JPS61235754A - Detector for slip rate - Google Patents

Detector for slip rate

Info

Publication number
JPS61235754A
JPS61235754A JP7704985A JP7704985A JPS61235754A JP S61235754 A JPS61235754 A JP S61235754A JP 7704985 A JP7704985 A JP 7704985A JP 7704985 A JP7704985 A JP 7704985A JP S61235754 A JPS61235754 A JP S61235754A
Authority
JP
Japan
Prior art keywords
detection result
vehicle
speed sensor
contact ground
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7704985A
Other languages
Japanese (ja)
Other versions
JPH07122642B2 (en
Inventor
Hiroshi Kobayashi
洋志 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP60077049A priority Critical patent/JPH07122642B2/en
Publication of JPS61235754A publication Critical patent/JPS61235754A/en
Publication of JPH07122642B2 publication Critical patent/JPH07122642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To improve detection precision by finding the slit rate between a wheel and a road surface on the basis of a coefficient of correction calculated by a correction coefficient calculating means, the detection result of a detecting means, and the detection result of a noncontact ground speed sensor. CONSTITUTION:The detection result of a detecting means 1 in a state of neither acceleration nor deceleration indicates an accurate vehicle speed. The detection result of the noncontact ground speed sensor 2 varies with the distance H between the sensor 2 and road surface; and the coefficient of correction to a vehicle speed detected by the sensor 2 on the basis of the detection result of the detecting means 1 and the detection result of the sensor 2 when the vehicle is in a state of neither acceleration nor deceleration and the slit rate is detected accurately on the basis of the calculated coefficient of correction, the detection result of the detecting means 1, and the detection result of the sensor 2.

Description

【発明の詳細な説明】 〔概 要〕 車両が加減速状態でない時の車両の速度と車輪の周速と
に基づいて非接触対地速度センサの検出結果に対する補
正係数を算出する算出手段を設け、この補正係数算出手
段で算出した補正係数と検出手段の検出結果と非接触対
地速度センサの検出結果とに基づいて車輪と路面との間
のスリップ率を求める構成とし、これによりスリップ率
を精度良く検出できるようにする。
[Detailed Description of the Invention] [Summary] A calculation means is provided for calculating a correction coefficient for the detection result of the non-contact ground speed sensor based on the speed of the vehicle when the vehicle is not in an acceleration/deceleration state and the circumferential speed of the wheels, The slip ratio between the wheel and the road surface is calculated based on the correction coefficient calculated by the correction coefficient calculation means, the detection result of the detection means, and the detection result of the non-contact ground speed sensor, thereby determining the slip ratio with high accuracy. Make it discoverable.

〔産業上の利用分野〕[Industrial application field]

本発明は路面と車両の車輪との間のスリップ率を精度良
く検出することができるスリップ率検出装置に関するも
のである。
The present invention relates to a slip rate detection device that can accurately detect the slip rate between the road surface and the wheels of a vehicle.

〔従来の技術〕[Conventional technology]

雨で濡れた路面や凍結した路面等のように漬りやすい路
面上でブレーキをかけた場合、車輪が口ツクし、制動が
効かなくなる場合がある。このようなことを防止するた
め、各車輪と路面との間のスリップ率を検出し、ブレー
キ時、スリップ率が適当な値となるように、各車輪に対
するブレーキ力を制御する所謂アンチスキッド制御を行
なうことが従来より提案されている。ここで、スリップ
率Sは次式(1)で定義されるものであり、開式に於い
て■は車両の速度を、SVは車輪の周速を示している。
If the brakes are applied on a road surface that is prone to getting wet, such as a road surface that is wet from rain or ice, the wheels may become stuck and the brakes may become ineffective. To prevent this, so-called anti-skid control is used to detect the slip rate between each wheel and the road surface and control the braking force to each wheel so that the slip rate is at an appropriate value when braking. It has been previously proposed to do so. Here, the slip rate S is defined by the following equation (1), and in the opening equation, ■ indicates the speed of the vehicle, and SV indicates the circumferential speed of the wheel.

