratio of 14.5 (pore diameter: short
2 2 3  2 2 3
径 0. 53應、長径 0. 56應)粉末を用いた。  0.53 mm diameter, 0.556 mm long diameter) powder was used.
[0181] このメタノール合成触媒成分と同じ重量のゼォライト触媒成分とを均一に混合して 加圧成型,整粒した後、水素気流中、 300°Cで 3時間、還元処理して低級パラフィン 製造用触媒を得た。 [0181] This methanol synthesis catalyst component and a zeolite catalyst component of the same weight are uniformly mixed, press-molded and sized, and then reduced in a hydrogen stream at 300 ° C for 3 hours to produce lower paraffin. A catalyst was obtained.
[0182] (合成ガス製造工程) [0182] (Syngas production process)
前記の改質触媒を外熱式反応管型の装置に充填した後、反応に先立ち、触媒を 水素気流中、 900°Cで 1時間、還元処理した。  After filling the above-mentioned reforming catalyst into an externally heated reaction tube type apparatus, prior to the reaction, the catalyst was subjected to a reduction treatment in a hydrogen stream at 900 ° C. for 1 hour.
[0183] 天然ガス 46. 5モル0 /0、スチーム 47. 3モル0 /0、二酸化炭素 6. 2モル0 /0力もなる原 料ガスを、改質触媒層に流通させた。反応条件は、反応温度 870°C、反応圧力 2. 1[0183] Natural gas 46.5 mole 0/0, a steam 47.3 mole 0/0, carbon dioxide 6.2 mole 0/0 becomes raw material gas force, was passed through the reforming catalyst layer. The reaction conditions were as follows: reaction temperature 870 ° C, reaction pressure 2.1
MPaゝ GHSV (ガス空間速度) 2000hr— 1とした。 MPa ゝ GHSV (gas hourly space velocity) 2000 hr- 1 .
[0184] 生成物 (合成ガス)をガスクロマトグラフィーにより分析したところ、その組成は、水素[0184] The product (syngas) was analyzed by gas chromatography to find that the composition was hydrogen.
61モル0 /0、一酸化炭素 30モル0 /0、二酸化炭素 2モル0 /0、メタン 7モル0 /。であった。 61 mole 0/0, the carbon monoxide 30 mol 0/0, CO 2 mole 0/0, methane 7 mole 0 /. Met.
[0185] (液化石油ガス製造工程) [Liquefied petroleum gas production process]
合成ガス製造工程にお ヽて得られた合成ガスに対して 18Z 100容量倍の二酸ィ匕 炭素ガスを添加し、この水素 52. 6モル0 /0、一酸化炭素 25. 9モル0 /0、二酸化炭素 1Synthesis was added 18Z 100 fold volume of the secondary Sani匕carbon gas to a synthesis gas obtained gas production step Te Contactヽ, hydrogen 52.6 mole 0/0, carbon monoxide 25.9 mole 0 / 0 , carbon dioxide 1
5. 5モル%、メタン 6. 0モル%からなるガスを、低級パラフィン製造用触媒層に流通 させた。反応条件は、反応温度 325°C、反応圧力 2. 0MPa、 GHSV3000hr— 1とし [0186] 生成物 (低級パラフィン含有ガス)をガスクロマトグラフィーにより分析したところ、一 酸化炭素の炭化水素への転化率は 50%であり、一酸化炭素の二酸化炭素へのシフ ト反応転化率は 0%であった。また、生成した炭化水素は、炭素基準で 75%がプロ パンおよびブタンであり、そのプロパンおよびブタンの内訳は炭素基準でプロパンが 56%、ブタン力 4%であった。 A gas consisting of 5.5 mol% and methane 6.0 mol% was passed through the lower paraffin production catalyst layer. The reaction conditions were as follows: reaction temperature 325 ° C, reaction pressure 2.0MPa, GHSV3000hr- 1. [0186] The product (lower paraffin-containing gas) was analyzed by gas chromatography to find that the conversion of carbon monoxide to hydrocarbons was 50%, and the conversion of carbon monoxide to carbon dioxide was a shift reaction. 0%. The generated hydrocarbons were propane and butane in 75% on a carbon basis, with propane and butane being 56% propane and 4% butane power on a carbon basis.
[0187] 得られた低級パラフィン含有ガスを気液分離した後、モレキュラーシーブで乾燥し、 0°C付近に保持されたオクタン溶液にバブルさせる方法により、低級パラフィン含有 ガス力ら、メタン 12. 8モノレ0 /0、ェタンおよびエチレン 2. 2モノレ0 /0、二酸化炭素 25. 9 モル。 /0、未反応の一酸化炭素 21. 9モル%および水素 37. 3モル%からなるガスを 低沸点成分として分離し、 LPGを製造した。 [0187] After gas-liquid separation of the obtained lower paraffin-containing gas, it was dried with a molecular sieve, and bubbled into an octane solution maintained at about 0 ° C. Monore 0/0, Etan and ethylene 2.2 Monore 0/0, carbon dioxide 25.9 mole. / 0 , a gas consisting of 21.9 mol% of unreacted carbon monoxide and 37.3 mol% of hydrogen was separated as a low-boiling component to produce LPG.
[0188] 〔比較例 1〕  [Comparative Example 1]
ライン 16から二酸化炭素を供給せずに低級パラフィン含有ガスを製造した以外は 実施例 1と同様にして LPGを製造した。  LPG was produced in the same manner as in Example 1 except that a gas containing lower paraffin was produced without supplying carbon dioxide from the line 16.
[0189] その結果、低沸点成分を分離する前の低級パラフィン含有ガスをガスクロマトグラフ ィ一により分析したところ、一酸化炭素の転化率は 70%であり、一酸化炭素の二酸化 炭素へのシフト反応転ィ匕率は 35%、炭化水素への転ィ匕率は 35%であった。また、生 成した炭化水素は、炭素基準で 76%がプロパンおよびブタンであり、そのプロパンお よびブタンの内訳は炭素基準でプロパンが 55%、ブタンが 45%であった。  [0189] As a result, the gas containing lower paraffin before the separation of the low-boiling components was analyzed by gas chromatography. As a result, the conversion of carbon monoxide was 70%, and the shift reaction of carbon monoxide to carbon dioxide was confirmed. The conversion ratio was 35%, and the conversion ratio to hydrocarbon was 35%. In the hydrocarbons produced, 76% was propane and butane on a carbon basis, and the breakdown of propane and butane was 55% for propane and 45% for butane on a carbon basis.
[0190] 比較例 1は、実施例 1と比べて、合成ガスから製造される低級パラフィン含有ガスに 含まれるプロパンおよびブタンの量が少なかった。  [0190] In Comparative Example 1, the amounts of propane and butane contained in the lower paraffin-containing gas produced from the synthesis gas were smaller than in Example 1.
[0191] 〔実施例 2〕  [Example 2]
図 2に示す LPG製造装置を用いて LPGを製造した。改質触媒 (合成ガス製造用触 媒)および低級パラフィン製造用触媒は、実施例 1と同様にして調製したものを用い た。  LPG was manufactured using the LPG manufacturing apparatus shown in FIG. As the reforming catalyst (catalyst for producing synthesis gas) and the catalyst for producing lower paraffin, those prepared in the same manner as in Example 1 were used.
[0192] (合成ガス製造工程)  [Syngas Production Process]
前記の改質触媒を外熱式反応管型の装置に充填した後、反応に先立ち、触媒を 水素気流中、 900°Cで 1時間、還元処理した。  After filling the above-mentioned reforming catalyst into an externally heated reaction tube type apparatus, prior to the reaction, the catalyst was subjected to a reduction treatment in a hydrogen stream at 900 ° C. for 1 hour.
[0193] 天然ガス 45モル0 /0、スチーム 45モル0 /0、二酸化炭素 10モル0 /0力 なる原料ガスを 、改質触媒層に流通させた。反応条件は、反応温度 870°C、反応圧力 2. lMPa、 G HSV (ガス空間速度) 2000hr— 1とした。 [0193] Natural gas 45 mole 0/0, steam 45 mole 0/0, the carbon dioxide 10 mole 0/0 force becomes the raw material gas Was passed through the reforming catalyst layer. The reaction conditions were a reaction temperature of 870 ° C., a reaction pressure of 2. lMPa, and a GHSV (gas hourly space velocity) of 2000 hr- 1 .
[0194] 生成物 (合成ガス)をガスクロマトグラフィーにより分析したところ、その組成は、水素 62モル%、一酸化炭素 31モル%、二酸化炭素 4. 8モル%、メタン 2. 2モル%であ つた o [0194] The product (synthesis gas) was analyzed by gas chromatography to find that the composition was 62 mol% of hydrogen, 31 mol% of carbon monoxide, 4.8 mol% of carbon dioxide, and 2.2 mol% of methane. I
[0195] (低級パラフィン製造工程)  [0195] (Lower paraffin production process)
合成ガス製造工程において得られた合成ガスに対して 8Z10容量倍の低級バラフ イン製造工程の原料としてリサイクルされた二酸ィ匕炭素含有ガスを添加し、この水素 5 1. 0モノレ%、一酸化炭素 26. 9モノレ%、二酸化炭素 14. 2モノレ%、メタン 6. 9モル% 、その他 1. 0モル%からなるガスを、低級パラフィン製造用触媒層に流通させた。反 応条件は、反応温度 325°C、反応圧力 2. OMPa、 GHSV3000hr— 1とした。 To the synthesis gas obtained in the synthesis gas production process, added a gas containing carbon dioxide, which was recycled as a raw material in the lower-grade production process of 8Z10 times the volume of the synthesis gas. A gas consisting of 26.9% of carbon, 14.2% of carbon dioxide, 6.9% of methane, and 1.0% of others was passed through a catalyst layer for producing lower paraffin. The reaction conditions were a reaction temperature of 325 ° C, a reaction pressure of 2. OMPa, and GHSV of 3000 hr- 1 .
[0196] 生成物 (低級パラフィン含有ガス)をガスクロマトグラフィーにより分析したところ、一 酸化炭素の炭化水素への転化率は 50%であり、一酸化炭素の二酸化炭素へのシフ ト反応転化率は 0%であった。また、生成した炭化水素は、炭素基準で 75%がプロ パンおよびブタンであり、そのプロパンおよびブタンの内訳は炭素基準でプロパンが 56%、ブタン力 4%であった。  [0196] When the product (lower paraffin-containing gas) was analyzed by gas chromatography, the conversion of carbon monoxide to hydrocarbons was 50%, and the shift conversion of carbon monoxide to carbon dioxide was 50%. 0%. The generated hydrocarbons were propane and butane in 75% on a carbon basis, with propane and butane being 56% propane and 4% butane power on a carbon basis.
[0197] (分離'リサイクル工程)  [0197] (Separation / recycling process)
低級パラフィン製造工程において得られた低級パラフィン含有ガスを気液分離した 後、モレキュラーシーブで乾燥し、 0°C付近に保持されたオクタン溶液にバブルさせ る方法により、低級パラフィン含有ガスから、メタン 12. 8モル0 /0、ェタンおよびェチレ ン 2. 2モル%、二酸化炭素 25. 9モル%、未反応の一酸化炭素 21. 9モル%および 水素 37. 3モル%からなるガスを二酸化炭素含有ガス (低沸点成分)として分離し、 L PGを製造した。 After gas-liquid separation of the gas containing lower paraffin obtained in the process of producing lower paraffin, it is dried over molecular sieves and bubbled into an octane solution maintained at about 0 ° C to convert methane from lower paraffin-containing gas into methane. . 8 mole 0/0, Etan and Echire emissions 2.2 mole%, carbon dioxide 25.9 mole%, the gas containing carbon dioxide and comprising carbon monoxide 21.9 mole%, and hydrogen 37.3 mole% of unreacted Separated as gas (low boiling point component) to produce LPG.
[0198] 分離された二酸化炭素含有ガスは、圧縮機にて 2. 5MPaまで昇圧した後、低級パ ラフィン製造工程の原料としてリサイクルした。  [0198] The separated carbon dioxide-containing gas was pressurized to 2.5MPa by a compressor, and then recycled as a raw material in a low-grade paraffin production process.
[0199] 〔比較例 2〕 [Comparative Example 2]
低級パラフィン含有ガスから分離した二酸化炭素含有ガスを、リサイクルライン 29に より、反応器 22にリサイクルせずに低級パラフィン含有ガスを製造した以外は実施例 2と同様にして LPGを製造した。 Example 2 except that the gas containing carbon dioxide separated from the gas containing lower paraffin was not recycled to the reactor 22 by the recycling line 29 and the gas containing lower paraffin was produced. LPG was produced in the same manner as in 2.
[0200] その結果、二酸化炭素含有ガスを分離する前の低級パラフィン含有ガスをガスクロ マトグラフィ一により分析したところ、一酸化炭素の転化率は 53%であり、一酸化炭 素の二酸ィ匕炭素へのシフト反応転ィ匕率は 10%、炭化水素への転ィ匕率は 43%であつ た。また、生成した炭化水素は、炭素基準で 72%がプロパンおよびブタンであり、そ のプロパンおよびブタンの内訳は炭素基準でプロパンが 54%、ブタンが 46%であつ た。 [0200] As a result, when the lower paraffin-containing gas before the separation of the carbon dioxide-containing gas was analyzed by gas chromatography, the conversion of carbon monoxide was 53%, indicating that the conversion of carbon monoxide was 53%. The conversion ratio to hydrocarbons was 10%, and the conversion ratio to hydrocarbons was 43%. Propane and butane accounted for 72% of the generated hydrocarbons on a carbon basis. The proportion of propane and butane was 54% for propane and 46% for butane on a carbon basis.
[0201] また、分離'リサイクル工程において低級パラフィン含有ガス力も分離された二酸ィ匕 炭素含有ガスの組成は、メタン 10. 3モル0 /0、ェタンおよびエチレン 1. 9モル0 /0、二 酸化炭素 28. 0モル%、未反応の一酸化炭素 21. 3モル%および水素 38. 5モル% であった。 [0201] In addition, lower-paraffin-containing gas forces in the separation 'recycling process the composition of the separated two-Sani匕carbon-containing gas, methane 10.3 mol 0/0, Etan and ethylene 1.9 mole 0/0, two 28.0 mol% of carbon oxide, 21.3 mol% of unreacted carbon monoxide and 38.5 mol% of hydrogen.
[0202] 比較例 2は、実施例 2と比べて、合成ガスカゝら製造される低級パラフィン含有ガスに 含まれるプロパンおよびブタンの量が少なかった。  [0202] In Comparative Example 2, the amounts of propane and butane contained in the lower paraffin-containing gas produced from the synthesis gas column were smaller than in Example 2.
[0203] 〔実施例 3〕 [Example 3]
(触媒の製造)  (Production of catalyst)
メタノール合成触媒成分としては、以下のようにして調製した、 Zn— Cr系メタノール 合成触媒に 1重量%の Pdを担持した触媒(「PdZZn— Cr」ともいう。)を機械的に粉 末にしたもの(平均粒径: 0. 7 m)を用いた。  As a methanol synthesis catalyst component, a catalyst (also referred to as “PdZZn—Cr”) prepared as follows, in which 1% by weight of Pd was supported on a Zn—Cr-based methanol synthesis catalyst, was mechanically powdered. (Average particle size: 0.7 m) was used.
[0204] Zn— Cr系メタノール合成触媒としては、ズードケミー触媒株式会社製、商品名: K[0204] As a Zn—Cr-based methanol synthesis catalyst, a product name: K manufactured by Sudo Chemie Catalysts, Inc.
MA (平均粒径:約 lmm)を用いた。この Zn— Cr系メタノール合成触媒の組成は、 ZnMA (average particle size: about lmm) was used. The composition of this Zn-Cr methanol synthesis catalyst is Zn
ZCr= 2 (原子比)である。 ZCr = 2 (atomic ratio).
[0205] まず、 Pd (NH ) (NO )水溶液(Pd含有量: 4. 558重量0 /0) 4. 4mlにイオン交換 [0205] First, Pd (NH) (NO) aqueous solution (Pd content: 4.558 wt 0/0) 4. Ion exchange 4ml
3 2 3 2  3 2 3 2
水 lmlを加えて、 Pd含有溶液を調製した。調製した Pd含有溶液に Zn— Cr系メタノー ル合成触媒 20gを投入し、 Pd含有溶液を含浸させた。そして、この Pd含有溶液を含 浸させた Zn— Cr系メタノール合成触媒を 120°Cの乾燥機中で 12時間乾燥した後、さ らに 450°Cで 2時間空気焼成し、これを機械的に粉砕して、メタノール合成触媒成分 とした。  A Pd-containing solution was prepared by adding 1 ml of water. The prepared Pd-containing solution was charged with 20 g of a Zn—Cr-based methanol synthesis catalyst, and impregnated with the Pd-containing solution. Then, the Zn-Cr-based methanol synthesis catalyst impregnated with the Pd-containing solution was dried in a dryer at 120 ° C for 12 hours, and further calcined in air at 450 ° C for 2 hours. Into a methanol synthesis catalyst component.
[0206] ゼォライト触媒成分としては、市販の SiO ZA1 Oモル比が 37. 1のプロトン型 13 - ゼォライト (東ソ一株式会社製)を機械的に粉末にしたもの(平均粒径: 0. 7 m)を 用いた。 [0206] As the zeolite catalyst component, a commercially available proton type 13-having a molar ratio of SiO ZA1 O of 37.1 was used. Zeolite (manufactured by Tosoichi Co., Ltd.) mechanically powdered (average particle size: 0.7 m) was used.
[0207] 調製したメタノール合成触媒成分とゼォライト触媒成分とを、 Pd/Zn-Cr: βーゼォ ライト = 2: 1 (重量比)で、均一に混合した。そして、これを打錠成形'整粒して、平均 粒径 lmmの粒状の成形触媒を得た。  The prepared methanol synthesis catalyst component and zeolite catalyst component were uniformly mixed with Pd / Zn-Cr: β-zeolite = 2: 1 (weight ratio). Then, this was subjected to tablet molding and sizing to obtain a granular molding catalyst having an average particle diameter of lmm.
[0208] (LPGの製造) [0208] (Manufacture of LPG)
調製した触媒 lgを内径 6mmの反応管に充填した後、反応に先立ち、触媒を水素 気流中、 400°Cで 3時間還元処理した。  After filling the prepared catalyst lg into a reaction tube having an inner diameter of 6 mm, the catalyst was reduced in a hydrogen stream at 400 ° C. for 3 hours before the reaction.
[0209] 触媒を還元処理した後、水素 66. 7モル%ぉよび一酸化炭素 33. 3モル%からなる 原料ガス (H ZCO = 2 (モル基準))を反応温度 375°C、反応圧力 5. IMPa、ガス [0209] After reducing the catalyst, a raw material gas (HZCO = 2 (on a molar basis)) consisting of 66.7 mol% of hydrogen and 33.3 mol% of carbon monoxide was reacted at a reaction temperature of 375 ° C and a reaction pressure of 5%. . IMPa, gas
2  2
空間速度 2000hr— ^WZF: ^ Og 'hZmol)で触媒層に流通させ、 LPG合成反応 を行なった。  LPG synthesis reaction was performed by flowing through the catalyst layer at a space velocity of 2000 hr— ^ WZF: ^ Og'hZmol).
[0210] 反応開始から 3時間後、原料ガス (H ZCO = 2 (モル基準))に二酸ィ匕炭素含有ガ  [0210] Three hours after the start of the reaction, the raw material gas (HZCO = 2 (on a molar basis)) was added to the gas containing carbon dioxide.
2  2
ス (H /CO = 2 (モル基準))を原料ガス:二酸化炭素含有ガス = 3 : 1 (流量比)で Gas (H / CO = 2 (mole basis)) as raw material gas: carbon dioxide-containing gas = 3: 1 (flow ratio)
2 2 twenty two
添加して、引続き LPG合成反応を行なった。触媒層に流通させたガス組成は、水素 66. 7モル0 /0、一酸化炭素 25. 0モル0 /0および二酸化炭素 8. 3モル0 /0 (H /CO/ After the addition, an LPG synthesis reaction was performed. Gas composition was passed through the catalyst layer, hydrogen 66.7 mole 0/0, carbon monoxide 25.0 mole 0/0, and carbon dioxide 8.3 mol 0/0 (H / CO /
2  2
CO =8Z3Zl (モル  CO = 8Z3Zl (mol
2 基準))である。  2 criteria)).
[0211] その結果 (炭化水素および二酸ィヒ炭素の収率と生成した炭化水素の組成分布の 経時変ィ匕)を図 3に示す。なお、生成物の分析はガスクロマトグラフィーにより行なつ た。  [0211] The results (yield of hydrocarbons and carbon dioxide and time course of the composition distribution of generated hydrocarbons) are shown in FIG. The product was analyzed by gas chromatography.
[0212] 図 3から明らかなように、原料ガスに二酸ィ匕炭素を加えることにより、炭化水素の収 率、プロパンおよびブタンの収率をあまり低下させることなぐ二酸化炭素の生成を大 幅に抑制することができた。  [0212] As is evident from Fig. 3, the addition of carbon dioxide to the raw material gas significantly reduced the production of carbon dioxide without significantly reducing the yield of hydrocarbons and the yields of propane and butane. Could be suppressed.
[0213] 〔実施例 4〕  [Example 4]
(LPGの製造)  (Manufacture of LPG)
反応温度を 400°Cとした以外は実施例 3と同様にして LPG合成反応を行なった。  An LPG synthesis reaction was performed in the same manner as in Example 3 except that the reaction temperature was changed to 400 ° C.
[0214] その結果 (炭化水素および二酸ィヒ炭素の収率と生成した炭化水素の組成分布の 経時変化)を図 4に示す。 [0215] 図 4から明らかなように、実施例 3と同様、原料ガスに二酸ィ匕炭素を加えることにより 、炭化水素の収率、プロパンおよびブタンの収率をあまり低下させることなぐ二酸ィ匕 炭素の生成を大幅に抑制することができた。 [0214] Fig. 4 shows the results (yields of hydrocarbons and carbon dioxide and changes over time in the composition distribution of generated hydrocarbons). [0215] As is clear from FIG. 4, as in Example 3, the addition of diacid carbon to the raw material gas did not significantly reduce the yields of hydrocarbons and propane and butane. The production of carbon was significantly suppressed.
[0216] 〔実施例 5〕  [0216] [Example 5]
(触媒の製造)  (Production of catalyst)
メタノール合成触媒成分としては、以下のようにして調製した、 Zn— Cr系メタノール 合成触媒に 1重量%の Pdを担持した触媒(「PdZZn— Cr」ともいう。)を機械的に粉 末にしたもの(平均粒径: 0. 7 m)を用いた。  As a methanol synthesis catalyst component, a catalyst (also referred to as “PdZZn—Cr”) prepared as follows, in which 1% by weight of Pd was supported on a Zn—Cr-based methanol synthesis catalyst, was mechanically powdered. (Average particle size: 0.7 m) was used.
[0217] Zn— Cr系メタノール合成触媒としては、ズードケミー触媒株式会社製、商品名: K[0217] As a Zn-Cr-based methanol synthesis catalyst, a product name: K manufactured by Sued Chemie Catalysts Co., Ltd.
MA (平均粒径:約 lmm)を用いた。この Zn— Cr系メタノール合成触媒の組成は、 ZnMA (average particle size: about lmm) was used. The composition of this Zn-Cr methanol synthesis catalyst is Zn
ZCr= 2 (原子比)である。 ZCr = 2 (atomic ratio).
[0218] まず、 Pd (NH ) (NO )水溶液(Pd含有量: 4. 558重量0 /0) 4. 4mlにイオン交換 [0218] First, Pd (NH) (NO) aqueous solution (Pd content: 4.558 wt 0/0) 4. Ion exchange 4ml
3 2 3 2  3 2 3 2
水 lmlを加えて、 Pd含有溶液を調製した。調製した Pd含有溶液に Zn— Cr系メタノー ル合成触媒 20gを投入し、 Pd含有溶液を含浸させた。そして、この Pd含有溶液を含 浸させた Zn— Cr系メタノール合成触媒を 120°Cの乾燥機中で 12時間乾燥した後、さ らに 450°Cで 2時間空気焼成し、これを機械的に粉砕して、メタノール合成触媒成分 とした。  A Pd-containing solution was prepared by adding 1 ml of water. The prepared Pd-containing solution was charged with 20 g of a Zn—Cr-based methanol synthesis catalyst, and impregnated with the Pd-containing solution. Then, the Zn-Cr-based methanol synthesis catalyst impregnated with the Pd-containing solution was dried in a dryer at 120 ° C for 12 hours, and further calcined in air at 450 ° C for 2 hours. Into a methanol synthesis catalyst component.
[0219] ゼォライト触媒成分としては、市販の SiO ZA1 Oモル比が 37. 1のプロトン型 13 - [0219] As a zeolite catalyst component, a commercially available proton type 13-having a molar ratio of SiO ZA1 O of 37.1 was used.
2 2 3 2 2 3
ゼォライト (東ソ一株式会社製)に 1重量%の Pdを担持したものを機械的に粉末にし たもの(平均粒径: 0. 7 m)を用いた。  Zeolite (manufactured by Tosoichi Co., Ltd.) loaded with 1% by weight of Pd and mechanically powdered (average particle size: 0.7 m) was used.
[0220] Pdは以下のようにして /3ーゼオライトに担持させた。 [0220] Pd was supported on a / 3-zeolite as follows.
[0221] 0. 0825gの PdCl (純度〉 99wt%)を、 40— 50。Cで 12. 5wt%アンモニア水溶  [0221] 0.0825 g of PdCl (purity> 99 wt%) was added to 40-50. 12.5wt% ammonia water in C
2  2
液 10mlに溶解させた。さらにこの溶液にイオン交換水を 150mlカ卩えてイオン交換に 用いる溶液を調製した。  The solution was dissolved in 10 ml. Further, 150 ml of ion-exchanged water was added to this solution to prepare a solution to be used for ion exchange.
[0222] イオン交換は、 10gの 13ーゼオライトを用い、 60— 70°Cで 6時間加熱'攪拌して行つ た。イオン交換した試料は、塩素イオンがろ液中に観察されなくなるまでろ過、イオン 交換水による水洗を繰り返した後、 120°Cで 12時間乾燥、 500°Cで 2時間空気焼成 した。 [0223] 調製したメタノール合成触媒成分とゼォライト触媒成分とを、 Pd/Zn-Cr: βーゼォ ライト = 2 : 1 (重量比)で、均一に混合した。そして、これを打錠成形'整粒して、平均 粒径 lmmの粒状の成形触媒を得た。 [0222] The ion exchange was carried out using 10 g of 13-zeolite by heating and stirring at 60 to 70 ° C for 6 hours. The ion-exchanged sample was repeatedly filtered and washed with ion-exchanged water until chlorine ions were no longer observed in the filtrate, dried at 120 ° C for 12 hours, and calcined in air at 500 ° C for 2 hours. [0223] The prepared methanol synthesis catalyst component and zeolite catalyst component were uniformly mixed with Pd / Zn-Cr: β-zeolite = 2: 1 (weight ratio). Then, this was subjected to tablet molding and sizing to obtain a granular molding catalyst having an average particle diameter of lmm.
[0224] (LPGの製造) [0224] (Manufacture of LPG)
調製した触媒 lgを内径 6mmの反応管に充填した後、反応に先立ち、触媒を水素 気流中、 400°Cで 3時間還元処理した。  After filling the prepared catalyst lg into a reaction tube having an inner diameter of 6 mm, the catalyst was reduced in a hydrogen stream at 400 ° C. for 3 hours before the reaction.
[0225] 触媒を還元処理した後、水素、一酸化炭素および二酸化炭素からなる原料ガスを 反応温度 400°C、反応圧力 5. IMPaで触媒層に流通させ、 LPG合成反応を行なつ た。原料ガスの組成および WZFは、反応中、以下のように変化させた。 [0225] After reduction treatment of the catalyst, a raw material gas consisting of hydrogen, carbon monoxide and carbon dioxide was passed through the catalyst layer at a reaction temperature of 400 ° C and a reaction pressure of 5. IMPa to perform an LPG synthesis reaction. The composition of the source gas and WZF were changed as follows during the reaction.
[0226] (原料ガス組成および WZF) [0226] (Raw material gas composition and WZF)
反応開始から 2時間まで:  From the start of the reaction to 2 hours:
原料ガス組成: H /CO/CO  Raw gas composition: H / CO / CO
2 2 =8Z3Zl (モル基準); WZF=6. 7g-h/mol  2 2 = 8Z3Zl (molar basis); WZF = 6.7 g-h / mol
2時間後から 4時間まで: From 2 hours to 4 hours:
原料ガス組成: H /CO/CO =6Z2Zl (モル基準); WZF= 5. 9g-h/mol  Source gas composition: H / CO / CO = 6Z2Zl (on a molar basis); WZF = 5.9 g-h / mol
2 2  twenty two
4時間後から反応終了まで: From 4 hours to the end of the reaction:
原料ガス組成: H /CO/CO = 10Z3Z2 (モル基準); WZF= 5. 3g-h/mo  Source gas composition: H / CO / CO = 10Z3Z2 (on a molar basis); WZF = 5.3g-h / mo
2 2  twenty two
[0227] その結果 (炭化水素および二酸化炭素の収率と生成した炭化水素の組成分布の 経時変化)を図 5に示す。 [0227] The results (changes in the yield of hydrocarbons and carbon dioxide and the composition distribution of the generated hydrocarbons over time) are shown in FIG.
[0228] 図 5から明らかなように、原料ガス中の二酸ィ匕炭素の含有量が多くなると、副生する 二酸化炭素の量が減少する一方で、炭化水素の収率、さらにはプロパンおよびブタ ンの収率が低下してくる傾向がある。 [0228] As is clear from Fig. 5, when the content of carbon dioxide in the source gas increases, the amount of by-produced carbon dioxide decreases, while the yield of hydrocarbons, and further, the propane and Butane yield tends to decrease.
産業上の利用可能性  Industrial applicability
[0229] 以上のように、本発明によれば、天然ガスなどの含炭素原料あるいは合成ガスから 、プロパンおよび/またはブタンの濃度が高い LPGを、より容易に、より経済的に製 造することができる。 [0229] As described above, according to the present invention, LPG having a high propane and / or butane concentration can be produced more easily and more economically from a carbon-containing raw material such as natural gas or a synthesis gas. Can be.

Claims

請求の範囲 The scope of the claims
[1] ( 含炭素原料から合成ガスを製造する合成ガス製造工程と、  [1] (a synthesis gas production process of producing a synthesis gas from a carbon-containing raw material,
(ii)触媒の存在下、合成ガス製造工程にお ヽて得られた合成ガスと二酸化炭素と を含み、二酸化炭素の含有量が、一酸ィ匕炭素と二酸ィ匕炭素と水素との合計量に対し て、 5— 35モル%である原料ガスから、プロパンまたはブタンを主成分とする液化石 油ガスを製造する液化石油ガス製造工程と  (ii) In the presence of a catalyst, contains the synthesis gas obtained in the synthesis gas production step and carbon dioxide, and the content of carbon dioxide is the same as that of mono-orientated carbon, di-orientated carbon and hydrogen. A liquefied petroleum gas production process for producing a liquefied petroleum gas containing propane or butane as a main component from a source gas that is 5 to 35 mol% based on the total
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法。  A method for producing a liquid gas comprising propane or butane as a main component.
[2] 液ィ匕石油ガス製造工程にお 、て、  [2] In the production process of liquid and petroleum gas,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル%である請求項 1に記載の液化石油ガスの製造方法。  The method for producing a liquefied petroleum gas according to claim 1, wherein the content of carbon monoxide in the raw material gas is 3 to 30 mol% based on the total amount of carbon monoxide, carbon dioxide, and hydrogen.
[3] (i)含炭素原料から合成ガスを製造する合成ガス製造工程と、 [3] (i) a synthesis gas production process for producing a synthesis gas from a carbon-containing raw material,
(ii)触媒の存在下、合成ガス製造工程にお ヽて得られた合成ガスと二酸化炭素と を含み、二酸化炭素の含有量が、一酸ィ匕炭素 1モルに対して、 0. 2— 1モルである 原料ガスから、プロパンまたはブタンを主成分とする液ィ匕石油ガスを製造する液ィ匕石 油ガス製造工程と  (ii) In the presence of a catalyst, contains the synthesis gas obtained in the synthesis gas production process and carbon dioxide, and the content of carbon dioxide is 0.2— A liquid gas production process for producing liquid gas containing propane or butane as a main component from a 1 mol raw material gas;
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法。  A method for producing a liquid gas comprising propane or butane as a main component.
[4] 液ィ匕石油ガス製造工程において、  [4] In the production process of liquid oil
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル%である請求項 3に記載の液ィ匕石油ガスの製造方法。  4. The production of a liquid gas according to claim 3, wherein the content of the carbon monoxide in the raw material gas is 3 to 30 mol% based on the total amount of carbon monoxide, carbon dioxide and hydrogen. Method.
[5] (i)含炭素原料から合成ガスを製造する合成ガス製造工程と、 [5] (i) a synthesis gas production process for producing a synthesis gas from a carbon-containing raw material,
(ii)触媒の存在下、合成ガス製造工程において得られた合成ガスと、分離工程に ぉ 、て低級パラフィン含有ガス力も分離され、リサイクル工程にぉ 、て低級パラフィン 製造工程の原料としてリサイクルされた二酸化炭素含有ガスとを含む原料ガスから、 二酸化炭素を含み、含まれる炭化水素の主成分がプロパンまたはブタンである低級 ノ《ラフィン含有ガスを製造する低級パラフィン製造工程と、  (ii) In the presence of the catalyst, the synthesis gas obtained in the synthesis gas production process was separated from the gas power containing lower paraffin in the separation process, and was recycled as a raw material in the lower paraffin production process in the recycling process. From a raw material gas containing a carbon dioxide-containing gas, a low-grade paraffin-containing process for producing a raffin-containing gas containing carbon dioxide, wherein the main component of the contained hydrocarbon is propane or butane;
(iii)低級パラフィン製造工程にお 、て得られた低級パラフィン含有ガス力も二酸ィ匕 炭素を含む二酸ィ匕炭素含有ガスを分離し、プロパンまたはブタンを主成分とする液 化石油ガスを得る分離工程と、 (iii) In the process of producing lower paraffin, the gas power containing lower paraffin obtained in Separating a carbon dioxide-containing gas containing carbon to obtain a liquefied petroleum gas containing propane or butane as a main component,
(iv)分離工程にぉ 、て低級パラフィン含有ガスから分離された二酸化炭素含有ガ スの一部または全部を、低級パラフィン製造工程の原料としてリサイクルするリサイク ル工程と  (iv) in the separation step, a recycling step in which part or all of the carbon dioxide-containing gas separated from the lower paraffin-containing gas is recycled as a raw material in the lower paraffin production step.
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法。  A method for producing a liquid gas comprising propane or butane as a main component.
[6] 低級パラフィン製造工程において、  [6] In the lower paraffin production process,
原料ガス中の二酸化炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 5— 35モル%である請求項 5に記載の液ィ匕石油ガスの製造方法。  6. The method according to claim 5, wherein the content of carbon dioxide in the raw material gas is 5 to 35 mol% based on the total amount of carbon monoxide, carbon dioxide, and hydrogen.
[7] 低級パラフィン製造工程において、 [7] In the lower paraffin production process,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル%である請求項 6に記載の液ィ匕石油ガスの製造方法。  7. The production of a liquid gas according to claim 6, wherein the content of carbon monoxide in the raw material gas is 3 to 30 mol% based on the total amount of carbon monoxide, carbon dioxide and hydrogen. Method.
[8] 液ィ匕石油ガス製造工程において、 [8] In the production process of liquid oil and gas,
原料ガス中の二酸化炭素の含有量が、一酸ィ匕炭素 1モルに対して、 0. 2— 1モル である請求項 5に記載の液ィ匕石油ガスの製造方法。  6. The method for producing liquid Iridani petroleum gas according to claim 5, wherein the content of carbon dioxide in the raw material gas is 0.2-1 mol per 1 mol of carbon monoxide.
[9] 低級パラフィン製造工程において、 [9] In the lower paraffin production process,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル%である請求項 8に記載の液ィ匕石油ガスの製造方法。  9. The production of a liquid gas according to claim 8, wherein the content of carbon monoxide in the raw material gas is 3 to 30 mol% based on the total amount of carbon monoxide, carbon dioxide and hydrogen. Method.
[10] (i)触媒の存在下、一酸化炭素と水素と二酸化炭素とを含み、二酸化炭素の含有 量が、一酸ィ匕炭素と二酸ィ匕炭素と水素との合計量に対して、 5— 35モル%である原 料ガスから、プロパンまたはブタンを主成分とする液ィ匕石油ガスを製造する液ィ匕石油 ガス製造工程 [10] (i) In the presence of a catalyst, containing carbon monoxide, hydrogen and carbon dioxide, the content of carbon dioxide is based on the total amount of carbon monoxide, carbon dioxide and hydrogen. Liquid gas production process for producing liquid gas containing propane or butane as a main component from a raw gas of 5 to 35 mol%
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法。  A method for producing a liquid gas comprising propane or butane as a main component.
[11] 液ィ匕石油ガス製造工程において、  [11] In the production process of liquid oil and gas,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル%である請求項 10に記載の液ィ匕石油ガスの製造方法。 The production of a liquid gas according to claim 10, wherein the content of carbon monoxide in the raw material gas is 3 to 30 mol% based on the total amount of carbon monoxide, carbon dioxide and hydrogen. Method.
[12] (i)触媒の存在下、一酸化炭素と水素と二酸化炭素とを含み、二酸化炭素の含有 量力 一酸化炭素 1モルに対して、 0. 2— 1モルである原料ガスから、プロパンまたは ブタンを主成分とする液化石油ガスを製造する液化石油ガス製造工程 [12] (i) In the presence of a catalyst, containing carbon monoxide, hydrogen, and carbon dioxide, and having a carbon dioxide content of 0.2 to 1 mole of the source gas per mole of carbon monoxide, propane Or Liquefied petroleum gas production process to produce liquefied petroleum gas containing butane as the main component
を有することを特徴とする、プロパンまたはブタンを主成分とする液ィ匕石油ガスの製 造方法。  A method for producing a liquid gas comprising propane or butane as a main component.
[13] 液ィ匕石油ガス製造工程において、  [13] In the manufacturing process of liquid oil and gas,
原料ガス中の一酸ィ匕炭素の含有量が、一酸化炭素と二酸化炭素と水素との合計 量に対して、 3— 30モル%である請求項 12に記載の液ィ匕石油ガスの製造方法。  The production of a liquid gas according to claim 12, wherein the content of carbon monoxide in the raw material gas is 3 to 30 mol% based on the total amount of carbon monoxide, carbon dioxide and hydrogen. Method.
PCT/JP2004/015215 2003-10-16 2004-10-15 Method for producing liquefied petroleum gas containing propane or butane as main component WO2005037962A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005514781A JPWO2005037962A1 (en) 2003-10-16 2004-10-15 Method for producing liquefied petroleum gas mainly composed of propane or butane
CN2004800305786A CN1867652B (en) 2003-10-16 2004-10-15 Method for producing liquefied petroleum gas containing propane and butane as main component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-356489 2003-10-16
JP2003356489 2003-10-16

Publications (1)

Publication Number Publication Date
WO2005037962A1 true WO2005037962A1 (en) 2005-04-28

Family

ID=34463207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015215 WO2005037962A1 (en) 2003-10-16 2004-10-15 Method for producing liquefied petroleum gas containing propane or butane as main component

Country Status (3)

Country Link
JP (1) JPWO2005037962A1 (en)
CN (1) CN1867652B (en)
WO (1) WO2005037962A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016583A1 (en) * 2004-08-11 2006-02-16 Japan Gas Synthesize, Ltd. Method for producing liquefied petroleum gas
WO2006030828A1 (en) * 2004-09-15 2006-03-23 Japan Gas Synthesize, Ltd. Process for producing liquefied petroleum gas
WO2006070516A1 (en) * 2004-12-28 2006-07-06 Japan Gas Synthesize, Ltd. Process for producing liquefied petroleum gas
DE102007059620A1 (en) 2007-12-12 2009-06-18 Bundesrepublik Deutschland, vertreten durch den Präsidenten der Bundesanstalt für Geowissenschaften und Rohstoffe Purification of biodiesel using allophane and / or imogolite
JP4989650B2 (en) * 2006-07-31 2012-08-01 日本ガス合成株式会社 Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
JP5405103B2 (en) * 2006-02-17 2014-02-05 日本ガス合成株式会社 Catalyst for liquefied petroleum gas production
WO2022211109A1 (en) * 2021-03-31 2022-10-06 古河電気工業株式会社 Useful-hydrocarbon production method and useful-hydrocarbon production device
WO2023039426A1 (en) * 2021-09-09 2023-03-16 Gas Technology Institute Production of liquefied petroleum gas (lpg) hydrocarbons from carbon dioxide-containing feeds
WO2024075823A1 (en) * 2022-10-05 2024-04-11 古河電気工業株式会社 Useful hydrocarbon production method and useful hydrocarbon production apparatus
WO2024075822A1 (en) * 2022-10-05 2024-04-11 古河電気工業株式会社 Method for producing useful hydrocarbons and device for producing useful hydrocarbons

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104927953A (en) * 2015-06-09 2015-09-23 柳州市山泰气体有限公司 Preparation method of liquefied petroleum gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123688A (en) * 1984-07-12 1986-02-01 Hiroo Tominaga Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas
JPH09208974A (en) * 1996-01-29 1997-08-12 Sekiyu Shigen Kaihatsu Kk Production of liquid fuel oil by using carbon dioxidecontaining natural gas as feedstock
JP2000104078A (en) * 1998-09-30 2000-04-11 Chiyoda Corp Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide
JP2002161280A (en) * 2000-11-24 2002-06-04 Japan National Oil Corp Method for producing hydrocarbons in the presence of carbon dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123688A (en) * 1984-07-12 1986-02-01 Hiroo Tominaga Production of hydrocarbon mainly composed of lower saturated aliphatic from synthesis gas
JPH09208974A (en) * 1996-01-29 1997-08-12 Sekiyu Shigen Kaihatsu Kk Production of liquid fuel oil by using carbon dioxidecontaining natural gas as feedstock
JP2000104078A (en) * 1998-09-30 2000-04-11 Chiyoda Corp Method for producing liquid hydrocarbon oil from lower hydrocarbon gas containing carbon dioxide
JP2002161280A (en) * 2000-11-24 2002-06-04 Japan National Oil Corp Method for producing hydrocarbons in the presence of carbon dioxide

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FUJIMOTO K. ET AL.: "Selective synthesis of LPG from synthesis gas", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 58, no. 10, 15 October 1985 (1985-10-15), pages 3059 - 3060, XP002982542 *
KANEKO H.: "LP gas gosei gijutsu no kaihatsu (Jo)-Mokuteki to Genri-", JOURNAL OF THE HIGH PRESSURE GAS SAFETY INSTITUTE OF JAPAN, vol. 37, no. 7, 1 July 2002 (2002-07-01), pages 25 - 30, XP002989352 *
ZHANG Q. ET AL.: "Selective synthesis of C3 and C4's hydrocarbons from synthesis gas", SEIKYU GAKKAI SORITSU 45 SHUNEN KINEN, DAI 46 KAI NENKAI KOEN YOSHI, 20 May 2003 (2003-05-20), pages 73 - 74, XP002989353 *
ZHANG Q. ET AL.: "Synthesis of LPG from synthesis gas with hybrid catalyst", DAI 33 KAI SEKIYU.SEKIYU KAGAKU TORONKAI KOEN YOSHI, 17 November 2003 (2003-11-17), pages 179 - 180, XP002982545 *
ZHANG Q. ET AL.: "The role of zeolite in direct synthesis of LPG from synthesis gas", DAI 92 KAI SHOKUBAI TORONKAI, TORONKAI A YOKOSHU, 18 September 2003 (2003-09-18), pages 321, XP002982546 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006016583A1 (en) * 2004-08-11 2006-02-16 Japan Gas Synthesize, Ltd. Method for producing liquefied petroleum gas
WO2006030828A1 (en) * 2004-09-15 2006-03-23 Japan Gas Synthesize, Ltd. Process for producing liquefied petroleum gas
WO2006070516A1 (en) * 2004-12-28 2006-07-06 Japan Gas Synthesize, Ltd. Process for producing liquefied petroleum gas
JP5405103B2 (en) * 2006-02-17 2014-02-05 日本ガス合成株式会社 Catalyst for liquefied petroleum gas production
JP4989650B2 (en) * 2006-07-31 2012-08-01 日本ガス合成株式会社 Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
DE102007059620A1 (en) 2007-12-12 2009-06-18 Bundesrepublik Deutschland, vertreten durch den Präsidenten der Bundesanstalt für Geowissenschaften und Rohstoffe Purification of biodiesel using allophane and / or imogolite
WO2022211109A1 (en) * 2021-03-31 2022-10-06 古河電気工業株式会社 Useful-hydrocarbon production method and useful-hydrocarbon production device
JPWO2022211109A1 (en) * 2021-03-31 2022-10-06
JP7547619B2 (en) 2021-03-31 2024-09-09 古河電気工業株式会社 Method and apparatus for producing useful hydrocarbons
WO2023039426A1 (en) * 2021-09-09 2023-03-16 Gas Technology Institute Production of liquefied petroleum gas (lpg) hydrocarbons from carbon dioxide-containing feeds
WO2024075823A1 (en) * 2022-10-05 2024-04-11 古河電気工業株式会社 Useful hydrocarbon production method and useful hydrocarbon production apparatus
WO2024075822A1 (en) * 2022-10-05 2024-04-11 古河電気工業株式会社 Method for producing useful hydrocarbons and device for producing useful hydrocarbons

Also Published As

Publication number Publication date
CN1867652B (en) 2010-04-07
JPWO2005037962A1 (en) 2006-12-28
CN1867652A (en) 2006-11-22

Similar Documents

Publication Publication Date Title
CN101016494B (en) Method of producing liquefied petroleum gas
JP4965258B2 (en) Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
JP5592250B2 (en) Catalytic hydrogenation of carbon dioxide to synthesis gas.
CN101016493B (en) Method of producing liquefied petroleum gas
JP2006021100A (en) Catalyst for manufacture of liquefied petroleum gas and method of manufacturing liquefied petroleum gas using it
JP2007125515A (en) Catalyst for liquefied petroleum-gas production and production method of liquefied petroleum-gas using it
WO2008134484A2 (en) Catalyst and method for converting natural gas to higher carbon compounds
JP4989650B2 (en) Catalyst for producing liquefied petroleum gas, and method for producing liquefied petroleum gas using the catalyst
JP4833070B2 (en) Method for producing liquefied petroleum gas
JP2007238608A (en) Method for production of liquefied petroleum gas
TW202328414A (en) Production of liquefied petroleum gas (lpg) hydrocarbons from carbon dioxide-containing feeds
JP3930879B2 (en) Method for producing liquefied petroleum gas
WO2005037962A1 (en) Method for producing liquefied petroleum gas containing propane or butane as main component
WO2009104742A1 (en) Liquefied petroleum gas production catalyst, and method for production of liquefied petroleum gas using the catalyst
JP2009195815A (en) Catalyst for liquefied petroleum gas production and method for manufacturing liquefied petroleum gas using the same
WO2006016583A1 (en) Method for producing liquefied petroleum gas
JP2007181755A (en) Catalyst for producing liquefied petroleum gas and method for producing liquefied petroleum gas by using the same
WO2004076063A1 (en) Catalyst for producing liquefied petroleum gas, process for producing the same, and process for producing liquefied petroleum gas with the catalyst
JP2006143752A (en) Manufacturing method of liquefied petroleum gas mainly composed of propane or butane
WO2004076600A1 (en) Method for producing liquefied petroleum gas mainly containing propane or butane
JP2007313450A (en) Catalyst for liquefied petroleum gas production and production method of liquefied petroleum gas using catalyst thereof
JP2006182792A (en) Method for producing liquefied petroleum gas
KR100588948B1 (en) Catalyst for making dimethylether, method of preparing the same and method of preparing dimethylether using the same
JP5086658B2 (en) Method for producing liquefied petroleum gas
JP2007063568A (en) Method for producing liquefied petroleum gas

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030578.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514781

Country of ref document: JP

122 Ep: pct application non-entry in european phase