JPS6123555A - Bottom pouring ingot making method - Google Patents

Bottom pouring ingot making method

Info

Publication number
JPS6123555A
JPS6123555A JP14558584A JP14558584A JPS6123555A JP S6123555 A JPS6123555 A JP S6123555A JP 14558584 A JP14558584 A JP 14558584A JP 14558584 A JP14558584 A JP 14558584A JP S6123555 A JPS6123555 A JP S6123555A
Authority
JP
Japan
Prior art keywords
molten steel
mold
flow rate
runner
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14558584A
Other languages
Japanese (ja)
Inventor
Kimiharu Taniguchi
谷口 公治
Hiroyuki Matsuyama
松山 博幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14558584A priority Critical patent/JPS6123555A/en
Publication of JPS6123555A publication Critical patent/JPS6123555A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • B22D35/04Equipment for conveying molten metal into beds or moulds into moulds, e.g. base plates, runners
    • B22D35/045Runner base plates for bottom casting ingots

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To eliminate the disturbance of the molten steel in casting molds on the upper stream and to economize the amt. of the material to be used in the molds by making the sectional area of the runners formed in the lower part of >=2 juxtaposed casting molds larger toward the upper stream side and specifying the flow rate ratio between the molten steels flowing through the adjacent runners. CONSTITUTION:The molten metal M is introduced into >=2 juxtaposed casting molds 1a, 1b, 1c, 1d from the bottom of the molds, by which bottom pouring ingot making is executed. The sectional area of the runners 2 provided in the lower part of the molds is set larger toward the upper stream side. The ingot making is thus executed in such a manner as to attain Vn<1.5Vn+1 when the flow rate of the molten steel flowing through the n-th mold nozzle from a pouring pipe 5 is designated as Vn and the flow rate of the molten steel flowing from the pipe 5 through the runner 2 on the upper stream side into the (n+1)-th mold nozzle is designated as Vn+1. In this case, n is 2-5, more particularly 3-4 and the casting is executed at about 60-200cm/sec. The disturbance of the molten steel M in the casting mold is thus eliminated and the amt. of the material to be used in the mold is economized. The generation of subsurface inclusions, double skins, etc. is prevented.

Description

【発明の詳細な説明】 本発明は下注ぎ造塊方法に関し、詳細には2つ以上並設
された鋳型への溶鋼流入速度を均一化させることにより
各鋳型への溶鋼流入を穏やかに行なわせ、従来特に注入
管寄シ鋳型において観察されることの多かった鋳造欠陥
を防止すると共に型内剤(溶鋼表面を覆うフラックス)
の使用量を節約する仁とを可能にした下注ぎ造塊方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bottom pouring ingot making method, and more specifically, the flow of molten steel into each mold is made gentle by equalizing the speed of flow of molten steel into two or more molds arranged side by side. , prevents casting defects that were often observed in the past, especially in molds with injection pipes, and also serves as an in-mold agent (flux that covers the surface of molten steel).
The present invention relates to a bottom pouring agglomeration method that makes it possible to save on the amount used.

キルド鋼等の造塊方法のひとつとして、鋳型底部から鋳
型内に溶鋼を注入して鋼塊を得る下注ぎ造塊方法がある
。この方法は鋳型内への溶鋼流入が静かに進行するので
酸化物やガス等の巻き込みが少なく鋼塊表面性状も美麗
であるという長所を有している。
One of the ingot making methods for killed steel and the like is a bottom pour ingot making method in which molten steel is poured into a mold from the bottom of the mold to obtain a steel ingot. This method has the advantage that since the molten steel flows quietly into the mold, there is less entrainment of oxides, gases, etc., and the surface quality of the steel ingot is beautiful.

第1図は上記造塊方法を適用した造塊設備を示す模式図
で、1a*1bylcは鋳型、2は湯道、3 a s 
3 b + 3 cは定盤、d a t 4 b e 
4 cは鋳型ノズル、5は注入管、Fは型内剤、Mは溶
鋼を夫々示す。即ち図示例の造塊設備6は左右に3基ず
つの鋳型1a*1btlcを並設した設備(但し左側の
鋳型は図面から省略した二以下同じ)であって、注入管
5に連通される湯道2に上向きに突出する鋳型ノズル4
a、4b、4(を一定間隔で設けると共に、各鋳型ノズ
ル4 a * 4 b * 4 cの上部に該鋳型ノズ
ルに嵌挿される透孔を有する定盤3ap3bs3cを載
置し、更に各定盤3a。
Figure 1 is a schematic diagram showing the ingot making equipment to which the above ingot making method is applied, where 1a*1 bylc is a mold, 2 is a runner, and 3 a s
3 b + 3 c is the surface plate, d a t 4 b e
4 c indicates a mold nozzle, 5 indicates an injection pipe, F indicates a mold agent, and M indicates molten steel. That is, the ingot making equipment 6 in the illustrated example is equipment in which three molds 1a*1btlc are arranged side by side on the left and right sides (however, the left mold is omitted from the drawing, and the same applies below), and the hot water connected to the injection pipe 5 is the same. Mold nozzle 4 protruding upward into path 2
a, 4b, and 4() are provided at regular intervals, and a surface plate 3ap3bs3c having a through hole to be fitted into the mold nozzle is placed on top of each mold nozzle 4a*4b*4c, and each surface plate 3a.

3tz3c上に夫々鋳型1 a t 1 b e 1 
cを載置して構成されている。
Mold 1 a t 1 b e 1 respectively on 3tz3c
c.

上記造塊設備6において取鍋ノズル8から注入管5に溶
鋼Mを注入すると、溶鋼Mは注入管5から湯道2を通っ
て各鋳型ノズル4 a y 4 b * 4 cに至シ
、鋳型1atlbslc内へ夫々導入される。そして導
入量が所定量に達した段階で溶鋼Mの注入を停止し冷却
・凝固させることによって鋼塊を得る。尚造塊中、鋳型
内へ導入される溶鋼Mの湯面上には溶鋼Mと接触して溶
鋼の保温並びに大気による再酸化を防止する効果を発揮
し更に鋼塊表面肌を滑らかにする効果を発揮する型内剤
Fが溶鋼M表面を被う様に添加されている。
When molten steel M is injected from the ladle nozzle 8 into the injection pipe 5 in the ingot making equipment 6, the molten steel M passes from the injection pipe 5 through the runner 2 and reaches each mold nozzle 4 a y 4 b * 4 c, and then into the mold. 1atlbslc respectively. Then, when the introduced amount reaches a predetermined amount, the injection of the molten steel M is stopped and the steel is cooled and solidified to obtain a steel ingot. During ingot making, the surface of the molten steel M introduced into the mold comes into contact with the molten steel M, which has the effect of keeping the molten steel warm and preventing re-oxidation due to the atmosphere, and also has the effect of smoothing the surface of the steel ingot. An in-mold agent F that exerts the following properties is added so as to cover the surface of the molten steel M.

この様な下注ぎ造塊を行なう場合、溶鋼注入初期におい
ては鋳型内の静水圧抵抗が少ないので注入管5に近い鋳
型tなど勢いよく溶鋼が流れ込んで鋳型内の溶鋼の乱れ
は大きくなる。このため、溶鋼表面は型内剤で完全に被
われず大気と直接接触し再酸化が生じ、また型内剤は溶
鋼に巻き込まれるという現象が発生し易くなる。その結
果皮下介在物の発生という欠陥を引きおこすと共に鋼塊
表層部では凝固部と非凝固部が入シ混じる様になシなか
ら凝固が、進行するので2重肌が発生するという問題点
がある。また溶鋼Mの乱れが大きくなることによって型
内剤Fと溶鋼Mの接触が激しく匁り、型内剤Fのうちス
ラグ化するものの比率が増太し、その結果型内剤Fの消
耗量も増加する°。
When performing such bottom pouring, the hydrostatic resistance in the mold is small in the early stage of molten steel injection, so the molten steel flows forcefully into the mold t near the injection pipe 5, and the turbulence of the molten steel in the mold becomes large. For this reason, the surface of the molten steel is not completely covered with the mold agent and comes into direct contact with the atmosphere, causing re-oxidation, and the mold agent is likely to be caught up in the molten steel. As a result, this causes defects such as the formation of subcutaneous inclusions, and the problem is that solidification progresses in such a way that solidified and non-solidified areas are mixed in the surface layer of the steel ingot, resulting in the formation of double skin. . In addition, as the turbulence of the molten steel M increases, the contact between the mold agent F and the molten steel M becomes violent, and the proportion of the mold agent F that turns into slag increases, resulting in an increase in the amount of mold agent F consumed. increasing °.

そこで本発明者等は上記問題点を解消しようと考え、溶
鋼注入状況について更に詳細な状況を知るべく種々実験
を行ない解析を進めた。
Therefore, the inventors of the present invention attempted to solve the above-mentioned problems, and conducted various experiments and proceeded with analysis in order to learn more detailed information about the molten steel injection situation.

即ち第1図において、鋳型ノズル4aよ)上流側の1点
A、鋳型ノズル4bより上流側の1点をB、鋳型ノズル
4cより上流側の1点をCとしたとき、A、B、C点の
湯道断面積は従来略均−に形成されている。一方ある時
点における鋳型1aへの溶鋼流入量をQat鋳型1bへ
の溶鋼流入量     □をQb、鋳型1cへの溶鋼流
入量をQcとすると、A点の溶鋼流量W、はQa+Qb
+Qc 、B点の溶鋼流量WnはQb+Qc、C点の溶
鋼流量W(。
That is, in Fig. 1, if one point is A on the upstream side of the mold nozzle 4a, one point on the upstream side of the mold nozzle 4b is B, and one point on the upstream side of the mold nozzle 4c is C, then A, B, C Conventionally, the cross-sectional area of the point runner is approximately uniform. On the other hand, if the amount of molten steel flowing into the mold 1a at a certain point is Qt, the amount of molten steel flowing into the mold 1b is Qb, and the amount of molten steel flowing into the mold 1c is Qc, the molten steel flow rate W at point A is Qa + Qb
+Qc, the molten steel flow rate Wn at point B is Qb+Qc, the molten steel flow rate Wn at point C (.

はQcであシ、下流側はど溶鋼流量に少なくなっている
。そしてA点の溶鋼流速をVt、B点の溶鋼流速をV、
、C点の溶鋼流速をv3とすると、溶鋼流速=溶鋼流量
/湯道断面積であるから、Vl>’b>Vsとなる。と
ヒろで注入初期においては1aylbtlc内の貯留溶
鋼による溶鋼流入抵抗(静水圧)は未だ小さいから鋳型
ノズル4 a y 4 b y 4 cから鋳型1ay
1b*lc内への溶鋼流入速度V1eV2tマ、は夫々
湯道における溶鋼流速V1. V、 、 V、にはぼ対
応した大きさとな、j7 、 vl )v、)v、にな
ると考えられる。その結果特に溶鋼流入速度v1の大き
い鋳fila内において溶鋼の乱れが発生し、前述の問
題点が露呈される様に々つたものであることが分かった
is Qc, and the flow rate of molten steel on the downstream side is small. Then, the molten steel flow velocity at point A is Vt, the molten steel flow velocity at point B is V,
, when the molten steel flow velocity at point C is v3, since molten steel flow velocity=molten steel flow rate/runner cross-sectional area, Vl>'b>Vs. At the initial stage of injection, the molten steel inflow resistance (hydrostatic pressure) due to the stored molten steel in 1aylbtlc is still small, so from mold nozzle 4 a y 4 b y 4 c to mold 1ay
The molten steel inflow velocity V1eV2t into 1b*lc is the molten steel flow velocity V1. in the runner, respectively. It is thought that the magnitudes corresponding to V, , V, and j7, vl )v, )v will be obtained. As a result, it was found that turbulence of the molten steel occurred particularly in the casting file where the molten steel inflow velocity v1 was high, and the above-mentioned problems were exposed.

そこで本発明者等紘上記解析結果を更に考慮し、鋳型内
への溶鋼流入速度V、を遅くすること(換言すると湯道
を流れる溶鋼流速V、を遅くすること)が、上記問題解
決の為の主要課題になると考えて検討を進めた。
Therefore, in order to solve the above problem, the present inventors further considered the above analysis results and slowed down the flow rate V of molten steel into the mold (in other words, slowed down the flow rate V of molten steel flowing through the runner). We considered this to be a major issue and proceeded with the study.

本発明はこうした考えを具体化すべく鋭意検討を重ねた
結果なされたものであって、湯道における溶鋼流速v1
を抑えることにより鋳型la内の乱れを無くし、これに
より型内剤の使用量を節減し且つ皮下介在物や2重肌等
の欠陥が発生するのを防止しようとするものである。
The present invention was made as a result of intensive studies to embody these ideas, and the molten steel flow velocity v1 in the runner
By suppressing this, the turbulence within the mold la is eliminated, thereby reducing the amount of in-mold agent used and preventing defects such as subcutaneous inclusions and double skin from occurring.

しかして上記目的を達成した本発明方法は、2つ以上並
設された鋳型に各鋳型底部よル溶鋼を導入して造塊する
下注ぎ造塊方法であって、前記鋳型下部に形成される湯
道の断面積を上流側程大きく形成することにより、注入
管よりn番目の鋳型ノズルより上流側湯道を流れる溶鋼
をVny注入管よ)n千1番目の鋳型ノズルより上流側
湯道を流れる溶鋼流速をV n +1としたとき、V 
n (1,5V n +1 となる様に造塊する点に要旨を有するものである。
The method of the present invention that achieves the above object is a bottom-pouring ingot-making method in which molten steel is introduced into two or more molds arranged side by side from the bottom of each mold to form an ingot, and the ingot is formed in the lower part of the mold. By making the cross-sectional area of the runner larger as it goes upstream, the molten steel flowing in the runner upstream from the n-th mold nozzle from the injection pipe is transferred to the runner upstream from the n-th mold nozzle (Vny injection pipe). When the flow velocity of flowing molten steel is V n +1, V
The gist is that the agglomeration is performed so that n (1,5V n +1).

即ち湯道を流れる溶鋼流速は、前述の説明から明らかな
様に、(溶鋼流量/湯道断面積)から決定されるので、
溶鋼流速を低下させようとすれば溶鋼流量を減少させる
か湯道断面積を増大させればよい。しかるに良好外品質
の鋼塊を得る為には鋳込時間を適正範囲に設定する必要
があるので−定時間で溶鋼の注入を完了しなければなら
ず、その為むやみに溶鋼流量を減少させることはできな
い。そこで溶鋼流速を低下させる為には湯道断面積を増
大する必要があると考えるに至シ、これを具体化するこ
とによって本発明の前記構成に到達した。
In other words, as is clear from the above explanation, the flow rate of molten steel flowing through the runner is determined from (molten steel flow rate/runner cross-sectional area).
In order to reduce the molten steel flow rate, the molten steel flow rate may be reduced or the runner cross-sectional area may be increased. However, in order to obtain a steel ingot of good quality, it is necessary to set the pouring time within an appropriate range; therefore, the injection of molten steel must be completed within a fixed period of time, and therefore the flow rate of molten steel must be reduced unnecessarily. I can't. Therefore, in order to reduce the flow velocity of molten steel, we came to the conclusion that it was necessary to increase the cross-sectional area of the runner, and by embodying this idea, we arrived at the above-mentioned structure of the present invention.

以下図面に沿って本発明方法を説明する。The method of the present invention will be explained below with reference to the drawings.

第2図は本発明方法を実施する為に使用される造塊設備
の模式図で、第1図と略同等の構成を採っているが、湯
道2は鋳型ノズル4b下部並びに鋳型ノズル4a下部に
おいて夫々上流側へ向けて階段状に拡径して構成される
FIG. 2 is a schematic diagram of the ingot making equipment used to carry out the method of the present invention, which has approximately the same configuration as that in FIG. The diameter of each tube increases in a stepwise manner toward the upstream side.

即ち第2図において、前記と同様に湯道内にA。That is, in FIG. 2, A is placed in the runner as described above.

B、Cの3点を定めると、A点の溶鋼流量WasB点の
溶−流量wb及び0点の溶鋼流量Weは前記と同様にW
a)Wb)、Wcの関係にあシ、下流側はど溶鋼流量は
少なくなっている。一方A点における流路断面積をSa
 wB点における流路断面積をsb、c点における流路
断面積をScとし、且つA点の溶鋼流速をV1’、B点
の溶鋼流速をv、’、c点の溶鋼流速をv3′とすると
、該3点における流路断面積Sa t sb y Sc
を溶鋼流量の変化に対応させて5a)Sb)S(と設計
すれば溶鋼流量/流路断面積で示される溶鋼流速の相対
関係をv、′〜v2′#v、′とすることができ、それ
に伴なって鋳型への溶鋼流入速度もy1’=v、’#V
、′とすることが可能であるとの指針を得た。
When the three points B and C are determined, the molten steel flow rate at point A, Was, the molten steel flow rate at point B, and the molten steel flow rate at point 0, We, are W as described above.
Due to the relationship between a) Wb) and Wc, the flow rate of molten steel on the downstream side is smaller. On the other hand, the flow path cross-sectional area at point A is Sa
Let the cross-sectional area of the flow path at point wB be sb, the cross-sectional area of the flow path at point c be Sc, and the flow velocity of molten steel at point A be V1', the flow velocity of molten steel at point B be v,', and the flow velocity of molten steel at point C be v3'. Then, the flow path cross-sectional area at these three points Sat sb y Sc
If we design 5a)Sb)S(by making it correspond to the change in the molten steel flow rate), the relative relationship of the molten steel flow rate expressed by the molten steel flow rate/flow path cross-sectional area can be set as v,'~v2'#v,' , and accordingly, the flow rate of molten steel into the mold is also y1'=v,'#V
, ′ was obtained.

そこでこの指針をもとに鋳型内における溶鋼の乱れを実
質的にほぼ無くす為のより具体的な条件を定めるべく研
究を進めた。
Based on this guideline, we conducted research to determine more specific conditions to virtually eliminate turbulence of molten steel within the mold.

即ち上記方針に沿って溶鋼の乱れを無くすに当たって、
仮に湯道の溶鋼流速をv 1′= v7 =v、’即ち
鋳型1atlbtlcへの溶鋼流入速度をマ・1′=マ
2′=vs′に設定するとすれば各鋳型ンズルの口径は
同一であるので鋳型1awlbylcへの溶鋼流入量は
Qa=Qb=Qcとなる。従ってQa+Qb+Qcで示
されるA点の溶鋼流量Waは3XQcとなシ、又Qb+
Qcで示されるB点の溶鋼流量wbは2XQCとなシ、
勿論C点の溶鋼流量WcはQcである。ところそ上記湯
道の溶鋼流速は溶鋼流量/湯道断面積で表わされるので
湯道の溶鋼流速をV□’−v、’=v、’にしようとす
ると、A点の湯道断面積S a=Wa/V1’=3Qc
/V3+’となる。又B点の湯道断面積5b=Wb/V
2’ =2Qc/V3’となシ、更に0点の湯道断面積
5c=W C/ V@’ = Q C/ V H’とガ
る。即ちSaはsbの3倍に、SbはScの2倍に設定
する必要があ′す、これにより鋳型1 a e 1 b
 g 1 c内における溶鋼の乱れを同等とすることが
できる。尚もともと鋳型1cにおいては溶鋼流入速度v
 、/を溶鋼の乱れが発生しない様に設定するので、v
1′−v2′=v3′とすることによって鋳型1a及び
1bにおいても溶鋼の乱れは発生しなくなることが期待
され、又現実にその効果も確認されている。
In other words, in eliminating turbulence in molten steel according to the above policy,
If the flow velocity of molten steel in the runner is set to v 1' = v7 = v', that is, the velocity of molten steel flowing into the mold 1atlbtlc is set to M 1' = Ma 2' = vs', then the diameter of each mold nozzle is the same. Therefore, the amount of molten steel flowing into the mold 1awlbylc is Qa=Qb=Qc. Therefore, the molten steel flow rate Wa at point A, which is represented by Qa+Qb+Qc, is 3XQc, and Qb+
The molten steel flow rate wb at point B indicated by Qc is 2XQC,
Of course, the molten steel flow rate Wc at point C is Qc. The flow rate of molten steel in the runner is expressed as molten steel flow rate/cross-sectional area of the runner, so if we try to set the flow rate of molten steel in the runner to V□'-v,'=v,', the cross-sectional area of the runner at point A, S a= Wa/V1'=3Qc
/V3+'. Also, the cross-sectional area of the runner at point B 5b = Wb/V
2' = 2Qc/V3', and the cross-sectional area of the runner at point 0 is 5c = W C/ V@' = Q C/ V H'. In other words, it is necessary to set Sa to 3 times sb and Sb to 2 times Sc.
The turbulence of the molten steel within g 1 c can be made equal. Originally, in the mold 1c, the molten steel inflow velocity v
, / are set so that molten steel is not disturbed, so v
By setting 1'-v2'=v3', it is expected that turbulence of the molten steel will not occur in the molds 1a and 1b, and this effect has actually been confirmed.

ところで鋳型内における溶鋼の乱れを解消するに当たっ
ては上記の如<v、’=v2’=v3’とすることが最
も望ましいが、通常の鋳込条件下においてはこれらの湯
道内溶鋼流速に区域毎に若干の違いを持たせることがで
きる。即ちキルド鋼等の造塊においては前記した様に良
好な品質の鋼塊を得る為に、鋼塊量や鋼種並びに冷却温
度等を勘案した許容鋳込時間範囲があル、これに伴ない
単位時間当たシの溶鋼導入量にも制限がある。そしてこ
の様な鋳込条件を良好に設定して造塊を行なう場合に許
容される溶鋼流速の幅は、本発明者等が研究を重ねたと
ころによると、 V’ n (1,5V n −4−1 であった。即ちVnがV n −1−1の1.5倍未満
となる様に、湯道の断面積を上流側程大きく形成するこ
とにより、鋳型内の溶鋼の乱れを解消することができ、
型内剤の使用量を節減すると共に皮下介在物や2重肌等
の発生を防止することができる。
By the way, in order to eliminate turbulence of molten steel in the mold, it is most desirable to set <v, '=v2'=v3' as described above, but under normal casting conditions, the flow velocity of molten steel in the runner can be adjusted for each area. can have some differences. In other words, in ingot making of killed steel, etc., in order to obtain a steel ingot of good quality, there is a permissible casting time range that takes into account the amount of steel ingot, steel type, cooling temperature, etc. There is also a limit to the amount of molten steel introduced per hour. According to the inventors' repeated research, the allowable range of molten steel flow velocity when ingot making is performed with such casting conditions well set is V' n (1,5V n - 4-1. In other words, by making the cross-sectional area of the runner larger toward the upstream side so that Vn is less than 1.5 times V n -1-1, the turbulence of the molten steel in the mold can be eliminated. can,
It is possible to reduce the amount of in-mold agent used and to prevent the occurrence of subcutaneous inclusions, double skin, etc.

VnがV n −1−1の1.5倍以上となるとVnが
過大となって少なくとも注入管5に最も近い鋳型1aに
おいて溶鋼の乱れが発生し顕著な場合には鋳型1b等に
おいても溶鋼の乱れが発生する。尚前記関係式において
は実用上nは2〜5特に3〜4であシ、■が60〜20
0cm/sec程度で鋳込は行なわれる。
When Vn becomes 1.5 times or more of V n -1-1, Vn becomes excessive and turbulence of molten steel occurs at least in the mold 1a closest to the injection pipe 5, and if it is noticeable, the molten steel will also be disturbed in the mold 1b etc. Disturbance occurs. In addition, in the above relational expression, practically n is 2 to 5, especially 3 to 4, and ■ is 60 to 20.
Casting is performed at approximately 0 cm/sec.

本発明の基本構成は上記の通シであるが、湯道の断面積
を上流側程大きく形成するに当たっては前述の階段状に
大きくするほか、下流側から上流側ヘテーパ状に大きく
してもよい。
The basic structure of the present invention is the above-mentioned passage, but in forming the cross-sectional area of the runner to be larger toward the upstream side, in addition to increasing the cross-sectional area in the step-like manner described above, it may also be increased in a tapered manner from the downstream side to the upstream side. .

本発明は以上の様に構成されておシ、湯道の断面積を上
流側程大きくすることにより、各鋳型ノズルより上流側
の湯道を流れる溶鋼流速をV n < 1.5 V n
 −1−1に設定して造塊を行なったので、鋳型への溶
鋼流入速度を鋳型内の溶鋼が撹乱状態とならない様に低
下させることができ、これにより型内剤の使用量低減並
びに皮下介在物や2重肌等の発生防止を達成することが
できた。
The present invention is constructed as described above, and by increasing the cross-sectional area of the runner on the upstream side, the flow velocity of molten steel flowing through the runner on the upstream side of each mold nozzle is set to V n < 1.5 V n
Since ingot making was carried out with the setting of -1-1, it was possible to reduce the flow rate of molten steel into the mold so as not to disturb the molten steel in the mold, thereby reducing the amount of mold agent used and It was possible to prevent the occurrence of inclusions, double skin, etc.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例 第3図に示す様に2基の鋳型を並設する造塊設備におい
て、湯道径dt −dtを第1表に示す様に設定して溶
鋼14トンの造塊を行なった。このときの湯道内溶鋼流
速V1tV2並びに造塊に当たって用いた型内剤の使用
量は第1表に併記する通シであった。又得られた鋼塊(
キルド鋼7トン鋼塊)を11880の鋼片に分塊圧延し
、鋼塊ボトム部1トン相当部の鋼片について皮下介在物
並びに2重肌の発生状況を調査したところ第2表及び第
3表に示す結果が得られた。
EXAMPLE In an ingot making facility in which two molds are arranged side by side as shown in FIG. 3, ingots of 14 tons of molten steel were made with the runner diameter dt - dt set as shown in Table 1. At this time, the flow rate of molten steel in the runner, V1tV2, and the amount of mold agent used for ingot formation were as shown in Table 1. Also, the obtained steel ingot (
A 7-ton killed steel ingot) was bloomed into 11880 steel slabs, and the occurrence of subcutaneous inclusions and double skin was investigated on the steel slabs, which were equivalent to 1 ton at the bottom of the steel ingot, as shown in Tables 2 and 3. The results shown in the table were obtained.

第   2   表 (個) (転)鋼片表面下1〜5闘位置を膜剤し、目視によ  
  ))皮下介在物個数を調査した。n = 9第  
 3  表 単位G%/1.2mつ 注)鋼片表面のスケール除去後、磁気探傷器で偏部(2
重肌)をマークした後、偏部長さを調査した。n = 
9 比較例(Nnl )に対し実施例(Nn2 )において
は、第1表に示す様に湯道径d1を大きく形成すること
によ)溶鋼流速V、を58m/分(v冨の1.45倍)
に低下させてお)、これにより鋼塊■を造塊するのに要
した型内剤の使用量を節減することができた。又第2表
に示す様に鋼塊■における皮下介在物個数も減少させる
ことができ、更に第3表に示す様に鋼塊Iにおける2重
肌の発生を大幅に抑制することができた。
Table 2 (Pieces) (Rotated) Apply a film to 1 to 5 positions below the surface of the steel piece and visually inspect.
)) The number of subcutaneous inclusions was investigated. n = 9th
3 Table unit G%/1.2mNote) After removing scale from the surface of the steel piece, the uneven part (2
After marking the skin (heavy skin), the uneven length was investigated. n=
9 In contrast to the comparative example (Nnl), in the example (Nn2), by forming the runner diameter d1 larger as shown in Table 1), the molten steel flow velocity V was increased to 58 m/min (1.45 of v-thickness). times)
), thereby making it possible to reduce the amount of mold agent required to form the steel ingot (2). Furthermore, as shown in Table 2, the number of subcutaneous inclusions in the steel ingot (2) could be reduced, and furthermore, as shown in Table 3, the occurrence of double skin in the steel ingot (I) could be significantly suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法を、第2図は本発明方法を夫夫適用し
た造塊設備の模式図、第3図は実施例・に係る造塊設備
の模式図である。
FIG. 1 is a schematic diagram of an ingot-making facility to which the conventional method is applied, FIG. 2 is a schematic diagram of an ingot-making facility to which the method of the present invention is applied, and FIG. 3 is a schematic diagram of an ingot-making facility according to an embodiment.

Claims (1)

【特許請求の範囲】 2つ以上並設された鋳型に各鋳型底部より溶鋼を導入し
て造塊する下注ぎ造塊方法であつて、前記鋳型下部に形
成される湯道の断面積を上流側程大きく形成することに
より、注入管よりn番目の鋳型ノズルより上流側湯道を
流れる溶鋼流速をVn、注入管よりn_+_1番目の鋳
型ノズルより上流側湯道を流れる溶鋼流速をVn_+_
1としたとき、Vn<1.5Vn_+_1 となる様に造塊することを特徴とする下注ぎ造塊方法。
[Claims] A bottom pouring ingot making method in which molten steel is introduced into two or more molds arranged side by side from the bottom of each mold to form an ingot, the cross-sectional area of the runner formed at the bottom of the mold being By forming the molten steel larger as the side increases, the flow velocity of molten steel flowing in the runner upstream from the n-th mold nozzle from the injection pipe is Vn, and the flow velocity of molten steel flowing in the runner upstream from the n_+_1 mold nozzle from the injection pipe is Vn_+_
1. A bottom pouring ingot making method characterized by making ingots so that Vn<1.5Vn_+_1.
JP14558584A 1984-07-12 1984-07-12 Bottom pouring ingot making method Pending JPS6123555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14558584A JPS6123555A (en) 1984-07-12 1984-07-12 Bottom pouring ingot making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14558584A JPS6123555A (en) 1984-07-12 1984-07-12 Bottom pouring ingot making method

Publications (1)

Publication Number Publication Date
JPS6123555A true JPS6123555A (en) 1986-02-01

Family

ID=15388489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14558584A Pending JPS6123555A (en) 1984-07-12 1984-07-12 Bottom pouring ingot making method

Country Status (1)

Country Link
JP (1) JPS6123555A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103949625A (en) * 2014-05-05 2014-07-30 江苏兴达高温合金科技有限公司 Molten steel flow divider bracket
JP2015178124A (en) * 2014-03-19 2015-10-08 株式会社神戸製鋼所 Downward casting method
JP2016123998A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Bottom-pouring type ingot casting method in bottom-pouring type ingot casting device allowing three casting molds to be symmetrically arranged

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178124A (en) * 2014-03-19 2015-10-08 株式会社神戸製鋼所 Downward casting method
CN103949625A (en) * 2014-05-05 2014-07-30 江苏兴达高温合金科技有限公司 Molten steel flow divider bracket
JP2016123998A (en) * 2014-12-26 2016-07-11 株式会社神戸製鋼所 Bottom-pouring type ingot casting method in bottom-pouring type ingot casting device allowing three casting molds to be symmetrically arranged

Similar Documents

Publication Publication Date Title
JPS6123555A (en) Bottom pouring ingot making method
DE2518903A1 (en) Continuous casting billets free from surface defects - using gas-curtain in mould to prevent melt touching the mould wall
JP2572807B2 (en) Manufacturing method of lead free-cutting steel by continuous casting method
CN85106418A (en) The band continuous casting process and the equipment thereof of metal, especially steel
JP3323644B2 (en) Method of pouring molten steel into tundish for continuous casting
US4030532A (en) Method for casting steel ingots
GB1438826A (en) Method of continuously casting wide slabs in particular slabs wider than
CN110369682A (en) A kind of device and method preparing big ingot casting based on slag protection multilayer casting field supply combined processing
JPH0628790B2 (en) Continuous casting method
JP2004009064A (en) Method for producing continuously cast slab
JPH07314097A (en) Method for continuous casting of metal strip
JPH01313165A (en) Continuous casting method partially containing semi-molten metal
JP2960288B2 (en) Manufacturing method of multilayer steel sheet by continuous casting
JPS5581061A (en) Production of composite material for abrasion resistance through casting
JPS6238747A (en) Continuous casting method for slab for thin cold rolled sheet of dead soft steel without blister defect in annealing stage
JPH05136B2 (en)
JPH0133271B2 (en)
JPH0390263A (en) Continuous casting method
JPH0314541B2 (en)
JPS60127051A (en) Continuous casting method
JPS5542145A (en) Additional pouring continuous casting method of steel
JPH0573506B2 (en)
Dindino et al. Casting Aluminum Fine-Grain Billets
JP2888155B2 (en) Continuous casting method of ultra low carbon steel containing Ti
CN104525879B (en) The continuous casting of surface coverage property material steel produces Apparatus and method for