S= (SV−V) /SV  =−−−−(1)上述
したようなアンチスキッド制御を行なう場合、車輪と路
面との間のスリップ率を検出することが必要となるが、
従来は次のようにしてスリップ率を検出していたため正
確なスリップ率を検出することができず、最適なアンチ
スキッド制御を行なうことができない問題があった。
S= (SV-V) /SV =---- (1) When performing anti-skid control as described above, it is necessary to detect the slip rate between the wheels and the road surface.
Conventionally, the slip ratio has been detected in the following manner, which has resulted in the problem that an accurate slip ratio cannot be detected and optimal anti-skid control cannot be performed.

即ち、従来は車両の4つの車輪それぞれにその回転数を
検出する回転数針を設け、この4個の回転数針からの回
転数信号に基づいて車両速度を求めていたため、車輪が
スリップする惧れがあるブレー半時或いは加速時に於け
る検出結果は車両速度の推定値にすぎず、従って正確な
スリップ率を検出できない問題があった。
That is, in the past, each of the four wheels of a vehicle was provided with a rotation speed hand to detect its rotation speed, and the vehicle speed was determined based on the rotation speed signals from these four rotation speed hands, which caused the risk of the wheels slipping. The detection result at half-braking or during acceleration is only an estimated value of the vehicle speed, and therefore there is a problem in that an accurate slip ratio cannot be detected.

また、上述した問題点を解決するため、第4図に示す構
成を有する非接触対地速度センサを車両に搭載し、この
検出結果に基づいてスリップ率を検出することも提案さ
れている。同図に於いて、41は光電変換素子D1〜0
12からなる光検出器、42は差動増幅器、43はその
内部に直流阻止用のコンデンサを備えた増幅器、44は
周波数検出器、45は対物レンズであり、これらにより
非接触対地速度センサは構成されるものである。また、
46は非接触対地速度センサが搭載された車両が矢印A
方向に移動する道路である。
Furthermore, in order to solve the above-mentioned problems, it has been proposed to mount a non-contact ground speed sensor having the configuration shown in FIG. 4 on a vehicle and to detect the slip ratio based on the detection result. In the figure, 41 is a photoelectric conversion element D1 to D0.
12 is a photodetector, 42 is a differential amplifier, 43 is an amplifier with a DC blocking capacitor inside, 44 is a frequency detector, and 45 is an objective lens, and these constitute the non-contact ground speed sensor. It is something that will be done. Also,
46 indicates a vehicle equipped with a non-contact ground speed sensor indicated by arrow A.
It is a road that moves in the direction.

光検出器41には矢印A方向に隣接して複数の光電変換
素子D1〜012が設けられており、この内のDl、D
3.D5.D7.D9.Dllは差動増幅器42の十端
子に接続され、02. D4.06.0B、 010.
012は差動増幅器42の一端子に接続されている。ま
た、光検出器41の受光面には道路46の路面47が結
像され、これによる−各光電変換素子D1〜012の出
力信号は差動増幅器42の十端子或いは一端子に加えら
れる。差動増幅器42は光電変換素子Di、 03. 
D5. D7. D9. Dllから加えられる信号と
光電変換素子D2. D4. D6. D8.010.
012から加えられる信号との差信号を作成し、これを
増幅器43を介して周波数&kS器44に加える。ここ
で、差動増幅器42の出力信号の周波数fと車両速度■
とは次式(2)に示すように一対一に対応するものであ
るから、周波数検出器44で差動増幅器42の出力信号
の周波数を検出することにより、車両速度を求めること
ができる。尚、式(2)に於いて、Bは対物レンズ45
から光検出器41の受光面までの距離、Hは路面47か
ら対物レンズ45までの距離、kは比例定数を表してい
る。
The photodetector 41 is provided with a plurality of photoelectric conversion elements D1 to 012 adjacent to each other in the direction of arrow A, of which Dl, D
3. D5. D7. D9. Dll is connected to the 10 terminal of the differential amplifier 42, and 02. D4.06.0B, 010.
012 is connected to one terminal of the differential amplifier 42. Further, a road surface 47 of a road 46 is imaged on the light receiving surface of the photodetector 41, and the resulting output signals from each of the photoelectric conversion elements D1 to D012 are applied to ten terminals or one terminal of the differential amplifier 42. The differential amplifier 42 includes a photoelectric conversion element Di, 03.
D5. D7. D9. The signal applied from Dll and the photoelectric conversion element D2. D4. D6. D8.010.
A difference signal from the signal added from 012 is created and added to the frequency &kS unit 44 via the amplifier 43. Here, the frequency f of the output signal of the differential amplifier 42 and the vehicle speed ■
has a one-to-one correspondence as shown in the following equation (2), so the vehicle speed can be determined by detecting the frequency of the output signal of the differential amplifier 42 with the frequency detector 44. In addition, in formula (2), B is the objective lens 45
H is the distance from the road surface 47 to the light receiving surface of the photodetector 41, H is the distance from the road surface 47 to the objective lens 45, and k is a proportionality constant.

