JPS59111063A - Apparatus for detecting speed of moving matter - Google Patents

Apparatus for detecting speed of moving matter

Info

Publication number
JPS59111063A
JPS59111063A JP57221514A JP22151482A JPS59111063A JP S59111063 A JPS59111063 A JP S59111063A JP 57221514 A JP57221514 A JP 57221514A JP 22151482 A JP22151482 A JP 22151482A JP S59111063 A JPS59111063 A JP S59111063A
Authority
JP
Japan
Prior art keywords
signal
frequency
vehicle
ultrasonic
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57221514A
Other languages
Japanese (ja)
Other versions
JPH0442628B2 (en
Inventor
Masao Mizuno
水野 雅男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Tateisi Electronics Co
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateisi Electronics Co, Omron Tateisi Electronics Co filed Critical Tateisi Electronics Co
Priority to JP57221514A priority Critical patent/JPS59111063A/en
Priority to US06/562,181 priority patent/US4674069A/en
Publication of JPS59111063A publication Critical patent/JPS59111063A/en
Publication of JPH0442628B2 publication Critical patent/JPH0442628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately measure the speed of moving matter, by providing a means wherein the reflected wave of an ultrasonic signal of which the frequency is continuously changed is passed through a spatial filter to extract a specific frequency component and a signal showing the distance to moving matter is taken out and a means for removing the factor of a distance. CONSTITUTION:The frequency of a transmitted ultrasonic wave is continuously changed at a definite cycle T and the reflected wave from a road surface L received by a receiver 2 is received after a time td while the reflected wave from a vehicle CA is received after a time tv. An optical sensor is also set to a height H and, when the vehicle CA passes a visual field, it is detected by a detector array 3 while the relation of this output signal (g), a speed V and a distance h is given by a formula III wherein K1 is a proportion constant and p is the pitch of a spatial filter. The frequency of the signal (g) is converted to the function only reference to the speed V from formula II, III. By this method, the speed of moving matter can be detected always accurately.

Description

【発明の詳細な説明】 発明の背景 この発明は、超音波および空間フィルタを用いて移動物
体たとえば車両の速度を検知する装置に関する。
BACKGROUND OF THE INVENTION This invention relates to an apparatus for sensing the speed of a moving object, such as a vehicle, using ultrasound and spatial filters.

従来の超音波を用いた車両感知装置は、路面上方の所定
高さ位置に設置された超音波送受波器を含み、この超音
波送受波器から一定周期で間欠的にパルス状の超音波を
路面に向【ブて送波1ノ、路面または車両で反射して戻
ってくる超音波を受波し、超音波が往復するのに要づ−
る時間を計測することにより車両の有無を判定していた
。超音波を間欠的に送波しているのは、送波超音波と反
射して戻ってくる超音波との混同を避けるためであり、
したがつ又超音波送波後、反射して戻ってくる超音波の
受渡を待って次の超音波が送波されな【プればならなか
った。このため超音波送波周期は比較的長い時間となり
、車両の速度が速い場合には正確な車両感知が期待でき
ないという問題があった。たとえば、超音波送受波器が
路面から5mの高さ位置に設置されているとすると、音
速を340m/sとすれば、超音波が路面との間を往復
するのに要する時間はおよそ30m5である。車両速度
を1100K /h 、車長を4〜5mとすると、この
車゛両はおよそ150m5で車両検知地点を通過する。
A conventional vehicle sensing device using ultrasonic waves includes an ultrasonic transducer installed at a predetermined height above the road surface, and this ultrasonic transducer emits pulsed ultrasonic waves intermittently at a fixed period. It transmits waves toward the road surface, receives the ultrasonic waves that are reflected back from the road surface or the vehicle, and is necessary for the ultrasonic waves to travel back and forth.
The presence or absence of a vehicle was determined by measuring the time it took for the vehicle to pass. The reason why ultrasound is transmitted intermittently is to avoid confusion between the transmitted ultrasound and the reflected ultrasound.
However, after transmitting an ultrasonic wave, it was necessary to wait for the reflected ultrasonic wave to be delivered before transmitting the next ultrasonic wave. For this reason, the ultrasonic wave transmission cycle is a relatively long time, and there is a problem in that accurate vehicle sensing cannot be expected when the vehicle speed is high. For example, if an ultrasonic transducer is installed at a height of 5 m from the road surface, and the speed of sound is 340 m/s, the time required for the ultrasonic waves to travel back and forth between the road surface and the road surface is approximately 30 m5. be. Assuming that the vehicle speed is 1100 K/h and the vehicle length is 4 to 5 m, this vehicle will pass through the vehicle detection point in approximately 150 m5.

したがって、超音波送波周期を3Qmsどしたとしても
1100K/Itで走行する車両に対しては最大5点の
サンプリングしか行なえないこととなる。サンプリング
・データがすべて有効であるとは限らないから、実際に
は有効データは3点程麿になるだろう。この程度のサン
プリング点数では、車両検知にもとづいて、車両速度、
車高などを測定する場合には大きな測定誤差が現われる
Therefore, even if the ultrasonic wave transmission period is increased by 3Qms, sampling can only be performed at a maximum of 5 points for a vehicle running at 1100K/It. Not all of the sampling data is valid, so in reality there will be about three valid data points. With this number of sampling points, vehicle speed,
When measuring vehicle height, etc., large measurement errors occur.

他方、光学式の車両速度検知装置は、超音波式のものに
比べて、風などの影響を受けないので直線性がよい、温
度変化による影響が少ない、センサと対象車両との距離
を大きくとることができる、などの特徴をもっている。
On the other hand, optical vehicle speed detection devices have better linearity than ultrasonic ones because they are not affected by wind, etc., are less affected by temperature changes, and require a larger distance between the sensor and the target vehicle. It has characteristics such as being able to

しかしながら、光学式のものは、原理的に、センサと車
両の検知箇所との間の距離が変動すると光学系の倍率の
影響を受けるという問題を含んでいる。
However, the optical type has the problem that, in principle, when the distance between the sensor and the detection point on the vehicle changes, it is affected by the magnification of the optical system.

つまり、車両は多くの凹凸をもっているのでその高さは
場所によって異なる。センサを車両の真上ないしは斜め
上方の位置に配置した場合には、センサと車両の各部と
の距離がそれぞれ異なり、正確に車両速度を測定するこ
とが困難になる。また、車高は車種によって異なるので
、車種によって測定速度が変動することも車両速度の正
確な測定を困難にする原因となる。
In other words, since a vehicle has many uneven surfaces, its height varies depending on the location. If the sensor is placed directly above or diagonally above the vehicle, the distances between the sensor and each part of the vehicle will be different, making it difficult to accurately measure the vehicle speed. Furthermore, since the vehicle height varies depending on the vehicle type, the measurement speed varies depending on the vehicle type, which also makes it difficult to accurately measure the vehicle speed.

発明の要点 この発明の目的は、車高などのヒンサと移動物体との間
の距離に関係なく常に正確に車両速度などの移動物体の
速度を検知することの可能な装置を提供することにある
Summary of the Invention An object of the present invention is to provide a device that can always accurately detect the speed of a moving object, such as the vehicle speed, regardless of the distance between the vehicle height or the like and the moving object. .

この発明による移動物体の速度検知装置は、連続的に周
波数が変化させられた超音波信号を発生する手段、この
超音波信号によって連続的に駆動される超音波送波器、
移動物体からの反射超音波を受波する超音波受波器、空
間フィルタを通して移動物体の移動による特定周波数成
分を抽出し、これを移動物体の速度および移動物体まで
の距離を表わす第1の電気信号に変換する手段、超音波
受波器の出力信号を周波数復調し、周波数の変化分を表
わす信号を取出す手段、送波超音波の周波数変化分を表
わす信号と受波超音波の周波数変化分を表わリー信号と
を比較して移動物体までの距離を表わす第2の信号を取
出す手段、ならびに第2の信号によって第1の信号から
移動物体までの距離を表わすノアフタを除去する手段、
を備えていることを特徴とする。超音波送、受波器を用
いた超音波による移動物体の検知領域と、空間フィルタ
を用いた光学的な移動物体の検知領域とは同一箇所に設
定される。
The speed detection device for a moving object according to the present invention includes: means for generating an ultrasonic signal whose frequency is continuously changed; an ultrasonic transmitter continuously driven by the ultrasonic signal;
An ultrasonic receiver receives reflected ultrasonic waves from a moving object, extracts a specific frequency component due to the movement of the moving object through a spatial filter, and converts this into a first electric signal that represents the speed of the moving object and the distance to the moving object. means for converting into a signal, means for frequency demodulating the output signal of the ultrasonic receiver and extracting a signal representing the frequency change, a signal representing the frequency change of the transmitted ultrasonic wave and a frequency change of the received ultrasonic wave. means for extracting a second signal representing the distance to the moving object by comparing it with a Lee signal representing the moving object; and means for removing a no-after representing the distance from the first signal to the moving object by the second signal;
It is characterized by having the following. The detection area of a moving object by ultrasonic waves using an ultrasonic transmitter and receiver and the detection area of an optical moving object using a spatial filter are set at the same location.

この発明においては、移動物体とりわけ車両を感知する
ために超音波が連続的に送波され、移動物体、路面、車
両などからの反射超音波が連続的に受波されている。超
音波の連続送波、受波は、超音波の周波数を連続的にた
とえば一定周期で変化させることにより可能となってい
る。これにより移動物体に関する情報とりわけ超音波送
、受波器から移動物体までの距離についての情報が連続
的に得られる。また空間フィルタを用いた光学的な移動
物体検知手段がらち、移動物体に関する情報、とりわけ
移動物体の速度および移動物体までの距離に関する情報
が連続的に得られる。超音波を用いて得られた信号に、
よって空間フィルタを用いて得られた信号中の移動物体
までの距離に関するファクタが消去される。これにより
、移動物体の速度を表ねり一信号のみが残るので、移動
物体までの距離に依存しない正確な速度データが1qら
れる。
In this invention, ultrasonic waves are continuously transmitted to detect moving objects, especially vehicles, and reflected ultrasonic waves from moving objects, road surfaces, vehicles, etc. are continuously received. Continuous transmission and reception of ultrasonic waves is made possible by continuously changing the frequency of the ultrasonic waves, for example, at regular intervals. In this way, information about the moving object, in particular information about the ultrasonic transmission and the distance from the receiver to the moving object, can be obtained continuously. Moreover, the optical moving object detection means using a spatial filter continuously obtains information about the moving object, especially information about the speed of the moving object and the distance to the moving object. In the signal obtained using ultrasound,
Thus, factors relating to the distance to the moving object in the signal obtained using the spatial filter are eliminated. As a result, only one signal representing the speed of the moving object remains, so accurate speed data independent of the distance to the moving object can be obtained.

この発明の他の特徴J5よび詳しい構成は、以下の図面
を参照した実施例の説明において明らかになるだろう。
Other features J5 and detailed configuration of the present invention will become clear in the following description of embodiments with reference to the drawings.

実施例の説明 この実施例は、この発明を車両速度検知に適用した場合
を示している。
DESCRIPTION OF THE EMBODIMENTS This embodiment shows the case where the present invention is applied to vehicle speed detection.

第1図に、超音波送波器、受波器および光学センサの配
置が示されている。路面(L ) J三方の所定高さH
に、超音波送波器(1)および超音波受波器(2)が設
【プられ、かつ適当な支持部材に固定されている。送波
器(1)からは超音波が路面(L)に向けて送波され、
受波器(2)は路面(L)または車両(OA>で反射し
て戻ってくる超音波を受波する。送波される超音波の周
波数は、第2図に実線で示すように一定周期Tで連続的
に変化している。この実施例では、周波数の変化は時間
に関して鋸歯状波であるが、他の任意の波形を採用する
ことができる。周波数の変化周期Tは、超音波が送、受
波器(1)および(2)と路面(L)との間を往復する
のに要する時間、たとえば30m5以上であることが好
ましい。超音波周波数の上限と下限との間の巾は広い方
が望ましいが、現在では、22〜30KHz程度の帯域
中にわたってほぼ一定の振幅(感度)で超音波を発生す
る(検知する)超音波振動子がある。
FIG. 1 shows the arrangement of the ultrasonic transmitter, receiver and optical sensor. Road surface (L) J Specified height H on three sides
An ultrasonic transmitter (1) and an ultrasonic receiver (2) are installed on the holder and fixed to a suitable support member. Ultrasonic waves are transmitted from the transmitter (1) toward the road surface (L),
The receiver (2) receives the ultrasonic waves that are reflected and returned from the road surface (L) or the vehicle (OA>).The frequency of the transmitted ultrasonic waves is constant as shown by the solid line in Figure 2. It changes continuously with a period T. In this example, the change in frequency is a sawtooth wave with respect to time, but any other arbitrary waveform can be adopted. It is preferable that the time required for the ultrasonic wave to travel back and forth between the transmitter, receivers (1) and (2), and the road surface (L) is, for example, 30 m5 or more.The width between the upper and lower limits of the ultrasonic frequency Although it is desirable that the range be wider, there are currently ultrasonic transducers that generate (detect) ultrasonic waves with a substantially constant amplitude (sensitivity) over a band of about 22 to 30 KHz.

第2図において、破線で示されている波形は受波器(2
)で受波された超音波信号の周波数の変化を示している
。路面(L)からの反射波は、超音波送波後、時間td
が経過したときに受波される。これに対して、車両<O
A)からの反射波は時間tv(<td)後に受波される
。音速をVs、送、受波器(1)(2>から車両(CA
)までの距離をhとすると、次式が成立づる。
In Figure 2, the waveform indicated by the broken line is the waveform of the receiver (2
) shows the change in frequency of the received ultrasound signal. The reflected wave from the road surface (L) is reflected at a time td after ultrasonic wave transmission.
The wave is received when . On the other hand, vehicle <O
The reflected wave from A) is received after time tv (<td). The speed of sound is Vs, transmitter, receiver (1) (2> to vehicle (CA
), the following equation holds true.

td=2H/Vs・・・・・・・・・(1)tv=2b
 /Vs−−−−−・・−・(2>第2図に示す送波お
よび受波の波形を比較することにより、車両(CA)の
有無および車両(CA)の縦断面形状が判定できること
が理解できよう。また時間tvの測定によつI送、受波
器(1)(2)から車両(OA)までの距離が検知され
る。
td=2H/Vs・・・・・・・・・(1) tv=2b
/Vs------... (2> By comparing the waveforms of the transmitted wave and the received wave shown in Fig. 2, the presence or absence of the vehicle (CA) and the longitudinal cross-sectional shape of the vehicle (CA) can be determined. By measuring the time tv, the distance from the I transmitter and receiver (1) (2) to the vehicle (OA) can be detected.

光学センサもまた路面上方の高さHの位置に、設置され
ている。光学センυ内には、車両(OA)を視野内にと
らえるレンズ(4)を含む光学系、レンズ(4)の結像
面上に配置され空間フィルタを構成する検知アレイ(3
)、J5よび差動増幅回路(5)が内蔵されている。こ
の光学センサの車両感知領域は、送、受波器(1)(2
)からなるセンサの超音波による車両感知領域と同一箇
所に設定されている。検知器アレイ(3)は、互いに平
行にかつ一列状に交互に配列されl〔細長い多数の光電
変換素子(3a)(3b)からなり、これらの光電変換
素子が1つおきに互いに接続され、検知器アレイ(3)
からは2つの出力が取出される。これらの2つの出力は
差動増幅回路(5)に送られ、この差動増幅回路(5)
からは2つの出力信号の差信号((+ )が出力される
An optical sensor is also installed at a height H above the road surface. The optical sensor υ includes an optical system including a lens (4) that captures the vehicle (OA) within its field of view, and a detection array (3) that is arranged on the imaging plane of the lens (4) and constitutes a spatial filter.
), J5 and a differential amplifier circuit (5) are built-in. The vehicle sensing area of this optical sensor includes transmitter, receiver (1) and (2)
) is set in the same location as the vehicle sensing area by ultrasonic waves of the sensor. The detector array (3) consists of a large number of elongated photoelectric conversion elements (3a) (3b) arranged alternately in parallel and in a line, and every other photoelectric conversion element is connected to each other, Detector array (3)
Two outputs are taken from. These two outputs are sent to the differential amplifier circuit (5), which
A difference signal ((+)) between the two output signals is output from.

・車両(CA)が光学系の視野内を通過すると、その放
射光(たとえばヘッド・ライト)または反射光が検知器
アレイ(3)によって検知され、車両の検知点の高さJ
3よび車両の速度Vに応じた周波数[0の出力信号(g
)が差動増幅回路(5)から得られる。この出力信号(
(1>と車両速度Vおよび車両までの距l111)との
関係は次式で与えられる。
- When a vehicle (CA) passes within the field of view of the optical system, its emitted light (e.g. headlights) or reflected light is detected by the detector array (3), and the height J of the detection point of the vehicle is detected.
3 and the output signal (g
) is obtained from the differential amplifier circuit (5). This output signal (
The relationship between (1> and vehicle speed V and distance l111 to the vehicle) is given by the following equation.

fo= K + V / 1)II  ・・・・・・(
3)ここでに、は比例定数、pは空間フィルタのピッチ
であって、1つおいた光電変換素子(3a)または(3
b)間の間隔である。
fo = K + V / 1) II ・・・・・・(
3) Here, is the proportionality constant, p is the pitch of the spatial filter, and one photoelectric conversion element (3a) or (3)
b) is the interval between.

第(3)式を第(2)式で除重ことにより、距離りに関
する成分が消去され、信号((1)の周波数は車両速度
■のみの関数に変換されることが容易に理解されよう。
It will be easily understood that by removing the weight of Equation (3) by Equation (2), the distance-related component is eliminated, and the frequency of the signal ((1) is converted into a function of only the vehicle speed. .

第3図は車両速度検知装置の電気的な構成を、第4図は
この電気回路の各ブロックの出力信号波形をそれぞれ示
している。
FIG. 3 shows the electrical configuration of the vehicle speed detection device, and FIG. 4 shows the output signal waveforms of each block of this electric circuit.

クロック信号発生回路(11)は一定周期Tの方形波信
号(a )を出力し、この信号(a >は積分回路(1
2)で鋸歯状波信号(1))に変換される。この信号(
b)は電圧制御発振回路(13)に入力する。電圧制御
発振回路(13)は、入力電圧に比例した周波数の信号
を出力する電圧/周波数変換機能をもつ。発振回路(1
3)の出力信号は電力増幅回路(14)に送られ、この
増幅回路(14)によって超音波送波器(1)が駆動さ
れる。このようにして、一定周期1で周波数が連続的に
変化するすなわち周波数変調された超音波が送波器(1
)から路面(L)に向りて送波される。
The clock signal generation circuit (11) outputs a square wave signal (a) with a constant period T, and this signal (a >
2), it is converted into a sawtooth wave signal (1)). This signal (
b) is input to the voltage controlled oscillation circuit (13). The voltage controlled oscillation circuit (13) has a voltage/frequency conversion function that outputs a signal with a frequency proportional to the input voltage. Oscillation circuit (1
The output signal of step 3) is sent to a power amplification circuit (14), and the ultrasonic transmitter (1) is driven by this amplification circuit (14). In this way, ultrasonic waves whose frequency changes continuously at a constant period of 1, that is, frequency modulated, are sent to the transmitter (1
) is transmitted toward the road surface (L).

・路面<1)または車両(OA)で反則し、受波器(2
)によって受波された超音波信号は電圧増幅回路(21
)で増幅されたのら、位相比較回路(22)に入力する
。この位相比較回路(22)は、電圧制御発振回路(2
4)の出力信号の位相と受渡信号の位相とを比較し、こ
れらの位相差に応じた電圧信号を出力する。この位相差
成分は低域通過フィルタ(23)に送られその高周波成
分が除去される。フィルタ(23)の出力(C)は電圧
制御発振回路(24)の発振周波数を制御する。電圧制
御発振回路(24)、位相比較回路(22)および低域
通過フィルタ(23)は、フェイズ・ロックド・ループ
(PLL)を構成し、このPLLはここではFM復調回
路として用いら漬ている。このようにして、受波信号の
周波数に比例した電圧信号<C>が得られる。
・A violation occurs on the road surface <1) or a vehicle (OA), and the receiver (2
) The ultrasonic signal received by the voltage amplification circuit (21
) and then input to the phase comparator circuit (22). This phase comparison circuit (22) is connected to the voltage controlled oscillation circuit (22).
4) The phase of the output signal and the phase of the transfer signal are compared, and a voltage signal corresponding to the phase difference between them is output. This phase difference component is sent to a low pass filter (23) and its high frequency components are removed. The output (C) of the filter (23) controls the oscillation frequency of the voltage controlled oscillation circuit (24). The voltage controlled oscillator circuit (24), the phase comparator circuit (22), and the low-pass filter (23) constitute a phase locked loop (PLL), and this PLL is used here as an FM demodulation circuit. . In this way, a voltage signal <C> proportional to the frequency of the received signal is obtained.

積分回路(12〉の出力信号(1))は遅延回路(15
)において、上述の時間tdだけ遅延される。
The output signal (1) of the integrating circuit (12) is output from the delay circuit (15).
) is delayed by the above-mentioned time td.

この遅延された信号((lンと復調された信号(C)と
が差動増幅回路(25)に入力し、それらの差信丹(e
)が得られる。差動Jけ幅回路(25)は、肉入力信号
の差が零のときに最大レベルの信号を出力し、両信号の
差が零ではないときには上記最大レベルよりも差分だけ
低いレベルの信号を出力するように栴成されている。
This delayed signal ((1) and demodulated signal (C) are input to the differential amplifier circuit (25), and the difference between them (e) is input to the differential amplifier circuit (25).
) is obtained. The differential J width circuit (25) outputs a signal at the maximum level when the difference between the meat input signals is zero, and outputs a signal at a level lower than the maximum level by the difference when the difference between the two signals is not zero. It has been formatted for output.

したがって、出力信号(e)は、超音波送波から受波ま
での時間開またはtv (L、たがって第〈1)式、第
(2)式よりHまたは11)を表わしている。遅延時間
tdは、送、受波器(1)(2)と路面(E−)との間
の距−1lift Hを超音波が往復するのに要する時
間であるから、車両が存在しない場合には両信号(C)
と(d )とは同形、となり、差1a号(e )は最大
レベルとなる。
Therefore, the output signal (e) represents the time interval from ultrasonic wave transmission to reception, or tv (L, therefore, equation (1), and H or 11) from equation (2). The delay time td is the time required for the ultrasonic waves to travel back and forth over the distance −1lift H between the transmitter and receiver (1), (2) and the road surface (E-), so when there is no vehicle, is both signals (C)
and (d) are isomorphic, and the difference No. 1a (e) is the maximum level.

ところが車両(CA)が存在り°る場合には、信号(e
 )の波形は負側に向って、車両(CA)の縦断面形状
と相似形を示す。信号(e )が比較回路(26)にお
いて適当なスレシホールド・レベルS hで弁別される
ことにより、車両の存在を表わす検知信号(1)が得ら
れる。この検知信号(i >はANDゲート(36)の
ケート制御信号として用いられる。
However, if a vehicle (CA) is present, the signal (e
) shows a shape similar to the longitudinal cross-sectional shape of the vehicle (CA) toward the negative side. The signal (e) is discriminated in a comparator circuit (26) at a suitable threshold level S h to obtain a detection signal (1) representing the presence of a vehicle. This detection signal (i>) is used as a gate control signal for the AND gate (36).

音速Vsは温度によって変化し、時間tdもそれに応じ
て変化する。周囲温度の変化による誤動作を防止するた
めに、遅延回路(15)の遅延時間tdの温度補償を行
なうようにすることが好ましい。しかしながら、スレシ
ホールド・レベルshを温度変化による信号(e)のレ
ベル変動を考慮して選定すれば、必ずしも温度補償回路
は必要ではない。
The sound speed Vs changes depending on the temperature, and the time td changes accordingly. In order to prevent malfunctions due to changes in ambient temperature, it is preferable to perform temperature compensation for the delay time td of the delay circuit (15). However, if the threshold level sh is selected in consideration of level fluctuations in the signal (e) due to temperature changes, the temperature compensation circuit is not necessarily required.

差動増幅回路(25)の出力信号(e )はまたアナロ
グ/デジタル(A/D)変換回路り31)に送られ、デ
ジタル信号に変換される。このデジタル信号はプログラ
マブル・力「クンタ(32)の設定入力となる。プログ
ラマブル・カウンタ(32)は、入力信号(電圧制御発
振回路(35)の出ツノ信号)の周波数を、その設定入
力をNとして1/Nに分周するものである。入力信号の
周波数をfとすると、カウンタ(32)の出力信号の周
波数はf/Nとなる。そして設定人力NはA/D変換回
路(31)の出力によって与えられ、この出力はセンサ
から車両までの距離11(または路面までの距離1」)
に比例しているので、K2を比例定数として N=に2h  ・・・・・・(4) ど置くことができる。
The output signal (e) of the differential amplifier circuit (25) is also sent to an analog/digital (A/D) conversion circuit 31) and converted into a digital signal. This digital signal becomes the setting input for the programmable counter (32). If the frequency of the input signal is f, then the frequency of the output signal of the counter (32) is f/N.Then, the setting manual power N is set by the A/D conversion circuit (31). This output is given by the distance from the sensor to the vehicle 11 (or the distance to the road surface 1")
Since it is proportional to , we can set K2 as a constant of proportionality to N=2h...(4).

一方、光学センサの差動増幅回路(5)の出力((+ 
)は位相比較回路(33)に入力する。この位相比較回
路(33)は信号(9)とカウンタ3:L (舗)の出ツノ信号との位相を比較し、その位相差に応
じた電圧を出力覆る。この位相差電圧は低域通過フィル
タ(34)でその高周波成分が除去されたのち、電圧制
御発振回路(35)に送られその発振周波数fを制御す
る。電圧制御発振回路(35)は、プログラマブル・カ
ウンタ(32)、位相比較回路(33)および低域通過
フィルタ(34)からなる閉ループによって、その発振
周波数がf=Nfoに一致するように制御される。
On the other hand, the output ((+
) is input to the phase comparison circuit (33). This phase comparison circuit (33) compares the phase of the signal (9) and the output signal of the counter 3:L (office), and outputs a voltage according to the phase difference. This phase difference voltage has its high frequency components removed by a low pass filter (34), and then is sent to a voltage controlled oscillation circuit (35) to control its oscillation frequency f. The voltage controlled oscillation circuit (35) is controlled by a closed loop consisting of a programmable counter (32), a phase comparison circuit (33) and a low pass filter (34) so that its oscillation frequency matches f=Nfo. .

第(3)式および第(/I)式を上述の式[−NfOに
代入し、新たな比例定数をに3とすると、周波数fは次
式により表わされる。
When the equation (3) and the equation (/I) are substituted into the above equation [-NfO and the new proportionality constant is set to 3, the frequency f is expressed by the following equation.

f=に、、V    ・・・・・・ (5)すなわち、
電圧制御発振回路(35)の出力信号(j )の周波数
fは、車両速度Vのみに比例した値となる。この信号(
j )は、車両検知信号(i)によってANDゲート(
36)のゲートが開かれたときに速度信号(m )とし
て取出される。速度信号(n3)は、公知の処理回路た
とえば信号(m)のパルス数(周波数)をit数づるカ
ウンタによって、車両速度Vを直接に表わすデータに変
換される。
f=to,,V... (5) That is,
The frequency f of the output signal (j) of the voltage controlled oscillation circuit (35) has a value proportional only to the vehicle speed V. This signal (
j) is determined by the vehicle detection signal (i) by the AND gate (
36) is taken out as a speed signal (m2) when the gate is opened. The speed signal (n3) is converted into data directly representing the vehicle speed V by a known processing circuit, such as a counter that divides the number of pulses (frequency) of the signal (m) by the number of it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、16音波送、受波器および光学センサの配置
を示す図、第2図は送波および受波の周波数の変化を示
ずタイム・ヂト一ト、第3図は、車両感知装置の電気的
構成を示すブロック図、第4図はこのブロック図の出力
信号を示すり゛イム・チャートである。 (1)・・・超音波送波器、(2)・・・超音波受波器
、(3)・・・検知器アレイ、(5)(25)・・・差
動増幅回路、(11)・・・クロック信号発生回路、(
12)・・・積分回路、(13)  (24)  (3
5)・・・電圧制御発振回路、(15)・・・遅延回路
、(22)  (33)・・・位相比較回路、(23>
  (34)・・・低域通過フィルタ、(26)・・・
比較回路、(32)・・・プログラマブル・カウンタ。 以  上 特許出願人  立石電機 株式会社
Figure 1 shows the arrangement of the 16-wave transmitter, receiver, and optical sensor; Figure 2 shows the changes in the frequency of the transmitter and receiver; Figure 3 shows the time shift; A block diagram showing the electrical configuration of the sensing device is shown, and FIG. 4 is a time chart showing the output signals of this block diagram. (1)... Ultrasonic transmitter, (2)... Ultrasonic receiver, (3)... Detector array, (5) (25)... Differential amplifier circuit, (11 )...Clock signal generation circuit, (
12)...Integrator circuit, (13) (24) (3
5)... Voltage controlled oscillation circuit, (15)... Delay circuit, (22) (33)... Phase comparison circuit, (23>
(34)...Low pass filter, (26)...
Comparison circuit, (32)...programmable counter. Patent applicant Tateishi Electric Co., Ltd.

Claims (1)

【特許請求の範囲】 連続的に周波数が変化さゼられた超音波信号を発生する
手段、 この超音波信号によって連続的に駆動される超音波送波
器、 移動物体からの反射超音波を受波する超音波受波器、 空間フィルタを通して移動物体の移動による特定周波数
成分を抽出し、これを移動物体の速度および移動物体ま
での距離を表わす第1の電気信号に変換する手段、 超音波受波器の出力信号を周波数復調し、周波数の変化
分を表わす信号を取出す手段、送波超音波の周波数変化
分を表わす信号と受波超音波の周波数変化分を表わす信
号とを比較して移動物体までの距離を表わす第2の信号
を取出す手段、ならびに 第2の信号によって第1の信号から移動物体までの距離
を表わすファクタを除去する手段、を備えた移動物体の
速度検知装置。
[Claims] Means for generating an ultrasonic signal whose frequency is continuously changed; an ultrasonic transmitter continuously driven by the ultrasonic signal; and a means for receiving reflected ultrasonic waves from a moving object. A means for extracting a specific frequency component due to the movement of a moving object through a spatial filter and converting it into a first electrical signal representing the speed of the moving object and the distance to the moving object; Means for demodulating the frequency of the output signal of the transducer and extracting a signal representing the frequency change, and comparing and moving the signal representing the frequency change of the transmitted ultrasonic wave with the signal representing the frequency change of the received ultrasonic wave. A speed detection device for a moving object, comprising means for taking out a second signal representing the distance to the object, and means for removing a factor representing the distance to the moving object from the first signal by means of the second signal.
JP57221514A 1982-12-16 1982-12-16 Apparatus for detecting speed of moving matter Granted JPS59111063A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57221514A JPS59111063A (en) 1982-12-16 1982-12-16 Apparatus for detecting speed of moving matter
US06/562,181 US4674069A (en) 1982-12-16 1983-12-16 System for collecting and processing data relating to moving bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221514A JPS59111063A (en) 1982-12-16 1982-12-16 Apparatus for detecting speed of moving matter

Publications (2)

Publication Number Publication Date
JPS59111063A true JPS59111063A (en) 1984-06-27
JPH0442628B2 JPH0442628B2 (en) 1992-07-14

Family

ID=16767901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221514A Granted JPS59111063A (en) 1982-12-16 1982-12-16 Apparatus for detecting speed of moving matter

Country Status (1)

Country Link
JP (1) JPS59111063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235754A (en) * 1985-04-11 1986-10-21 Fujitsu Ten Ltd Detector for slip rate
JPS6465460A (en) * 1987-09-07 1989-03-10 Hitachi Ltd Space filter type speed measuring instrument

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100771A (en) * 1975-03-03 1976-09-06 Suteo Tsutsumi SOKOTAINITAISURUKYORISOKUTEIHOSHIKI
JPS5282449A (en) * 1975-12-29 1977-07-09 Yashica Co Ltd Distance measuring system using ultrasonic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100771A (en) * 1975-03-03 1976-09-06 Suteo Tsutsumi SOKOTAINITAISURUKYORISOKUTEIHOSHIKI
JPS5282449A (en) * 1975-12-29 1977-07-09 Yashica Co Ltd Distance measuring system using ultrasonic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235754A (en) * 1985-04-11 1986-10-21 Fujitsu Ten Ltd Detector for slip rate
JPS6465460A (en) * 1987-09-07 1989-03-10 Hitachi Ltd Space filter type speed measuring instrument

Also Published As

Publication number Publication date
JPH0442628B2 (en) 1992-07-14

Similar Documents

Publication Publication Date Title
JP3976868B2 (en) Optical sensor using light transmission time
JPS61172080A (en) Ultrasonic measuring apparatus
US4674069A (en) System for collecting and processing data relating to moving bodies
GB2194058A (en) Arrangement for contactless measurement of the volume flow or mass flow of a moving medium
US11378686B2 (en) Ultrasonic echo processing in presence of Doppler shift
EP0097041B1 (en) Correlation of noise signals
GB2121174A (en) Measurement of distance using ultrasound
US3257638A (en) Doppler navigation system
Hua et al. A low-cost dynamic range-finding device based on amplitude-modulated continuous ultrasonic wave
JP2821738B2 (en) Distance measuring method and distance measuring device
US5416316A (en) Optical sensor arrangement for presence detection with variable pulse repetition frequency
JPS59111063A (en) Apparatus for detecting speed of moving matter
JPH0569192B2 (en)
JPH02502570A (en) speed measuring device
JPS59111074A (en) Apparatus for sensing moving matter
EP0762144B1 (en) Laser Doppler speed measuring apparatus
JPH0452586A (en) Distance measuring apparatus
JPS59111006A (en) Vehicle height measuring apparatus
CN111474551A (en) FPGA-based laser phase ranging system and method
JPS59111007A (en) Vehicle type discriminator
JPH05312938A (en) Variable-period correlation type searching apparatus and variable-period correlation type signal detecting apparatus
JP3182448B2 (en) Variable period correlation type detection device and variable period correlation type signal detection device
SU1002951A1 (en) Ultrasonic device for measuring medium density
KR100356419B1 (en) Ultrasonic Wave Level Mesuring Device
SU1037293A1 (en) Device for reading and measuring lengthy object geometrical parameters