JPS61235546A - Production of low-melting point metallic member - Google Patents

Production of low-melting point metallic member

Info

Publication number
JPS61235546A
JPS61235546A JP7590685A JP7590685A JPS61235546A JP S61235546 A JPS61235546 A JP S61235546A JP 7590685 A JP7590685 A JP 7590685A JP 7590685 A JP7590685 A JP 7590685A JP S61235546 A JPS61235546 A JP S61235546A
Authority
JP
Japan
Prior art keywords
heat rays
irradiation
low
alloy
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7590685A
Other languages
Japanese (ja)
Inventor
Junichi Yamamoto
順一 山本
Yoshifumi Yamamoto
義史 山本
Yuji Takahashi
雄二 高橋
Mitsugi Fukahori
貢 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP7590685A priority Critical patent/JPS61235546A/en
Publication of JPS61235546A publication Critical patent/JPS61235546A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To give uniform heat treatment effect to the whole parts of alloy by making gradually the irradiation intensity of the heat rays small in case of melting the surface of low-m.p. metal such as Al alloy with the irradiation of the high-density energy heat rays and quenching it to form a finely-divided structure. CONSTITUTION:The high-density energy heat rays such as a laser beam 2 are irradiated on the surface of a low-m.p. alloy plate 1 such as Al alloy and the surface of the Al alloy plate 1 is locally melted and thereafter quenched. The wear resistance is increased because the metallic structure of the part to be treated is made dense and hardened. In such a case, since the adjacent part 1a wherein the heat rays are irradiated, melted and quenched is made to the high temp., the temp. of the part is measured with a thermocouple 3 buried in the transferring direction of the heat rays 2 and the intensity of the heat rays 2 is slowly made weak in accordance with the temp. or the transferring velocity of the heat rays 2 is made speedy and the heat rays 2 are scanned and irradiated so that the temp. hardly wholly reaches the prescribed heat- treating temp. or above and the uniform wear resistant hardening layer is formed on the whole surface of Al alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザービーム等の高密度エネルギ熱線をア
ルミニウム合金等の低融点金属部材に照射して、その金
属部材表面を局部的に溶融・急冷することにより金属組
織を微細化処理する低融点金属部材の製造方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention irradiates a low-melting point metal member such as an aluminum alloy with a high-density energy hot ray such as a laser beam to locally melt and melt the surface of the metal member. The present invention relates to a method of manufacturing a low-melting point metal member in which the metal structure is refined by rapid cooling.

〔従来技術〕[Prior art]

金属部材表面にレーザービーム等の高密度エネルギ熱線
を照射して局部的に溶融・急冷処理することにより、金
属組織を緻密化・硬化させ、金属部材の耐摩耗性などを
向上させる方法は、特開昭59−80712号公報によ
り既に知られているしかしながら、前記方法をそのまま
アルミニウム合金などの低融点金属部材に適用する場合
、高密度エネルギ熱線の照射強度を一定にして照射位置
を移動させながら溶融を行うと、移動照射の後半におい
て金属母材の温度が照射開始時より大幅に上昇し、この
ため溶融部の厚みが大きくなり、金属組織の微細化が均
一に行われないばかりか、溶融部表面も粗くなり、それ
だけ仕上加工に手間が掛り、製品の寸法精度も低下する
等の問題点を有する。
A method of irradiating the surface of a metal component with high-density energy heat rays such as a laser beam to locally melt and rapidly cool it, thereby densifying and hardening the metal structure and improving the wear resistance of the metal component, is particularly effective. However, when the above method is applied directly to a low melting point metal member such as an aluminum alloy, it is necessary to keep the irradiation intensity of high-density energy hot rays constant and move the irradiation position while melting. If this is done, the temperature of the metal base material will rise significantly in the latter half of the moving irradiation compared to the beginning of irradiation, which will increase the thickness of the molten zone, and not only will the metal structure not be uniformly refined, but the molten zone will There are problems such as the surface becomes rough, the finishing process takes more time, and the dimensional accuracy of the product decreases.

〔発明の目的〕[Purpose of the invention]

本発明は、従来例における前記問題点を考慮してなされ
たものであって、高密度エネルギ熱線の照射により金属
部材を局部的に溶融・急冷処理する方法において、アル
ミニウム合金などの低融点金属部材に適用した場合にも
、溶融部厚みを均一に出来ると共に、溶融部表面の粗さ
も低く抑えることの出来る低融点金属部材の製造方法の
提供を目的とするものである。
The present invention has been made in consideration of the above-mentioned problems in the conventional example, and is a method for locally melting and rapidly cooling a metal member by irradiation with high-density energy heat rays. It is an object of the present invention to provide a method for manufacturing a low-melting point metal member that can make the thickness of the melted part uniform and keep the roughness of the surface of the melted part low even when applied to the present invention.

〔発明の構成〕[Structure of the invention]

本発明は、高密度エネルギ熱線を低融点金属部材に照射
し、局部的に溶融・急冷して金属組織を微細化させる低
融点金属部材の製造方法において、移動しながら照射さ
れる前記高密度エネルギ熱線の照射位置近傍の金属部材
熱量が移動の全行程にわたって略均一に保たれるように
、高密度エネルギ熱線の照射を制御し、以って溶融・急
冷された金属組織が略均一の厚さとなるようにしたこと
を特徴とするものである。
The present invention provides a method for manufacturing a low-melting point metal member in which a low-melting point metal member is irradiated with high-density energy heat rays to locally melt and rapidly cool the metal structure to make the metal structure fine. The irradiation of the high-density energy heat rays is controlled so that the amount of heat of the metal member near the irradiation position of the heat rays is kept approximately uniform over the entire movement process, and as a result, the melted and rapidly cooled metal structure has a substantially uniform thickness. It is characterized by the fact that it is made to be.

〔実施例〕〔Example〕

本発明の一実施例を、第1図ないし第7図に基づいて以
下に詳述する。
An embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 7.

本実施例は低融点金属部材としてアルミニウム合金AC
8A (180X80X8’ tmの平板)を用い、第
1図に示すようにこのアルミニウム合金lに対し高密度
エネルギ熱線としてレーザービーム2を走査させながら
照射し、表面が局部的に溶融・急冷処理されたアルミニ
ウム合金1を得る場合に適用したものであって、アルミ
ニウム合金1の表面を移動するレーザービーム2の照射
位置の近傍(ここでは照射位置の直ぐ前方)の母材温度
を順次検出し、その検出温度に基づきレーザービーム2
の照射強度を、照射位置の移動につれて制御するように
したものである。即ち、レーザービーム2の照射が開始
されると、その後アルミニウム合金1の母材温度は次第
に上昇するので、これからビーム照射が行われようとす
る位置の母材温度がすでに上昇している分だけレーザー
ビーム2の照射強度を低く抑えるといった制御を繰り返
すことにより、照射位置に直接与えられるレーザービー
ム2からの熱量とその照射位置の母材にすでに蓄熱され
ている熱量との総和が、アルミニウム合金1の表面局部
溶融に好適な熱量として、照射全行程にわたり略均一に
保たれるようにしたものである。
This example uses aluminum alloy AC as a low melting point metal member.
Using a 8A (180X80X8'tm flat plate), as shown in Figure 1, this aluminum alloy was irradiated with a scanning laser beam 2 as a high-density energy hot ray, and the surface was locally melted and rapidly cooled. This method is applied to obtain aluminum alloy 1, and the temperature of the base material in the vicinity of the irradiation position (in this case, immediately in front of the irradiation position) of laser beam 2 moving on the surface of aluminum alloy 1 is sequentially detected. Laser beam 2 based on temperature
The irradiation intensity is controlled as the irradiation position moves. That is, once irradiation with the laser beam 2 is started, the temperature of the base material of the aluminum alloy 1 gradually rises, so the laser beam is increased by the amount that the base material temperature at the position where the beam is about to be irradiated has already increased. By repeating control such as keeping the irradiation intensity of beam 2 low, the sum of the amount of heat from laser beam 2 directly applied to the irradiation position and the amount of heat already stored in the base material at that irradiation position is The amount of heat suitable for local surface melting is kept approximately uniform throughout the entire irradiation process.

アルミニウム合金1の各部の母材温度の検出は、ここで
は第2図に示すように照射区間長55flのうち、レー
ザービーム2の照射開始点から走査距離5fl、25*
n、45mの各地点に熱電対3・・・。
The base material temperature of each part of the aluminum alloy 1 is detected at a scanning distance of 5fl and 25* from the irradiation start point of the laser beam 2 within the irradiation section length of 55fl as shown in FIG.
3 thermocouples at each point of n, 45m...

をセットすることにより、離散的に温度検出を行うよう
にしている。上記熱電対3・・・の埋込み深さは、厚み
81mのアルミニウム合金1に対して、その表面より2
Hの深さとしている。又、照射開始時のレーザービーム
2の出力は3.9KWである。
By setting , temperature is detected discretely. The embedded depth of the thermocouple 3 is 2 mm from the surface of the aluminum alloy 1 with a thickness of 81 m.
The depth is H. Further, the output of the laser beam 2 at the start of irradiation is 3.9 KW.

このときの、レーザービーム2の出力諸条件および前記
各測定点における検出温度などのデータを表1の(1)
欄に示している。
At this time, data such as the output conditions of laser beam 2 and the detected temperature at each measurement point are shown in Table 1 (1).
It is shown in the column.

この方法によるときは、アルミニウム合金1の溶融部近
傍の母材温度は高々350℃程度にしか上昇せず、第3
図に斜線で示すようにアルミニウム合金1の表面では、
レーザービーム2の照射開始点から照射終了点までの5
511の全照射区間にわたって均一かつ良好な温度条件
で溶融が行われ、溶融部1aの深度は略1.5+nと均
一になり、表面粗さも低く抑えられる。
When using this method, the base material temperature near the molten part of aluminum alloy 1 increases only to about 350°C, and
As shown by diagonal lines in the figure, on the surface of aluminum alloy 1,
5 from the irradiation start point to the irradiation end point of laser beam 2
Melting is performed uniformly and under favorable temperature conditions over the entire irradiation section 511, the depth of the melted part 1a is uniform at approximately 1.5+n, and the surface roughness is also suppressed to a low level.

第4図(A)および同図(B)に、それぞれ上記処理に
おける照射開始点から走査距離5fiの地点および45
龍の地点の表面の凹凸状態を表面粗さ計で計った測定結
果がグラフで示されている。
FIG. 4(A) and FIG. 4(B) respectively show a point at a scanning distance of 5fi from the irradiation start point in the above process and a point at a scanning distance of 45.
The graph shows the measurement results of the unevenness of the surface at the dragon point using a surface roughness meter.

このときの表面粗さ計の測定方向は、溶融部1aに対し
第5図に符号Aで示す方向である。
The measurement direction of the surface roughness meter at this time is the direction indicated by symbol A in FIG. 5 with respect to the melted portion 1a.

なお、上記溶融・急冷処理では、アシストガスとしてA
「を2.5kg/cni、501/分、使用している。
In addition, in the above melting/quenching process, A is used as an assist gas.
"I am using 2.5 kg/cni, 501/min.

この実施例に対する比較例として、前記アルミニウム合
金1と同一の試料1′に対し、前記表1の(21jlに
示すレーザービーム照射条件下、すなわち一定照射強度
(ここでは3.9KW/CIA)でビーム走査を行った
従来例による場合の溶融の様子を第6図に、又この場合
の走査距離5鶴地点および45鶴地点における表面の凹
凸状態を、それぞれ第7図(A)および同図(B)にグ
ラフで示している。
As a comparative example for this example, a sample 1' identical to the aluminum alloy 1 was irradiated with the laser beam under the laser beam irradiation conditions shown in Table 1 (21jl), that is, at a constant irradiation intensity (here, 3.9 KW/CIA). Fig. 6 shows the state of melting in the case of conventional scanning, and Fig. 7 (A) and Fig. 7 (B) show the unevenness of the surface at scanning distances of 5 and 45 points, respectively. ) is shown graphically.

本実施例の場合の結果を示す第3図から明らかなように
、本実施例ではレーザービーム2の照射によりアルミニ
ウム合金1の温度上昇が進むにつれてレーザービーム2
の照射強度が低くなるように制御され、照射位置におけ
るアルミニウム合金1の熱量が常に略一定に保たれるか
ら、表面局部溶融は照射全行程にわたり略一定の温度条
件で行われ、溶融部1aの深度も一様となる。又、上記
照射制御により、前記表1の(1)+1i11に示すよ
うに溶融部1a近傍の母材温度が高々350℃程度しか
上昇せず、溶融部1aが過熱することがないから、その
表面を乱すことがなく、第4図(A)・ (B)に示す
ようにその表面粗さが低く抑えられるものである。
As is clear from FIG. 3 showing the results of this example, in this example, as the temperature of the aluminum alloy 1 increases due to irradiation with the laser beam 2, the laser beam 2 increases.
The irradiation intensity is controlled to be low, and the amount of heat of the aluminum alloy 1 at the irradiation position is always kept approximately constant. Therefore, local surface melting is performed under approximately constant temperature conditions throughout the entire irradiation process, and the melting area 1a is The depth is also uniform. Furthermore, due to the above irradiation control, as shown in (1)+1i11 in Table 1, the temperature of the base material near the melted zone 1a increases by about 350°C at most, and since the melted zone 1a does not overheat, its surface The surface roughness can be kept low as shown in FIGS. 4(A) and 4(B).

因みに、従来例の方法では、前記表1の(2)欄に示す
ように、レーザービーム2の照射が進行するにつれて溶
融部1a′近傍の温度は上昇し、照射開始点から45鰭
の地点では520℃にまで達する。そのため第6図に示
すように、この過熱地点において溶融部1a′の深度は
3鶴程度にまで達することになり、溶融部1a1厚みが
不均一となると共に、第7図(B)に示すように表面粗
さも増大することになる。
Incidentally, in the conventional method, as shown in column (2) of Table 1 above, as the irradiation with the laser beam 2 progresses, the temperature near the melted part 1a' increases, and at a point 45 fins from the irradiation start point, the temperature increases. It reaches up to 520℃. Therefore, as shown in FIG. 6, the depth of the molten zone 1a' at this overheating point reaches approximately 300 mm, and the thickness of the fused zone 1a1 becomes uneven, as shown in FIG. 7(B). The surface roughness will also increase.

本実施例では、レーザービーム2の照射を制御するのに
、その照射強度を変える場合を示したが、これに限らず
レーザービーム2の移動速度を変えることにより照射制
御を行っても良い、即ちレーザービーム2の照射が進む
につれて照射位置近傍の母材温度が上昇すると、検出さ
れた温度上昇に見合う分だけレーザービーム2の移動速
度を速めて、各照射位置におけるアルミニウム合金1の
熱量が照射全行程にわたって略一定となるようにするも
のである。
In this embodiment, a case is shown in which the irradiation intensity of the laser beam 2 is changed to control the irradiation, but the irradiation is not limited to this, and the irradiation may be controlled by changing the moving speed of the laser beam 2. As the irradiation of the laser beam 2 progresses, the temperature of the base material near the irradiation position increases.The moving speed of the laser beam 2 is increased by an amount commensurate with the detected temperature rise, so that the amount of heat of the aluminum alloy 1 at each irradiation position is equal to the total amount of irradiation. It is made to remain approximately constant throughout the stroke.

又、照射位置近傍の温度を検出する手段も、前記した熱
電対3・・・のような接触型センサを用いる場合のほか
、非接触型センサを用いて行うことも可能である。
Further, as means for detecting the temperature near the irradiation position, in addition to using a contact type sensor such as the thermocouple 3 described above, it is also possible to use a non-contact type sensor.

なお、この方法に使用する高密度エネルギ熱線として、
前記レーザービーム2のほか電子ビームも適用可能であ
ることは勿論である。
The high-density energy hot wire used in this method is
Of course, in addition to the laser beam 2, an electron beam can also be applied.

〔発明の効果〕〔Effect of the invention〕

本発明の低融点金属部材の製造方法は、以上のように高
密度エネルギ熱線を移動させながら低融点金属部材表面
に照射し局部的に溶融・急冷して金属組織を微細化させ
るに当り、高密度エネルギ熱線の照射位置の金属部材の
熱量(高密度エネルギ熱線により直接与えられる熱量と
すでに蓄熱されている熱量との総和)が移動照射の全行
程にわたり略一定となるように高密度エネルギ熱線の制
御を行うものである。それ故、移動照射の途中で金属部
材が過熱に陥ることがなく、得られる溶融・急冷処理部
は全域にねたり略均一な厚みをなすと共に、その表面粗
さも低く抑えられるので、その処理を広い範囲にわたり
良好に行うことが出来る。また表面粗さが低いことから
、製品の仕上加工も簡単で寸法精度も向上する等の効果
を奏し得る。
As described above, the method for manufacturing a low-melting point metal member of the present invention involves irradiating the surface of a low-melting point metal member while moving high-density energy heat rays to locally melt and rapidly cool the metal structure to refine the metal structure. The high-density energy heat rays are applied so that the amount of heat of the metal member at the irradiation position of the high-density energy heat rays (the sum of the amount of heat directly given by the high-density energy heat rays and the amount of heat that has already been stored) remains approximately constant throughout the entire process of moving irradiation. It is for controlling. Therefore, the metal member does not overheat during the moving irradiation, and the resulting melted and quenched part has a substantially uniform thickness over the entire area, and the surface roughness is kept low, so the treatment is It can be performed well over a wide range. Furthermore, since the surface roughness is low, finishing of the product is easy and dimensional accuracy can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概要を示す斜視図、第2図
はその実施例における熱電対の配列状態を示す断面図、
第3図はその実施例の結果を示す説明図、第4図(A)
(B)は実施例による表面粗さの結果を示すグラフ、第
5図は表面粗さ測定方向を示す説明図、第6図は従来例
の結果を示す説明図、第7図(A)(B)は従来例によ
る表面粗さの結果を示すグラフである。 1はアルミニウム合金(低融点金属部材)、1aは溶融
部、2はレーザービーム(高密度エネルギ熱線)、3は
熱電対である。 第3図 第4図 走置距離 a 走i−ろ伺
FIG. 1 is a perspective view showing an outline of an embodiment of the present invention, and FIG. 2 is a sectional view showing the arrangement of thermocouples in the embodiment.
Figure 3 is an explanatory diagram showing the results of the example, Figure 4 (A)
(B) is a graph showing the surface roughness results according to the example, FIG. 5 is an explanatory diagram showing the surface roughness measurement direction, FIG. 6 is an explanatory diagram showing the results of the conventional example, and FIG. B) is a graph showing the results of surface roughness according to the conventional example. 1 is an aluminum alloy (low melting point metal member), 1a is a melting part, 2 is a laser beam (high-density energy hot ray), and 3 is a thermocouple. Figure 3 Figure 4 Traveling distance a Traveling distance a

Claims (1)

【特許請求の範囲】 1、高密度エネルギ熱線を低融点金属部材に照射し、局
部的に溶融・急冷して金属組織を微細化させる低融点金
属部材の製造方法において、移動しながら照射される前
記高密度エネルギ熱線の照射位置近傍の金属部材熱量が
移動の全行程にわたって略均一に保たれるように、高密
度エネルギ熱線の照射を制御することを特徴とする低融
点金属部材の製造方法。 2、前記高密度エネルギ熱線の照射の制御は、その熱線
の強度を制御するものである特許請求の範囲第1項記載
の低融点金属部材の製造方法。 3、前記高密度エネルギ熱線の照射の制御は、その熱線
の移動速度を制御するものである特許請求の範囲第1項
記載の低融点金属部材の製造方法。
[Claims] 1. A method for manufacturing a low-melting point metal member in which the low-melting point metal member is irradiated with high-density energy hot rays, locally melted and rapidly cooled to refine the metal structure, in which the irradiation is performed while moving. A method for manufacturing a low-melting point metal member, characterized in that irradiation with high-density energy heat rays is controlled so that the amount of heat of the metal member near the irradiation position of the high-density energy heat rays is kept substantially uniform over the entire movement of the metal member. 2. The method of manufacturing a low melting point metal member according to claim 1, wherein the control of the irradiation of the high-density energy heat rays is performed by controlling the intensity of the heat rays. 3. The method of manufacturing a low-melting point metal member according to claim 1, wherein the control of the irradiation of the high-density heat rays involves controlling the moving speed of the heat rays.
JP7590685A 1985-04-10 1985-04-10 Production of low-melting point metallic member Pending JPS61235546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7590685A JPS61235546A (en) 1985-04-10 1985-04-10 Production of low-melting point metallic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7590685A JPS61235546A (en) 1985-04-10 1985-04-10 Production of low-melting point metallic member

Publications (1)

Publication Number Publication Date
JPS61235546A true JPS61235546A (en) 1986-10-20

Family

ID=13589841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7590685A Pending JPS61235546A (en) 1985-04-10 1985-04-10 Production of low-melting point metallic member

Country Status (1)

Country Link
JP (1) JPS61235546A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487785A (en) * 1987-09-29 1989-03-31 Showa Aluminum Corp Production of aluminum alloy material having excellent surface hardness and wear resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487785A (en) * 1987-09-29 1989-03-31 Showa Aluminum Corp Production of aluminum alloy material having excellent surface hardness and wear resistance

Similar Documents

Publication Publication Date Title
US5224997A (en) Apparatus for producing a surface layer on a metallic workpiece
Lusquinos et al. Theoretical and experimental analysis of high power diode laser (HPDL) hardening of AISI 1045 steel
JP2006265606A (en) High frequency induction heat-treatment method, high frequency induction heat-treatment facility and high frequency induction heat-treating article
Trafford et al. Laser treatment of grey iron
Zammit et al. Discrete laser spot hardening of austempered ductile iron
Feoktistov et al. Expanding the scope of SiC ceramics through its surface modification by different methods
Sancho et al. Dynamic control of laser beam shape for heat treatment
Wellburn et al. Variable beam intensity profile shaping for layer uniformity control in laser hardening applications
GREGSON Laser heat treatment
GB2044948A (en) Modifying power density of a laser beam shaper
JPS61235546A (en) Production of low-melting point metallic member
Kumar Process parameters influencing melt profile and hardness of pulsed laser treated Ti–6Al–4V
KR102455649B1 (en) All-steel fitting
JP2901138B2 (en) Mold quenching method and apparatus for quenching bending dies
JP2508940B2 (en) Method of forming signal pattern using high density energy source
RU2113512C1 (en) Method for heat treatment of blades of hot saws for cutting rolled products
JPH0543940A (en) Method for heat-treating tracking surface of guide rail for linear guide
JPH07252521A (en) Quenching method by laser beam
JPS57137425A (en) Uniform cooling method for rail head part heated to high temperature
JPH06330156A (en) Laser quenching method
GB2160227A (en) Heat treatment process
JPS62235417A (en) Hardening method with laser
RU2644638C2 (en) Method of heat treatment of steel rails
JPH08951B2 (en) Method for manufacturing aluminum alloy member
RU2075518C1 (en) Method of surface heat treatment of articles