V=k −B −f/H・・−(2) このような、路面と非接触で車両速度を検出することが
できる非接触対地速度センサを用いることにより、車輪
がスリップする惧れがあるブレーキ時或いは加速時に於
いても、正確な車両速度を求めることが可能となり、従
って、第4図に示す非接触対地速度センサの検出結果に
基づいて式(1)に示す演算を行なうことにより、正確
なスリップ率を求めることが可能となる。
V=k -B -f/H...-(2) By using such a non-contact ground speed sensor that can detect vehicle speed without contacting the road surface, there is a risk that the wheels may slip. It is possible to obtain accurate vehicle speed even when braking or accelerating. Therefore, by performing the calculation shown in equation (1) based on the detection results of the non-contact ground speed sensor shown in FIG. It becomes possible to obtain an accurate slip ratio.

しかし、第4図に示した非接触対地速度センサの検出結
果に基づいてスリップ率を求めるとしても、次のような
問題があった。即ち、式(2)から判るように、第4図
に示した非接触対地速度センサの検出結果は路面47と
対物レンズ45との間の距%!ftHにより変化するも
のであり、距離Hは搭乗人員数、貨物の積載量等により
変動するものであるから、第4図に示した非接触対地速
度センサの検出結果に基づいてスリップ率を検出したと
しても、正しいスリップ率を求めることができない場合
がある問題があった。
However, even if the slip ratio is determined based on the detection results of the non-contact ground speed sensor shown in FIG. 4, the following problems arise. That is, as can be seen from equation (2), the detection result of the non-contact ground speed sensor shown in FIG. 4 is the distance % between the road surface 47 and the objective lens 45! ftH, and the distance H varies depending on the number of passengers, cargo loading, etc., so the slip rate was detected based on the detection results of the non-contact ground speed sensor shown in Figure 4. However, there is a problem in that it may not be possible to obtain the correct slip ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前述の如き問題点を解決したものであり、その
目的は常に正確にスリップ率を検出できるようにするこ
とにある。
The present invention solves the above-mentioned problems, and its purpose is to always be able to accurately detect the slip ratio.

C問題点を解決するための手段〕 本発明は前述の如き問題点を解決するため、第1図の構
成図に示すように、 路面と車両の車輪との間のスリップ率を検出するスリッ
プ率検出装置に於いて、 前記車輪の周速を検出する検出手段1と、前記路面と非
接触で前記車両の速度を検出する非接触対地速度センサ
2と、 前記車両が加減速状態であるか否かを判断する判断手段
3と、 該判断手段3で前記車両が加減速状態でないと判断され
た場合、前記検出手段1の検出結果と前記非接触対地速
度センサ2の検出結果とに基づいて、前記非接触対地速
度センサ2で検出した車速に対する補正係数を算出する
補正係数算出手段4と、 該補正係数算出手段4で算出された補正係数と前記検出
手段1の検出結果と前記非接触対地速度センサ2の検出
結果とに基づいて、前記路面と前記車輪との間のスリッ
プ率を算出するスリップ率算出手段5とを設けたもので
ある。
Means for Solving Problem C] In order to solve the above-mentioned problems, the present invention, as shown in the configuration diagram of FIG. The detection device includes: a detection means 1 for detecting the circumferential speed of the wheels; a non-contact ground speed sensor 2 for detecting the speed of the vehicle without contact with the road surface; and a detection means 2 for detecting the speed of the vehicle without contacting the road surface; a determining means 3 for determining whether the vehicle is in an acceleration or deceleration state; and when the determining means 3 determines that the vehicle is not in an acceleration or deceleration state, based on the detection result of the detection means 1 and the detection result of the non-contact ground speed sensor 2; a correction coefficient calculation means 4 for calculating a correction coefficient for the vehicle speed detected by the non-contact ground speed sensor 2; a correction coefficient calculated by the correction coefficient calculation means 4, a detection result of the detection means 1, and the non-contact ground speed; A slip rate calculating means 5 is provided for calculating a slip rate between the road surface and the wheels based on the detection result of the sensor 2.

〔作 用〕[For production]

非加減速状態に於ける検出手段1の検出結果は正確な車
両速度を示している。また、非接触対地速度センサ2の
検出結果はそれと路面との間の距離Hにより変動するが
、距離Hが一定であれば車両速度と一対一に対応する。
The detection result of the detection means 1 in the non-acceleration/deceleration state indicates accurate vehicle speed. Further, the detection result of the non-contact ground speed sensor 2 varies depending on the distance H between it and the road surface, but if the distance H is constant, it corresponds one-to-one with the vehicle speed.

従って、車両が非加減速状態の時の検出手段1の検出結
果と非接触対地速度センサ2の検出結果とに基づいて、
非接触対地速度センサ2で検出した車両速度に対する補
正係数を補正係数算出手段4で求め、この補正係数算出
手段4で算出した補正係数と検出手段1の検出結果と非
接触対地速度センサ2の検出結果とに基づいてスリップ
率を求めるようにすることにより、搭乗人員の変動等に
より前記距離Hが変動した場合に於いても、スリップ率
を正確に検出することが可能となる。
Therefore, based on the detection result of the detection means 1 and the detection result of the non-contact ground speed sensor 2 when the vehicle is in a non-acceleration/deceleration state,
A correction coefficient for the vehicle speed detected by the non-contact ground speed sensor 2 is calculated by the correction coefficient calculation means 4, and the correction coefficient calculated by the correction coefficient calculation means 4, the detection result of the detection means 1, and the detection by the non-contact ground speed sensor 2 are calculated. By determining the slip ratio based on the results, it is possible to accurately detect the slip ratio even when the distance H changes due to changes in the number of passengers or the like.

〔実施例〕〔Example〕

第2図は本発明の実施例のブロック線図で、21はマイ
クロプロセッサ、22はメモリ、詔は入力部、24は出
力部、5は右前輪の回転数を検出する回転数センサ、あ
は左前輪の回転数を検出する回転数センサ、釘は右後輪
の回転数を検出する回転数センサ、詔は左後輪の回転数
を検出する回転数センサ、四はスロットル弁(図示せず
)の開度を検出する開度センサ、30は開度センサ29
の検出結果に基づいてスロットル弁の開度の変化率が所
定値以上の場合その出力信号aを“1”とする変化率検
出器、31はブレーキが踏まれた時オンとなるブレーキ
スイッチ、32は第4図に示した構成を有する非接触対
地速度センサ、33はアンチスキッド制御装置、34は
燃料噴射制御装置である。
FIG. 2 is a block diagram of an embodiment of the present invention, 21 is a microprocessor, 22 is a memory, 24 is an input section, 24 is an output section, 5 is a rotation speed sensor that detects the rotation speed of the right front wheel, A rotation speed sensor detects the rotation speed of the left front wheel, a nail is a rotation speed sensor that detects the rotation speed of the right rear wheel, a rotation speed sensor detects the rotation speed of the left rear wheel, and 4 is a throttle valve (not shown). ), 30 is an opening sensor 29 that detects the opening of
a change rate detector which sets the output signal a to "1" when the rate of change in the opening of the throttle valve is equal to or greater than a predetermined value based on the detection result; 31 is a brake switch that is turned on when the brake is depressed; 32 3 is a non-contact ground speed sensor having the configuration shown in FIG. 4, 33 is an anti-skid control device, and 34 is a fuel injection control device.

また、第3図はマイクロプロセッサ21の処理内容を示
すフローチャートであり、以下同図を参照して第2図の
動作を説明する。
Further, FIG. 3 is a flowchart showing the processing contents of the microprocessor 21, and the operation of FIG. 2 will be explained below with reference to the same figure.

マイクロプロセッサ21は非接触対地速度センサ32の
検出結果に基づいて車両の速度が零でないことを検出す
ると、第3図のフローチャートに示す処理を開始し、先
ず非接触対地速度センサ32の検出結果(車両速度)に
対する補正係数Cを1にする(ステップS1)。尚、補
正係数Cの設定処理は具体的には、メモリ22の所定領
域#Aにその値を書込むことにより行なうものである9
次いで、マイクロプロセッサ21は回転数センサ25〜
28の検出結果に基づいて各車輪の周速SVI〜SV4
を求め(ステップS2)、次いで非接触対地速度センサ
32の検出結果に基づいて車両速度■を求める(ス基づ
いて車両が加減速状態であるか否かを判断しくステップ
S4)、その判断結果がNOの場合はブレーキスイッチ
31がオンであるか否かに基づいて車両が減速状態であ
るか否かを判断する(ステップS5)。
When the microprocessor 21 detects that the speed of the vehicle is not zero based on the detection result of the non-contact ground speed sensor 32, it starts the process shown in the flowchart of FIG. The correction coefficient C for the vehicle speed is set to 1 (step S1). It should be noted that the process of setting the correction coefficient C is specifically performed by writing the value in a predetermined area #A of the memory 229.
Next, the microprocessor 21 controls the rotation speed sensors 25 to 25.
Based on the detection results of 28, the circumferential speed of each wheel is SVI to SV4.
is determined (step S2), and then the vehicle speed is determined based on the detection result of the non-contact ground speed sensor 32 (it is determined whether or not the vehicle is in an acceleration or deceleration state based on step S4). If NO, it is determined whether the vehicle is in a deceleration state based on whether the brake switch 31 is on or not (step S5).

そして、車両が加速状態でも減速状態でもないと判断し
た場合(ステップS4.5の判断結果が共にNoの場合
)は、ステップS2で求めた車輪の周速Sν1とステッ
プS3で求めた車両速度Vとに基づいて次式(3)に示
す演算を行ない、非接触対地速度センサ32の検出結果
に対する補正係数Cを求め(ステップS6)、次いでス
テップS6で求めた補正係数Cをメモリ22の所定領域
#Aに書込む(ステップ37)。
If it is determined that the vehicle is neither in an acceleration state nor in a deceleration state (if both the determination results in step S4.5 are No), the wheel peripheral speed Sν1 determined in step S2 and the vehicle speed V determined in step S3 are determined. Based on this, the calculation shown in the following equation (3) is performed to obtain a correction coefficient C for the detection result of the non-contact ground speed sensor 32 (step S6), and then the correction coefficient C obtained in step S6 is stored in a predetermined area of the memory 22. Write to #A (step 37).

C=V/SVI  ・−−−−−−(3)尚、この場合
は右前輪の周速SVIに基づいて補正係数Cを求めるよ
うにしたが、車両が非加減速状態の場合は、各車輪の周
速SVI〜SV4は全て等しくなるものであるから、他
の車輪の周速SV2〜SV4を用いて補正係数Cを求め
るようにしても良いことは勿論である。
C=V/SVI (3) In this case, the correction coefficient C is determined based on the circumferential speed SVI of the right front wheel, but if the vehicle is not accelerating or decelerating, each Since the circumferential velocities SVI to SV4 of the wheels are all equal, it goes without saying that the correction coefficient C may be determined using the circumferential velocities SV2 to SV4 of the other wheels.

次いで、マイクロプロセッサ21はステップS3で求め
た車両速度VとステップS6で求めた補正係数Cとに基
づいて次式(4)に示す演算を行ない、真の車両速度V
oを求める(ステップS8)。
Next, the microprocessor 21 performs the calculation shown in the following equation (4) based on the vehicle speed V obtained in step S3 and the correction coefficient C obtained in step S6, and calculates the true vehicle speed V.
Find o (step S8).

VO=C−V−−−−−−−−(4) 次いで、マイクロプロセッサ21はステップS2で求め
た各車輪の周速SVI〜SV4とステップS8で求めた
真の車両速度Voとに基づいて次式(5)〜(8)に示
す演算を行ない、路面と各車輪との間のスリップ率31
〜S4を求める(ステップS9)。
VO=C-V------------(4) Next, the microprocessor 21 calculates the speed based on the circumferential speeds SVI to SV4 of each wheel determined in step S2 and the true vehicle speed Vo determined in step S8. The calculations shown in the following equations (5) to (8) are performed to calculate the slip ratio 31 between the road surface and each wheel.
~S4 is determined (step S9).

SL−(SVI −Vo ) / Vo  −−−−−
(5)S2= (SV2− Vo ) / Vo  −
−−−−(6)53= (SV3− Vo ) / V
o  −−−=−(7)S4= (SV4  Vo )
 / Vo  ・−−−−−(8)次いで、マイクロプ
ロセッサ21はステップS9え(ステップ5IO)、次
いで非接触対地速度セン度が零であるか否かを判断しく
ステップ512)、その判断結果がNOの場合はステッ
プS2の処理に戻り、その判断結果がYESの場合は処
理を終了する。尚、アンチスキッド制御装置33はブレ
ーキ時、出力部Uを介して加えられるスリップ率31〜
S4に基づいて、各車輪と路面との間のスリップ率が最
適となるように各車輪に対するブレーキ力を制御し、ま
た燃料噴射制御装置34は発進時に於けるス・リップ率
31〜S4が大き過ぎる場合、燃料噴射量を減少させる
等の制御を行なうものである。また、ステップ84.5
の判断結果がYESの場合は、マイクロプロセッサ21
はステップS6,7の処理を省略し、ステップS8の処
理を行なうものである。
SL-(SVI-Vo) / Vo ------
(5) S2= (SV2-Vo)/Vo-
-----(6)53=(SV3-Vo)/V
o ---=-(7) S4= (SV4 Vo )
/Vo・---(8) Next, the microprocessor 21 determines whether or not the non-contact ground speed sensor is zero in step S9e (step 5IO), and the determination result is If NO, the process returns to step S2, and if the determination result is YES, the process ends. Incidentally, the anti-skid control device 33 controls the slip rate 31 to 31 applied via the output section U during braking.
Based on S4, the braking force for each wheel is controlled so that the slip ratio between each wheel and the road surface is optimized, and the fuel injection control device 34 controls the braking force to optimize the slip ratio between each wheel and the road surface. If it exceeds the limit, control such as reducing the fuel injection amount is performed. Also, step 84.5
If the judgment result is YES, the microprocessor 21
The process in step S6 and step S7 is omitted, and the process in step S8 is performed.

このように、本実施例は車両が非加減速状態の時に非接
触対地速度センサ羽の検出結果に対する補正係数Cを求
めておくものであるから、搭乗人員数や貨物の積載量等
により、非接触対地速度センサ32と路面との間の距離
Hが変化した場合に於いても、常に正確なスリップ率を
検出することができる。
As described above, in this embodiment, since the correction coefficient C for the detection result of the non-contact ground speed sensor blade is determined when the vehicle is in a non-acceleration/deceleration state, the Even when the distance H between the contact ground speed sensor 32 and the road surface changes, an accurate slip ratio can always be detected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、車両が非加減速状態の
時に非接触対地速度センサの検出結果に対する補正係数
を求めておき、この補正係数と検出手段(実施例に於い
ては回転数センサ25〜28等からなる)で検出した車
輪の周速と非接触対地速度センサで検出した車両速度と
に基づいて路面の車両との間のスリップ率を検出してい
るものであるから、搭乗人員数、貨物積載量等が変化し
た場合に於いても、常に正確なスリップ率を検出するこ
とができる利点がある。従って、本発明をアンチスキッ
ド制御に通用すれば最適なアンチスキッド制御を行なう
ことが可能となる。
As explained above, the present invention calculates a correction coefficient for the detection result of the non-contact ground speed sensor when the vehicle is in a non-acceleration/deceleration state, and uses this correction coefficient and the detection means (in the embodiment, the rotation speed sensor Since the slip rate between the vehicle and the vehicle on the road surface is detected based on the circumferential speed of the wheels detected by the wheel circumferential speed detected by the sensor (25 to 28, etc.) and the vehicle speed detected by the non-contact ground speed sensor, the number of occupants An advantage is that even when the number of vehicles, cargo loading, etc. change, the slip ratio can always be accurately detected. Therefore, if the present invention is applied to anti-skid control, it becomes possible to perform optimal anti-skid control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成図、第2図は本発明の実施例のブ
ロック線図、第3図はマイクロプロセッサ21の処理内
容を示すフローチャート、第4図は非接触対地速度セン
サの構成図である。 1は検出手段、2,32は非接触対地速度センサ、3は
判断手段、4は補正係数算出手段、5はスリップ率l出
手段、21はマイクロプロセッサ、22はメモリ、詔は
入力部、24は出力部、25〜28は回転数センサ、2
9は開度センサ、30は変化率検出器、31はブレーキ
スイッチ、33はアンチスキッド制御装置、34は燃料
噴射制御装置、41は光電変換素子D1〜012からな
る光検出器、42は差動増幅器、43は増幅器、44は
周波数検出器、45は対物レンズ、46は道路、47は
路面である。 特許出願人 富士通テン株式会社 代理人弁理士玉蟲久五部(外1名) 処理内容を示すフローチマート 第  3  @
Fig. 1 is a block diagram of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a flowchart showing the processing contents of the microprocessor 21, and Fig. 4 is a block diagram of the non-contact ground speed sensor. It is. 1 is a detection means, 2 and 32 are non-contact ground speed sensors, 3 is a judgment means, 4 is a correction coefficient calculation means, 5 is a slip ratio output means, 21 is a microprocessor, 22 is a memory, and 24 is an input section. is the output part, 25 to 28 are the rotation speed sensors, 2
9 is an opening sensor, 30 is a change rate detector, 31 is a brake switch, 33 is an anti-skid control device, 34 is a fuel injection control device, 41 is a photodetector consisting of photoelectric conversion elements D1 to 012, and 42 is a differential 43 is an amplifier, 44 is a frequency detector, 45 is an objective lens, 46 is a road, and 47 is a road surface. Patent applicant Fujitsu Ten Ltd. Representative Patent Attorney Gobe Tamamushi (1 other person) Flowch Mart No. 3 @ showing processing details

Claims (1)

【特許請求の範囲】 路面と車両の車輪との間のスリップ率を検出するスリッ
プ率検出装置に於いて、 前記車輪の周速を検出する検出手段と、 前記路面と非接触で前記車両の速度を検出する非接触対
地速度センサと、 前記車両が加減速状態であるか否かを判断する判断手段
と、 該判断手段で前記車両が加減速状態でないと判断された
場合、前記検出手段の検出結果と前記非接触対地速度セ
ンサの検出結果とに基づいて、前記非接触対地速度セン
サで検出した車速に対する補正係数を算出する補正係数
算出手段と、 該補正係数算出手段で算出された補正係数と前記検出手
段の検出結果と前記非接触対地速度センサの検出結果と
に基づいて、前記路面と前記車輪との間のスリップ率を
算出するスリップ率算出手段とを備えたことを特徴とす
るスリップ率検出装置。
[Scope of Claims] A slip ratio detection device for detecting a slip ratio between a road surface and a wheel of a vehicle, comprising: a detection means for detecting a circumferential speed of the wheel; and a detection means for detecting the circumferential speed of the wheel; a non-contact ground speed sensor that detects; a determining unit that determines whether the vehicle is in an acceleration or deceleration state; and a determination unit that determines whether the vehicle is in an acceleration or deceleration state; a correction coefficient calculation means for calculating a correction coefficient for the vehicle speed detected by the non-contact ground speed sensor based on the result and the detection result of the non-contact ground speed sensor; and a correction coefficient calculated by the correction coefficient calculation means. A slip rate calculation means for calculating a slip rate between the road surface and the wheel based on the detection result of the detection means and the detection result of the non-contact ground speed sensor. Detection device.
JP60077049A 1985-04-11 1985-04-11 Slipper rate detector Expired - Fee Related JPH07122642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60077049A JPH07122642B2 (en) 1985-04-11 1985-04-11 Slipper rate detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60077049A JPH07122642B2 (en) 1985-04-11 1985-04-11 Slipper rate detector

Publications (2)

Publication Number Publication Date
JPS61235754A true JPS61235754A (en) 1986-10-21
JPH07122642B2 JPH07122642B2 (en) 1995-12-25

Family

ID=13622922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60077049A Expired - Fee Related JPH07122642B2 (en) 1985-04-11 1985-04-11 Slipper rate detector

Country Status (1)

Country Link
JP (1) JPH07122642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170159A (en) * 1987-01-08 1988-07-14 Fujitsu Ten Ltd Antiskid controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497901A (en) * 1972-03-30 1974-01-24
JPS58130254U (en) * 1982-02-26 1983-09-02 株式会社東海理化電機製作所 Freeze detection device
JPS58166264A (en) * 1982-03-27 1983-10-01 Omron Tateisi Electronics Co Measuring device of vehicle speed
JPS59111063A (en) * 1982-12-16 1984-06-27 Omron Tateisi Electronics Co Apparatus for detecting speed of moving matter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS497901A (en) * 1972-03-30 1974-01-24
JPS58130254U (en) * 1982-02-26 1983-09-02 株式会社東海理化電機製作所 Freeze detection device
JPS58166264A (en) * 1982-03-27 1983-10-01 Omron Tateisi Electronics Co Measuring device of vehicle speed
JPS59111063A (en) * 1982-12-16 1984-06-27 Omron Tateisi Electronics Co Apparatus for detecting speed of moving matter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170159A (en) * 1987-01-08 1988-07-14 Fujitsu Ten Ltd Antiskid controller

Also Published As

Publication number Publication date
JPH07122642B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
JP2749784B2 (en) Turning radius calculation method and turning radius calculation device
JP3319101B2 (en) Gravity accelerometer for vehicles
JP2716435B2 (en) Vehicle speed control device for road surface vehicles
US4844557A (en) Circuit configuration for brake systems with anti-lock control and/or traction slip control
US8000872B2 (en) Vehicle anti-skid brake control system and its control method
JP3285257B2 (en) How to detect reverse travel of a car
JP2590169B2 (en) Vehicle reference wheel speed calculator
EP1271098A2 (en) Apparatus and method for judging road surface gradients, and program for judging gradients
WO1991004892A3 (en) Antilock braking system and drive slip control system
CN108819950B (en) Vehicle speed estimation method and system of vehicle stability control system
JP3158038B2 (en) Tire pressure drop detector
US8370019B2 (en) Method and facility for estimating a measure of friction
JP2620998B2 (en) Vehicle body speed estimation method in antilock control device for vehicle
JPH023549A (en) Forward drive controller for automobile
JPS61235754A (en) Detector for slip rate
JPS62287164A (en) Speed vector detecting device
JP3368713B2 (en) Body slip angle detector
JP2557970B2 (en) Curve identification and lateral acceleration detection method in automobile
JP3535358B2 (en) Road friction coefficient estimation device
JP3060815B2 (en) Wheel speed correction value calculation device
JP3988968B2 (en) Traction control device
JP2002181669A (en) Tire distinguishing device and method
JPH0769346B2 (en) Vehicle lateral acceleration detection device
JPH089319B2 (en) Anti-skidding control device
JP2923071B2 (en) Slope judgment method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees