JPS63170159A - Antiskid controller - Google Patents

Antiskid controller

Info

Publication number
JPS63170159A
JPS63170159A JP250887A JP250887A JPS63170159A JP S63170159 A JPS63170159 A JP S63170159A JP 250887 A JP250887 A JP 250887A JP 250887 A JP250887 A JP 250887A JP S63170159 A JPS63170159 A JP S63170159A
Authority
JP
Japan
Prior art keywords
output
speed
wheel speed
comparator
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP250887A
Other languages
Japanese (ja)
Other versions
JP2652535B2 (en
Inventor
Yasuhiro Fujita
泰裕 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP62002508A priority Critical patent/JP2652535B2/en
Publication of JPS63170159A publication Critical patent/JPS63170159A/en
Application granted granted Critical
Publication of JP2652535B2 publication Critical patent/JP2652535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Regulating Braking Force (AREA)

Abstract

PURPOSE:To improve the responsiveness of control, by dividing output of an accelerating sensor, detecting body deceleration, into plural levels by a comparator, and setting either larger value of body speed or wheel speed to be estimated and operated on the basis of output of this comparator down to the body side at each point of time. CONSTITUTION:Output of a wheel speed sensor 1 is converted into a digital waveform at a waveform processing part 2 and inputted into a digital processing part 6 for antiskid control use. And, output of an acceleration sensor 3 detecting the deceleration of a car body is removed of its noise component by a filter processing part 4 and then it is inputted into a comparator 5. At this comparator 5, the output of the acceleration sensor 3 is divided into plural levels, and on the basis of the output of this comparator 5, body speed is estimated and operated at the processing part 6, while either larger value of this estimated body speed or the wheel speed by the wheel speed sensor 1 is set down to the body speed at each point of time, thereby making it control a hydraulic modulator 7. With this constitution, hydraulic pressure to be transmitted to a wheel cylinder W/C is controlled.

Description

【発明の詳細な説明】 〔概 要〕 本発明は車輪速から車体速を推定する方法では不正確に
なる急制動時の車体速を、加速度センサの出力から推定
した車体速で補おうとするものである。
[Detailed Description of the Invention] [Summary] The present invention attempts to compensate for the vehicle speed during sudden braking, which is inaccurate with the method of estimating the vehicle speed from the wheel speed, by using the vehicle speed estimated from the output of an acceleration sensor. It is.

〔産業上の利用分野〕[Industrial application field]

本発明は車体速を推定演算するアンチスキッド制御装置
に関する。
The present invention relates to an anti-skid control device that estimates and calculates vehicle speed.

〔従来の技術〕[Conventional technology]

急制動時に車輪がロックしてスリップしないようにブレ
ーキ油圧を最適制御するアンチスキッド制御装置では、
車輪速と車体速の差からスリップ率を算出するため、車
体速の演算が不可欠である。
The anti-skid control device optimally controls brake hydraulic pressure to prevent wheels from locking and slipping during sudden braking.
In order to calculate the slip rate from the difference between wheel speed and vehicle speed, calculation of vehicle speed is essential.

この車体速を推定する演算方法には2つある。There are two calculation methods for estimating this vehicle speed.

1つは車輪速センサの出力から直接演算される車輪速(
V w)を基に車体速(Vo)を推定する方法である。
One is the wheel speed (which is calculated directly from the output of the wheel speed sensor).
This is a method of estimating vehicle speed (Vo) based on Vw).

一般に前後4輪の車輪速を検出する車両では、そのうち
の最高速の車輪速を使用し、第5図のように制動時に車
輪速が実線のように低下したら、それに伴い車体速も破
線のように低下していると推定する。車輪速の脈動はア
ンチスキッド制御の結果、ブレーキ油圧が変動したこと
に対応する。
Generally, in a vehicle that detects the wheel speed of the front and rear four wheels, the fastest wheel speed among them is used, and when the wheel speed decreases as shown in the solid line during braking as shown in Figure 5, the vehicle body speed also increases as shown in the broken line. It is estimated that it has decreased to The pulsations in wheel speed correspond to changes in brake oil pressure as a result of anti-skid control.

他の1つは加速度センナの出力を積分することで車体速
を求める方法である。
Another method is to obtain the vehicle speed by integrating the output of the acceleration sensor.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、車輪速から車体速を推定演算する方法では、
車輪と路面との間にスリップが無ければ車輪速=車体速
という扱いが可能であるが、急ブレーキ時のようにスリ
ップが発生すると車輪速(Vw)は急激に低下するので
、これに基づく推定車体速(Vo)は実際の車体速より
小さくなる傾向がある。この結果、スリップ率S=(V
o−Vw)/Vwが見掛は上小さくなると、アンチスキ
ッド制御の開始(油圧減少)が遅(なるため、従来は推
定車体速(Vo)が低下方向に取り得る減速度に一定の
限界を設けている。第6図はこの説明図で、車輪速が急
激に落ち込んでも推定車体速は一定の勾配で低下してい
る。
By the way, in the method of estimating the vehicle speed from the wheel speed,
If there is no slip between the wheels and the road surface, it is possible to treat wheel speed = vehicle speed, but if slip occurs, such as during sudden braking, the wheel speed (Vw) will drop rapidly, so estimation is based on this. The vehicle speed (Vo) tends to be smaller than the actual vehicle speed. As a result, slip rate S=(V
o-Vw)/Vw becomes apparently smaller, the start of anti-skid control (hydraulic pressure reduction) becomes slower. Fig. 6 is an explanatory diagram of this, showing that even if the wheel speed suddenly decreases, the estimated vehicle speed decreases at a constant slope.

しかしながら、この限界減速度は一般に車輪との摩擦係
数(μ)が比較的大きい路面(例えばコンクリート路面
)での制動時に得られる減速度(IG程度)を基準に設
定されるため、これよりμの小さい(滑り易い)路面で
は実際の車体減速度が上述した限界減速度より小さいの
で、第7図のように推定車体速が実際の車体速より小さ
くなり、再びスリップ率Sを見掛は上小さくする問題を
生ずる。とは言え、この点を解決するために限界減速度
を低μ路のものに設定すると、高μ路では推定車体速か
高過ぎてブレーキ油圧増圧のタイミングが遅れ、ブレー
キが過度にゆるめられた制御となり危険である。
However, this limit deceleration is generally set based on the deceleration (approximately IG) obtained when braking on a road surface with a relatively large coefficient of friction (μ) with the wheels (for example, a concrete road surface). On a small (slippery) road surface, the actual vehicle deceleration is smaller than the above-mentioned limit deceleration, so the estimated vehicle speed becomes smaller than the actual vehicle speed, as shown in Figure 7, and the slip ratio S appears to be smaller again. This will cause problems. However, in order to solve this problem, if the limit deceleration is set for a low μ road, the estimated vehicle speed will be too high on a high μ road, and the timing of increasing the brake oil pressure will be delayed, causing the brake to become excessively loose. This is dangerous.

一方、加速度センサを用いる車体速の演算方法では、セ
ンサ信号に垂直方向の振動や水平方向の誤差、ノイズ等
があるため、これを積分すると誤差も積算される。また
、センサ信号は一般にアナログ信号であるため、マイク
ロコンピユータラ用いたディジタル方式ではA/Dコン
バータ等の高価なインターフェイスが必要であり、また
アナログ方式では積分器が必要となるので取り扱いが難
しい。
On the other hand, in the method of calculating the vehicle speed using an acceleration sensor, the sensor signal includes vertical vibrations, horizontal errors, noise, etc., so when these are integrated, the errors are also integrated. Further, since the sensor signal is generally an analog signal, a digital system using a microcomputer requires an expensive interface such as an A/D converter, and an analog system requires an integrator, making it difficult to handle.

本発明は加速度センサ方式を改良し、更に車輪速センサ
方式と組合せることで、両方式の欠点のない車体速演算
を可能とするものである。
The present invention improves the acceleration sensor method and further combines it with the wheel speed sensor method, thereby making it possible to calculate vehicle body speed without the drawbacks of both methods.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、車輪速が一定減速度を越えて低下する場合
は加速度センサの信号から車体速を推定演算したものと
車輪速の内大きい方を選びまた車輪速が回復して加速度
センサ信号から推定した車体速と一致した後は車輪速が
一定減速度を越えて低下するまで車輪速を選んで使用す
る。このとき加速度センサの信号はその大きさによって
数レベルに区分され、各区分毎に定まった減速度で処理
される。
In the present invention, when the wheel speed decreases beyond a certain deceleration, the vehicle speed estimated from the acceleration sensor signal and the wheel speed are selected, whichever is greater, and the wheel speed is recovered and estimated from the acceleration sensor signal. After the vehicle speed matches the specified vehicle speed, the wheel speed is selected and used until the wheel speed decreases beyond a certain deceleration. At this time, the signal from the acceleration sensor is divided into several levels depending on its magnitude, and each division is processed at a predetermined deceleration rate.

、  〔作用〕 第1図は本発明の原理説明図である0本発明の推定車体
速(破線)は車輪速(実線)の変化に対応して→A→B
−C→と変化している。このうちA−Cは加速度センサ
の信号から推定した車体速と車輪速のいづれか大きい一
方を選択し、0点以降は車輪速を選び、増圧により再び
一定減速度を越えるまでは車輪速より車体速を推定する
, [Operation] Fig. 1 is a diagram explaining the principle of the present invention. The estimated vehicle speed (broken line) of the present invention corresponds to the change in wheel speed (solid line) → A → B
-C→. Among these, A-C selects whichever is greater, the vehicle speed estimated from the signal of the acceleration sensor or the wheel speed. After 0 point, the wheel speed is selected, and until the constant deceleration is exceeded again due to pressure increase, the vehicle body speed is selected over the wheel speed. Estimate the speed.

加速度センサの信号から推定した車体速は路面μの違い
を反映する。つまり、高μ路で車輪速が急低下すれば従
来の推定車体速(1点鎖線)と同様に変化し、また低μ
路で車輪速が急低下すれば破線のように高い値で変化す
る(従来の車輪速センサ方式ではいずれの場合も1点鎖
線のようになる)。
The vehicle speed estimated from the acceleration sensor signal reflects the difference in road surface μ. In other words, if the wheel speed suddenly decreases on a high μ road, it will change in the same way as the conventional estimated vehicle speed (dotted chain line).
If the wheel speed suddenly decreases on the road, it changes to a high value as shown by the broken line (in any case with the conventional wheel speed sensor method, it changes as shown by the dashed line).

反面、加速度センサの信号にはその処理に問題があるの
で、本発明ではセンサ信号のレベルによって推定車体速
の減速度を異ならせるようにする。
On the other hand, since there is a problem in processing the signal from the acceleration sensor, in the present invention, the deceleration of the estimated vehicle speed is made to vary depending on the level of the sensor signal.

第2図は加速度センサの特性図で、第3図は該センサの
出力電圧を入力とするコンパレータの入出力特性図であ
る。このコンパレータはガウス関数的な入出力特性を有
し、その出力は処理部への入力となる。第3図に示され
るように加速度センサからのコンパレータ入力(減速度
)は連続的に変化するが、処理部へのコンパレータ出力
としてはC++  02,03.・・・・・・という不
連続な値しかとり得ない。このようにすると、加速度セ
ンサ信号の微小な変化は推定車体速(近似的になる)に
反映しなくなるので、ノイズ等の影響を受けにくくなる
。また処理部でも高精度に処理しなくても良いので負担
が軽減される。
FIG. 2 is a characteristic diagram of the acceleration sensor, and FIG. 3 is an input/output characteristic diagram of a comparator which receives the output voltage of the sensor as input. This comparator has input/output characteristics similar to a Gaussian function, and its output becomes an input to the processing section. As shown in FIG. 3, the comparator input (deceleration) from the acceleration sensor changes continuously, but the comparator output to the processing section is C++ 02, 03. It can only take discontinuous values such as... In this way, minute changes in the acceleration sensor signal will not be reflected in the estimated vehicle speed (approximate), making it less susceptible to noise and the like. Further, since the processing unit does not have to process with high precision, the burden is reduced.

〔実施例〕〔Example〕

第4図は本発明の一実施例を示すブロック図で、lは車
輪速センサ、2はその出力をディジタル波形に変換する
波形処理部、3は車体の減速度を検出する加速度センサ
、4はその出力からノイズ成分を除去するフィルタ処理
部、5は第3図の特性を有するコンパレータ、6はアン
チスキッド制御用のディジタル処理部、7はマスク・シ
リンダM/Cからホイール・シリンダW/Cへ伝わる油
圧を制御するモジュレータである。
FIG. 4 is a block diagram showing an embodiment of the present invention, where l is a wheel speed sensor, 2 is a waveform processing unit that converts its output into a digital waveform, 3 is an acceleration sensor that detects the deceleration of the vehicle body, and 4 is a A filter processing section removes noise components from the output, 5 is a comparator having the characteristics shown in Fig. 3, 6 is a digital processing section for anti-skid control, 7 is from the mask cylinder M/C to the wheel cylinder W/C This is a modulator that controls the transmitted hydraulic pressure.

処理部6は車輪速センサ1の出力から車輪速を演算する
が、これから単に車体速を推定演算するという従来の方
法はとらない。何故ならば、第1図のA点以前と0点以
降は車輪速が実際の車体速に近(、またその間(A−C
)は加速度センサ3による推定車体速が使えるからであ
る。
The processing unit 6 calculates the wheel speed from the output of the wheel speed sensor 1, but does not use the conventional method of simply estimating and calculating the vehicle speed from this. This is because before point A and after point 0 in Figure 1, the wheel speed is close to the actual vehicle speed (and between (A-C).
) is because the estimated vehicle speed obtained by the acceleration sensor 3 can be used.

第1図の推定車体速は区間A−Bと区間B−Cに分かれ
ている。前者の減速度G2は後者の減速度G1より大き
い。更に低μ路面では車体減速度はより小さくなり、0
2区間は無くなりG1だけとなる。本例では滑り易い路
面を例に取り説明したが、高μ路面ではG3、路面によ
ってはG3とG2の組み合せとなる。
The estimated vehicle speed in FIG. 1 is divided into an interval AB and an interval BC. The former deceleration G2 is larger than the latter deceleration G1. Furthermore, on a low μ road surface, the vehicle body deceleration becomes smaller and becomes 0.
The 2nd section is gone and only G1 is left. Although this example has been explained using a slippery road surface as an example, G3 is used on a high μ road surface, and a combination of G3 and G2 is used depending on the road surface.

ディジタル処理部6に対し、加速度センサ3の出力でな
く、コンパレータ5の出力を入力することで高精度のA
/Dコンバータが不要になる。
By inputting the output of the comparator 5 instead of the output of the acceleration sensor 3 to the digital processing unit 6, high accuracy
/D converter becomes unnecessary.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、制動時の車体速の推
定演算を精度良く行うことができるので、アンチスキッ
ド制御の応答性−を高め、また制御精度を向上させるこ
とができる。
As described above, according to the present invention, the estimation calculation of the vehicle speed during braking can be performed with high precision, so that the responsiveness of anti-skid control can be improved and the control accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理説明図、 第2図は加速度センサの特性図、 第3図はコンパレータの入出力特性図、第4図は本発明
の一実施例を示すブロック図、第5図は車輪速から車体
速を推定する方法の説明図、 第6図は第5図の部分拡大図、 第7図は推定車体速と実際の車体速との関係を示す説明
図である。 ’;ii ’I LJJ
Fig. 1 is a diagram explaining the principle of the present invention, Fig. 2 is a characteristic diagram of the acceleration sensor, Fig. 3 is an input/output characteristic diagram of the comparator, Fig. 4 is a block diagram showing an embodiment of the present invention, Fig. 5 6 is a partially enlarged view of FIG. 5, and FIG. 7 is an explanatory diagram showing the relationship between estimated vehicle speed and actual vehicle speed. ';ii 'I LJJ

Claims (1)

【特許請求の範囲】[Claims] 車輪速と車体速からスリップ率を算出してブレーキ油圧
を制御するアンチスキッド制御装置において、車体減速
度を検出する加速度センサ(3)の出力をコンパレータ
(5)で複数レベルに区分し、該コンパレータ(5)の
出力を基に推定演算される推定車体速または該車輪速の
いずれか大きい値を各時点の車体速として使用すること
を特徴とするアンチスキッド制御装置。
In an anti-skid control device that calculates a slip rate from wheel speed and vehicle speed to control brake oil pressure, a comparator (5) divides the output of an acceleration sensor (3) that detects vehicle deceleration into multiple levels; An anti-skid control device characterized in that the larger value of the estimated vehicle speed calculated based on the output of (5) or the wheel speed is used as the vehicle speed at each point in time.
JP62002508A 1987-01-08 1987-01-08 Anti-skid control device Expired - Fee Related JP2652535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62002508A JP2652535B2 (en) 1987-01-08 1987-01-08 Anti-skid control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62002508A JP2652535B2 (en) 1987-01-08 1987-01-08 Anti-skid control device

Publications (2)

Publication Number Publication Date
JPS63170159A true JPS63170159A (en) 1988-07-14
JP2652535B2 JP2652535B2 (en) 1997-09-10

Family

ID=11531308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62002508A Expired - Fee Related JP2652535B2 (en) 1987-01-08 1987-01-08 Anti-skid control device

Country Status (1)

Country Link
JP (1) JP2652535B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062262A (en) * 2005-09-01 2007-03-15 Glory Ltd Seal device
JP2011512292A (en) * 2008-02-19 2011-04-21 ヴアブコ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Vehicle parking brake and method of operating parking brake

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138286A (en) * 1974-04-23 1975-11-04
JPS5482288U (en) * 1977-11-22 1979-06-11
JPS5711149A (en) * 1980-06-26 1982-01-20 Mitsubishi Electric Corp Antiskid equipment
JPS6189156A (en) * 1984-10-09 1986-05-07 Nissan Motor Co Ltd Antiskid control device
JPS61235754A (en) * 1985-04-11 1986-10-21 Fujitsu Ten Ltd Detector for slip rate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50138286A (en) * 1974-04-23 1975-11-04
JPS5482288U (en) * 1977-11-22 1979-06-11
JPS5711149A (en) * 1980-06-26 1982-01-20 Mitsubishi Electric Corp Antiskid equipment
JPS6189156A (en) * 1984-10-09 1986-05-07 Nissan Motor Co Ltd Antiskid control device
JPS61235754A (en) * 1985-04-11 1986-10-21 Fujitsu Ten Ltd Detector for slip rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007062262A (en) * 2005-09-01 2007-03-15 Glory Ltd Seal device
JP2011512292A (en) * 2008-02-19 2011-04-21 ヴアブコ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Vehicle parking brake and method of operating parking brake

Also Published As

Publication number Publication date
JP2652535B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JP3059826B2 (en) Road surface friction coefficient calculator
JP2623829B2 (en) Anti-skid control device
JP3422566B2 (en) Calculation method of body speed of four-wheel drive vehicle
JPH04262952A (en) Circuit for use for anti-lock control or traction slippery control
US4763263A (en) Propulsion control using longitudinal acceleration to determine slip thresholds
JPH03292247A (en) Brake control device for vehicle
US5149177A (en) Automotive wheel speed control
JPH02303964A (en) Antilock brake control device for bicycle
JPH03235751A (en) Antiskid device
JPS63170159A (en) Antiskid controller
JPH07237539A (en) Antiskid control device
JP2835516B2 (en) Anti-skid control device
US5262951A (en) Anti-lock braking system
JPS6050061A (en) Controlling method of antiskid mechanism
JPH0986386A (en) Antilock brake control device of vehicle
JP3585651B2 (en) Anti-lock brake control device for vehicle
JP2702525B2 (en) Anti-skid control device
JPS5871246A (en) Anti-skid control device
JP2658080B2 (en) Wheel slip prevention control device
JP2650305B2 (en) Anti-skid control device
JP2628579B2 (en) Wheel speed control device
JPS6311470A (en) Pseudo-vehicle speed arithmetic unit for anti-skid controller
JP2623652B2 (en) Anti-skid control device
KR100209778B1 (en) Anti-lock brake system and control method
JP3204519B2 (en) Vehicle slip control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees