JPH07252521A - Quenching method by laser beam - Google Patents

Quenching method by laser beam

Info

Publication number
JPH07252521A
JPH07252521A JP6064439A JP6443994A JPH07252521A JP H07252521 A JPH07252521 A JP H07252521A JP 6064439 A JP6064439 A JP 6064439A JP 6443994 A JP6443994 A JP 6443994A JP H07252521 A JPH07252521 A JP H07252521A
Authority
JP
Japan
Prior art keywords
laser beam
tubular
cylindrical object
layer
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6064439A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamamoto
博之 山本
Katsuhiro Minamida
勝宏 南田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6064439A priority Critical patent/JPH07252521A/en
Publication of JPH07252521A publication Critical patent/JPH07252521A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To prevent the formation of a softened layer by tempering and to form a uniform quenched layer, at the time of quenching the outer peripheral surface of a tubulous or a columnar material by using laser beam. CONSTITUTION:The laser beam 2 is emitted from a CO2 laser beam oscillator 1 and irradiates the tubulous or the columnar material 3 through a concave cylindrical mirror 5 and a flat integration mirror 6. As the irradiating shape of the laser beam 2, a diameter in the rotating direction of the tubulous or the columnar material 3 is made to be larger than a diameter in the longitudinal direction. By this method, the quenched layer is formed on the wide area in the surface of the tubulous or the columnar material 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種回転軸等、管状又は
円柱状物体外周面のレーザビームを用いた焼入れ方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quenching method using a laser beam on the outer peripheral surface of a tubular or cylindrical object such as various rotary shafts.

【0002】[0002]

【従来の技術】管状又は円柱状物体表面を焼入れする場
合、集光したレーザビームを軸に対し回転する管状又は
円柱状物体表面に照射することによりレーザビーム径と
同等幅の焼入れ硬化層を得る方法が一般的に用いられて
いる。あるいは、管状又は円柱状物体を軸に対し低速で
回転させながら同時に長手方向に走査し集光したレーザ
ビームを順次照射することで管状又は円柱状物体表層に
螺旋状の焼入れ層を得る方法が用いられている。図4に
螺旋状焼入れ層を得る光学系の構成を示す。
2. Description of the Related Art When quenching the surface of a tubular or cylindrical object, the surface of the tubular or cylindrical object rotating about its axis is irradiated with a focused laser beam to obtain a quench-hardened layer having a width equal to the diameter of the laser beam. Methods are commonly used. Alternatively, a method of obtaining a spiral quenching layer on the surface layer of a tubular or columnar object by sequentially irradiating with a laser beam that is scanned in the longitudinal direction at the same time while rotating the tubular or columnar object at low speed with respect to the axis Has been. FIG. 4 shows the configuration of an optical system for obtaining the spiral quenching layer.

【0003】[0003]

【発明が解決しようとする課題】従来の方法は、双方と
もレーザビームが一度照射され、焼入れ、硬化した部分
あるいはその近傍に再度レーザビームが照射されるた
め、再加熱による熱影響により焼戻されて軟化層を生じ
てしまい、長手方向に均一に連続した焼入れ層が得られ
ないという欠点があった。図2(a)に螺旋状焼入れ層
が生じる従来法での被加工鋼材表面の温度推移を示す。
このように、従来法ではレーザビームによる加熱、昇温
で変態点TAc1 まで達した後、臨界冷却速度以上の冷却
速度で冷却されず、TMsに達する前に再加熱され、焼戻
し層が生じる原因となっている。
According to the conventional methods, the laser beam is once radiated on both sides, and the laser beam is radiated again on the hardened or hardened part or its vicinity, so that the tempering is effected by the thermal effect of reheating. As a result, a softened layer is formed, and a quenching layer that is uniform and continuous in the longitudinal direction cannot be obtained. FIG. 2 (a) shows the temperature transition of the surface of the steel material to be processed in the conventional method in which the spiral quenching layer is generated.
As described above, in the conventional method, after the transformation point T Ac1 is reached by heating and temperature rise by the laser beam, the material is not cooled at a cooling rate higher than the critical cooling rate, and is reheated before reaching T Ms to form a tempered layer. It is the cause.

【0004】[0004]

【課題を解決するための手段】本発明は、管状又は円柱
状物体外周面のレーザを用いた焼入れ方法において、管
状又は円柱状物体に照射されるレーザビームの回転方向
の径が長手方向の径より大きい事を特徴とするレーザ焼
入れ方法である。前記回転方向の径と長手方向の径の比
は2以上とすることが好ましい。
According to the present invention, in a quenching method using a laser on the outer peripheral surface of a tubular or cylindrical object, the diameter of the laser beam with which the tubular or cylindrical object is irradiated in the rotational direction is the longitudinal direction. It is a laser hardening method characterized by being larger. The ratio of the diameter in the rotation direction to the diameter in the longitudinal direction is preferably 2 or more.

【0005】[0005]

【作用】本発明は再加熱を管状又は円柱状物体温度が変
態点TAc1 以上に滞留している間に行い、焼戻し層が生
じる原因を排除する。
In the present invention, reheating is performed while the temperature of the tubular or columnar object stays at the transformation point T Ac1 or higher, and the cause of the tempered layer is eliminated.

【0006】焼入れに必要な103W/cm2 以上の高
エネルギー密度となるようレーザビームを集光する。回
転方向のビーム径は、数回転後までのレーザビーム照射
の入熱による上昇温度を保持し管状又は円柱状物体外周
面が一様にTAc1 以上に達することができる長さとす
る。長手方向のビーム径は、一回転後のレーザビーム照
射の入熱による上昇温度を保持し、レーザ照射による加
熱部分が回転ピッチ分だけ長手方向にずれた時に隣り合
う加熱部分が互いに途切れずにTAc1 以上を保持し、こ
の温度域が連続するような長さとする。
The laser beam is focused so as to have a high energy density of 103 W / cm 2 or more required for quenching. The beam diameter in the rotation direction is set to a length that allows the outer peripheral surface of the tubular or cylindrical object to uniformly reach T Ac1 or more while maintaining the increased temperature due to heat input of laser beam irradiation after several rotations. The beam diameter in the longitudinal direction holds the rising temperature due to the heat input of the laser beam irradiation after one rotation, and when the heating portion by laser irradiation is displaced in the longitudinal direction by the rotation pitch, the adjacent heating portions are not interrupted by T Hold Ac1 or higher and make the length such that this temperature range is continuous.

【0007】図3に管状又は円柱状物体表面の回転方向
及び長手方向の熱履歴を示す。レーザ照射部分が1回転
前のレーザビーム照射の入熱による上昇温度を保持し、
数回転後に総積算した温度がTAc1 以上まで昇温するよ
うに比較的高速に回転することにより、擬似的に管状材
の外周表面に全方向から同時にレーザビームを照射す
る。さらに、相対的にレーザビームを管状又は円柱状物
体に対し長手方向に送り、自己冷却あるいは外部からの
強制的な冷却により臨界冷却速度以上の冷却速度でTMs
まで急冷却されるような送り速度をあたえ管状又は円柱
状物体表層の熱履歴をコントロールすることにより大面
積にレーザビームを照射して焼入れする。これにより管
状又は円柱状物体表層に対して焼戻しによる軟化層の無
い焼入れ層のみの均一な硬化層を形成する。
FIG. 3 shows the thermal history of the surface of a tubular or cylindrical object in the rotational direction and the longitudinal direction. The laser irradiation part keeps the rising temperature due to the heat input of the laser beam irradiation before one rotation,
By rotating at a relatively high speed so that the total integrated temperature rises to T Ac1 or more after several revolutions, the outer peripheral surface of the tubular material is artificially simultaneously irradiated with the laser beam from all directions. Further, a laser beam is relatively sent to the tubular or cylindrical object in the longitudinal direction, and T Ms is cooled at a cooling rate higher than the critical cooling rate by self-cooling or forced cooling from the outside.
The quenching is performed by irradiating a large area with a laser beam by giving a feed rate such that it is rapidly cooled down to control the thermal history of the surface layer of the tubular or cylindrical object. As a result, a uniform hardened layer is formed on the surface layer of the tubular or columnar object without a softening layer due to tempering.

【0008】[0008]

【実施例】以下に本発明の一実施例を図面を参照しなが
ら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0009】図1に実施例に用いた装置を示す。15k
WのCO2 レーザ発振器1から出射されたφ70mmの
リングモードのレーザビーム2をf=1240mmの凹
面シリンドリカルミラー5と平面インテグレーションミ
ラー6で構成される光学系に入射し、凹面シリンドリカ
ルミラー5によって1方向に集光して焦点位置において
長さ50mmの線状ビームを得た。平面インテグレーシ
ョンミラー6は各々のセグメントミラーを任意の方向に
傾けることでレーザビームの反射方向を自由に変化させ
固定することができ、レーザビームの加工物上でのエネ
ルギー強度分布を平滑化し、焼入れ層の深さ及び形状を
制御するために使用する。
FIG. 1 shows the apparatus used in the embodiment. 15k
A φ 70 mm ring mode laser beam 2 emitted from a CO 2 laser oscillator 1 of W is incident on an optical system composed of a concave cylindrical mirror 5 and a plane integration mirror 6 of f = 1240 mm, and the concave cylindrical mirror 5 unidirectionally directs it. And a linear beam having a length of 50 mm was obtained at the focal position. The plane integration mirror 6 can freely change and fix the reflection direction of the laser beam by tilting each segment mirror in an arbitrary direction, smoothing the energy intensity distribution of the laser beam on the workpiece, and hardening layer. It is used to control the depth and shape of the.

【0010】以上のようにして得られた集光ビームサイ
ズは3mm×50mmで、レーザ出力15kWにおいて
104W/cm2 の高エネルギー密度に集光した線状ビ
ームを得ることができた。図3に示すように、集光した
レーザビーム2の長さ方向と管状又は円柱状物体3の長
手方向が互いに垂直となるように配置した。管状又は円
柱状物体3の表面にはレーザビーム2の反射を抑え、管
状又は円柱状物体3への入熱量の低下を防止するため反
射防止材をあらかじめ塗布しておいた。この位置におい
てφ50mm、長さl=200mmの管状又は円柱状物
体3を280rpm以上の高速に回転しながら管状又は
円柱状物体3の半円周面に上記形状の線状ビームを照射
した。管状又は円柱状物体3の回転と同時に長手方向に
送り速度1.5m/min以上の速度で走査し、レーザ
照射直後に臨界冷却速度以上の冷却速度を得る為に冷却
が必要であれば冷却材を吹き付けることで管状又は円柱
状物体3への入熱量及び熱履歴をコントロールした。こ
のようにレーザ照射による加熱部分、非加熱部分の温度
分布については管状又は円柱状物体3を高速に回転する
事によって目的の焼入れ部分全体を均一に加熱し、所定
の変態温度に到達後長手方向に管状又は円柱状物体3を
送り、管状又は円柱状物体3内部との温度差による自己
冷却、又は外部からの冷却材吹き付けによって管状又は
円柱状物体3に均一な無限大の長さに相当する大表面の
焼入れ層を得た。
The focused beam size thus obtained was 3 mm × 50 mm, and a linear beam focused at a high energy density of 104 W / cm 2 at a laser output of 15 kW could be obtained. As shown in FIG. 3, the longitudinal direction of the focused laser beam 2 and the longitudinal direction of the tubular or columnar object 3 were arranged to be perpendicular to each other. An antireflection material was applied in advance on the surface of the tubular or columnar object 3 in order to suppress reflection of the laser beam 2 and to prevent a decrease in heat input to the tubular or columnar object 3. At this position, the semicircular surface of the tubular or cylindrical object 3 was irradiated with the linear beam having the above-mentioned shape while rotating the tubular or cylindrical object 3 with φ50 mm and length l = 200 mm at a high speed of 280 rpm or more. When the tubular or cylindrical object 3 is rotated, it is scanned in the longitudinal direction at a feed rate of 1.5 m / min or more at the same time as the rotation, and if cooling is required to obtain a cooling rate of a critical cooling rate or more immediately after laser irradiation, a cooling material. The amount of heat input to the tubular or cylindrical object 3 and the thermal history were controlled by spraying. In this way, regarding the temperature distribution of the heated portion and the non-heated portion by laser irradiation, the target quenching portion is uniformly heated by rotating the tubular or cylindrical object 3 at high speed, and after reaching the predetermined transformation temperature, the longitudinal direction is reached. The tubular or cylindrical object 3 is fed to the inside of the tubular or cylindrical object 3, and the tubular or cylindrical object 3 is self-cooled due to a temperature difference between the inside and the inside of the tubular or cylindrical object 3, or is sprayed with a coolant from the outside, so that the tubular or cylindrical object 3 has a uniform infinite length A hardened layer with a large surface was obtained.

【0011】[0011]

【発明の効果】本発明によれば、従来よりも管状又は円
柱状物体表面の広い面積に焼入れ層を形成することがで
きる。あるいはレーザビームの複数回照射による再加熱
が原因で生じる焼戻しによる軟化層のない均一な焼入れ
層を従来よりも広範囲にわたり効率的に処理する事がで
きる。これにより回転軸あるいは往復褶動部の耐摩耗特
性が向上する効果がある。
According to the present invention, a quenching layer can be formed in a wider area on the surface of a tubular or cylindrical object than in the conventional case. Alternatively, a uniform hardened layer without a softening layer due to tempering caused by reheating due to multiple irradiation with a laser beam can be efficiently processed over a wider range than in the past. This has the effect of improving the wear resistance of the rotary shaft or the reciprocating sliding portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するために用いる装置の例を示す
図である。
FIG. 1 is a diagram showing an example of an apparatus used to carry out the present invention.

【図2】従来法と本発明法における管状又は円柱状物体
表面の温度推移を比較して示す図である。
FIG. 2 is a diagram showing a comparison of temperature transitions on the surface of a tubular or cylindrical object in the conventional method and the method of the present invention.

【図3】レーザ照射中の管状又は円柱状物体表面の温度
分布を示す図である。
FIG. 3 is a diagram showing a temperature distribution on the surface of a tubular or cylindrical object during laser irradiation.

【図4】従来の管状又は円柱状物体に対するレーザ照射
方法を示す図である。
FIG. 4 is a diagram showing a conventional laser irradiation method for a tubular or cylindrical object.

【符号の説明】[Explanation of symbols]

1 CO2 レーザ発振器 2 レーザビーム 3 管状又は円柱状物体 4 ベンドミラー 5 凹面シリンドリカルミラー 6 平面インテグレーションミラー1 CO 2 Laser Oscillator 2 Laser Beam 3 Tubular or Cylindrical Object 4 Bend Mirror 5 Concave Cylindrical Mirror 6 Planar Integration Mirror

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 管状又は円柱状物体外周面のレーザを用
いた焼入れ方法において、管状又は円柱状物体に照射さ
れるレーザビームの回転方向の径が長手方向の径より大
きい事を特徴とするレーザ焼入れ方法。
1. A quenching method using a laser on the outer peripheral surface of a tubular or cylindrical object, wherein the diameter of the laser beam with which the tubular or cylindrical object is irradiated in the rotational direction is larger than the diameter in the longitudinal direction. Quenching method.
【請求項2】 前記回転方向の径と長手方向の径の比が
2以上であることを特徴とする請求項1記載のレーザ焼
入れ方法。
2. The laser hardening method according to claim 1, wherein the ratio of the diameter in the rotating direction to the diameter in the longitudinal direction is 2 or more.
JP6064439A 1994-03-09 1994-03-09 Quenching method by laser beam Withdrawn JPH07252521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6064439A JPH07252521A (en) 1994-03-09 1994-03-09 Quenching method by laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6064439A JPH07252521A (en) 1994-03-09 1994-03-09 Quenching method by laser beam

Publications (1)

Publication Number Publication Date
JPH07252521A true JPH07252521A (en) 1995-10-03

Family

ID=13258322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6064439A Withdrawn JPH07252521A (en) 1994-03-09 1994-03-09 Quenching method by laser beam

Country Status (1)

Country Link
JP (1) JPH07252521A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063217A (en) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd Sealing method of sealed relay, and its sealing structure and sealing device
JP2007327105A (en) * 2006-06-08 2007-12-20 Jtekt Corp Laser beam heat-treatment method and apparatus therefor
JP2010013710A (en) * 2008-07-04 2010-01-21 Jtekt Corp Heat-treatment apparatus, heat-treatment method, and compound processing machine
DE102017220092A1 (en) 2016-11-16 2018-05-17 Okuma Corporation Processing device and processing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063217A (en) * 2002-07-26 2004-02-26 Matsushita Electric Works Ltd Sealing method of sealed relay, and its sealing structure and sealing device
JP2007327105A (en) * 2006-06-08 2007-12-20 Jtekt Corp Laser beam heat-treatment method and apparatus therefor
JP2010013710A (en) * 2008-07-04 2010-01-21 Jtekt Corp Heat-treatment apparatus, heat-treatment method, and compound processing machine
DE102017220092A1 (en) 2016-11-16 2018-05-17 Okuma Corporation Processing device and processing method

Similar Documents

Publication Publication Date Title
JP6614555B2 (en) Method and system for laser curing on workpiece surfaces
US4533400A (en) Method and apparatus for laser hardening of steel
US4662708A (en) Optical scanning system for laser treatment of electrical steel and the like
EP0147190A1 (en) Method and apparatus for laser gear hardening
CN109593919B (en) Bearing surface laser quenching device and method based on distributed three-dimensional light beam scanning
JPH01316415A (en) Laser beam heat treating method using polygon mirror and apparatus thereof
JPH07252521A (en) Quenching method by laser beam
CA2245866A1 (en) Cutting die and method of making
JP2666288B2 (en) Heat treatment method using multi-mode laser beam
JP2901138B2 (en) Mold quenching method and apparatus for quenching bending dies
JPS649382B2 (en)
JP2003231914A (en) Laser hardening method
JP2020076148A (en) Surface hardening treatment method for workpiece
JPH0774372B2 (en) Laser hardening method
EP0630720A1 (en) Optical system for laser beam generator
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
RU2675884C1 (en) Method of laser thermal treatment of thread connections
JPS6350417A (en) Method and apparatus for laser heat treatment
GB2160227A (en) Heat treatment process
JPH06316722A (en) Laser beam quenching device to surface of cylinder
JPS63262414A (en) Method and apparatus for heat-treating work
JPH0571646B2 (en)
JPS5848620A (en) Hardening method by laser
JPS6350404B2 (en)
RU2084673C1 (en) Method of manufacturing sleeve for internal combustion engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605