JPH06330156A - Laser quenching method - Google Patents

Laser quenching method

Info

Publication number
JPH06330156A
JPH06330156A JP14564393A JP14564393A JPH06330156A JP H06330156 A JPH06330156 A JP H06330156A JP 14564393 A JP14564393 A JP 14564393A JP 14564393 A JP14564393 A JP 14564393A JP H06330156 A JPH06330156 A JP H06330156A
Authority
JP
Japan
Prior art keywords
laser beam
hardening
quenching
laser
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14564393A
Other languages
Japanese (ja)
Inventor
Makoto Kumakawa
誠 熊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP14564393A priority Critical patent/JPH06330156A/en
Publication of JPH06330156A publication Critical patent/JPH06330156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To perform a deep hard-facing on a small component by a laser quenching. CONSTITUTION:A material 15 to be worked is dipped in a liquid coolant 17, the surface in a cooled state is irradiated with a laser beam and locally heated to raise the temperature. The heat is conducted peripherally at the heated temp. rising part and the material itself is cooled, since the material 15 is cooled in the coolant in this case, the elevation of temp. is not so much except the heated temp. rising part, consequently, the cooling of the heated and temp. rising part by the laser beam is sure, and a deep hard-facing is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザビーム照射によ
って金属材の表面硬化を行うレーザ焼入方法に関し、特
に、小型レールガイドや精密小型部品の摺動部の耐摩耗
性向上のための焼入処理のように、小物部品に対して表
面硬化を行うのに好適なレーザ焼入方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser hardening method for hardening a surface of a metal material by irradiating a laser beam, and more particularly to a hardening method for improving wear resistance of sliding parts of small rail guides and precision small parts. The present invention relates to a laser hardening method suitable for performing surface hardening on small parts such as hardening processing.

【0002】[0002]

【従来の技術】従来、機械部品等の材料の表面硬化方法
としては、高周波焼入、浸炭焼入、窒化などがある。し
かし、被加工物の表面硬化仕様によってはいずれも適さ
ない場合があり、特に、小型レールガイドなどの小物の
表面焼入には適当な方法がなかった。例えば、図2に示
す被加工材1のように、角材の一つの面に溝2を形成し
た形状のもので、且つその寸法が、幅W=8mm、高さ
H=7mm、溝半径R=3mm程度の小物部品の溝2の
内面に表面硬化処理を行い、深い硬化層(例えば深さt
=0.6mm程度以上)を形成したい場合、高周波焼入
は加熱方法が困難であり、窒化では硬化層が浅すぎる。
浸炭焼入ではコストが高く、作業量も多く且つ歪が大き
い。このように、小物部品に対しては、高周波焼入、浸
炭焼入、窒化はいずれも問題があった。
2. Description of the Related Art Conventionally, induction hardening, carburizing and nitriding have been known as methods for hardening the surface of materials such as machine parts. However, none of them may be suitable depending on the surface hardening specifications of the work piece, and in particular, there is no suitable method for surface hardening of small objects such as small rail guides. For example, like a work material 1 shown in FIG. 2, it has a shape in which a groove 2 is formed on one surface of a square bar, and its dimensions are width W = 8 mm, height H = 7 mm, and groove radius R = The inner surface of the groove 2 of a small part having a size of about 3 mm is subjected to a surface hardening treatment, and a deep hardened layer (for example, a depth t
= 0.6 mm or more), the heating method is difficult for induction hardening, and the hardened layer is too shallow for nitriding.
The cost of carburizing and quenching is high, the amount of work is large, and the strain is large. In this way, induction hardening, carburizing and quenching, and nitriding all have problems for small parts.

【0003】[0003]

【発明が解決しようとする課題】そこで、これらの方法
に代わる表面硬化方法として、高密度エネルギーを利用
した新しい焼入方法であるレーザ焼入の採用が考えられ
る。すなわち、レーザ焼入であれば、被加工物表面の局
部加熱が容易であるので、溝内面を容易に焼入温度に昇
温させ、焼入を行うことができるものと考えられる。と
ころが、実際に、被加工材1の溝2を、その溝幅にほぼ
等しいスポットのレーザビームで照射し、深い硬化層を
形成すべく十分な焼入を行ったところ、溝2の表面の薄
い部分は焼入硬化するものの、その下の部分は加熱され
たにもかかわらず硬度が十分に上がっておらず、良好な
硬化を行うことができないという問題のあることが判明
した。
Therefore, it is conceivable to adopt laser quenching, which is a new quenching method utilizing high-density energy, as a surface hardening method which is an alternative to these methods. That is, laser quenching facilitates local heating of the surface of the workpiece, and therefore it is considered that quenching can be performed by easily raising the inner temperature of the groove to the quenching temperature. However, when the groove 2 of the material 1 to be processed was actually irradiated with a laser beam having a spot approximately equal to the groove width and sufficient hardening was performed to form a deep hardened layer, the surface of the groove 2 was thin. It was found that there was a problem that although the portion was quench-hardened, the hardness of the lower portion was not sufficiently increased even though it was heated, and good curing could not be performed.

【0004】本発明は、かかる問題点に鑑みて為された
もので、レーザビームを用いて小物部品に対して深く表
面硬化を行うことの可能なレーザ焼入方法を提供するこ
とを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a laser hardening method capable of deeply hardening a surface of a small component by using a laser beam. .

【0005】[0005]

【課題を解決するための手段】本発明者等は小物部品に
対してレーザ焼入を行った際に十分な硬化が行われない
理由を検討した結果、次の事項を見出した。すなわち、
一般にレーザ焼入は、レーザビームのスポットに比べて
はるかに大きい被加工材に対して行っており、レーザビ
ーム照射によって昇温した部分がその周囲の大質量の部
分によって急速に冷却されることによって即ち自己冷却
によって硬化しているが、レーザビームのスポット径と
同程度の幅しか持っていないような小物部品に対してレ
ーザビーム照射を行った場合には、レーザビーム照射に
よって昇温した部分の熱がその周囲の部分に伝達し、そ
の周囲の部分の質量が小さいため、周囲の部分を昇温さ
せてしまい、結局残熱が多くなり、レーザビーム照射さ
れた部分の冷却が不足し、十分な焼入が不可能となって
いた。
Means for Solving the Problems As a result of studying the reason why sufficient hardening is not performed when laser hardening is performed on small parts, the present inventors have found the following matters. That is,
In general, laser hardening is performed on a work material that is much larger than the spot of the laser beam, and the portion heated by the laser beam is rapidly cooled by the large mass around it. That is, when laser beam irradiation is performed on a small part that has been cured by self-cooling but has a width that is approximately the same as the spot diameter of the laser beam, the portion heated by laser beam irradiation Heat is transferred to the surrounding area, and the mass of the surrounding area is small, which causes the surrounding area to rise in temperature, resulting in a large amount of residual heat, resulting in insufficient cooling of the area irradiated by the laser beam. Hard quenching was impossible.

【0006】本発明はかかる知見に基づいてなされたも
ので、被加工材表面にレーザビームを照射して表面硬化
させるレーザ焼入方法において、被加工材を強制冷却し
ながらレーザビーム照射を行うことを特徴とするレーザ
焼入方法を要旨とする。
The present invention has been made on the basis of such knowledge, and in a laser hardening method of irradiating a surface of a material to be processed with a laser beam to harden the surface, irradiating the laser beam while forcibly cooling the material to be processed. The subject is a laser hardening method characterized by the following.

【0007】ここで、レーザビームの照射は、被加工材
に対して定位置で一定時間照射する方法であってもよい
し、レーザビームを被加工材に対して相対的に移動させ
ながら照射する方法であってもよい。いずれの場合にお
いても、1回のレーザビーム照射によって硬化される領
域の大きさが被加工材の断面の10%以上の場合は、本
方法を使用しなければ十分な硬化層が得られない。
Here, the irradiation of the laser beam may be performed by irradiating the work material at a fixed position for a certain time, or by irradiating the work material while moving the laser beam relative to the work material. It may be a method. In either case, if the size of the region cured by one laser beam irradiation is 10% or more of the cross section of the workpiece, a sufficient cured layer cannot be obtained without using this method.

【0008】被加工材を強制冷却する方法としては、被
加工材を冷却液内に漬けて冷却する方法、水スプレー又
はミスト冷却を使用する方法等を挙げることができる。
Examples of the method for forcibly cooling the material to be processed include a method in which the material to be processed is immersed in a cooling liquid for cooling, a method using water spray or mist cooling, and the like.

【0009】[0009]

【作用】上記したように、本発明のレーザ焼入方法は、
被加工材を強制冷却しながらレーザビーム照射を行って
いるので、被加工材が小物部品であっても、レーザビー
ム照射によって昇温する部分以外の部分の温度上昇が防
止され、このため、レーザビーム照射された部分が周囲
の部分で急速に冷却され、所望の表面硬化を行うことが
できる。また、被加工材の全体としての昇温が防止され
る結果、熱変形を生じにくく、長い被加工材に焼入を行
っても曲がりの発生が生じにくい。
As described above, the laser hardening method of the present invention is
Since the laser beam irradiation is performed while forcibly cooling the workpiece, even if the workpiece is a small part, the temperature rise of the portion other than the portion heated by the laser beam is prevented. The beam-irradiated portion is rapidly cooled in the surrounding portion, and the desired surface hardening can be performed. Further, as a result of preventing the temperature rise of the work material as a whole, thermal deformation is unlikely to occur, and bending is unlikely to occur even when quenching a long work material.

【0010】ここで、レーザビーム焼入を行う際の自己
冷却は硬化領域が大きくなる程小さくなり、従って本発
明による強制冷却の効果が大きくなる。本発明者等が実
験した結果、1回のレーザビーム照射による硬化領域
が、被加工材の断面の10%以上の場合に、焼入硬化の
程度が顕著に向上することが判明した。
Here, the self-cooling at the time of laser beam hardening becomes smaller as the hardening region becomes larger, and therefore the effect of the forced cooling according to the present invention becomes larger. As a result of experiments conducted by the present inventors, it was found that the degree of quench-hardening is remarkably improved when the hardening region by one laser beam irradiation is 10% or more of the cross section of the work material.

【0011】[0011]

【実施例】以下、本発明の好適な実施例を図面を参照し
て説明する。図1は本発明方法の実施に用いる装置の1
例を示すもので、10はレーザ発振器、11はそのレー
ザ発振器10から照射されたレーザビーム、12はミラ
ー、13はトーチ、14はレンズ、15は表面加工を行
うべき被加工材、16はその被加工材15を入れること
のできる容器、17はその容器16内に入れられている
冷却液(本実施例では水)である。容器16は移動装置
(図示せず)に乗せられており、矢印A方向に移動可能
となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus 1 used for carrying out the method of the present invention.
For example, 10 is a laser oscillator, 11 is a laser beam emitted from the laser oscillator 10, 12 is a mirror, 13 is a torch, 14 is a lens, 15 is a work material to be surface-processed, and 16 is the A container capable of containing the material to be processed 15 is a cooling liquid (water in this embodiment) 17 contained in the container 16. The container 16 is placed on a moving device (not shown) and is movable in the arrow A direction.

【0012】次に、上記装置を用いたレーザ焼入動作を
説明する。容器16内に被加工材15を置き、冷却液1
7を、液面がその被加工材15の上面よりもわずかに高
い位置となるように入れる。次に、レーザ発振器10を
作動させてレーザビームを照射し、レンズ14で所望サ
イズのスポットに絞り、被加工材15の表面に照射す
る。この状態で容器16を矢印A方向に所定速度で移動
させる。かくして、レーザビームスポットが被加工材1
5の表面を所定の速度で走査し、被加工材表面を加熱、
昇温させる。レーザビームスポットが通り過ぎた部分で
は、直ちに昇温部分の熱がそれに隣接した部分に逃げ、
従って、昇温部分自体は急激に冷却され、焼入れ硬化さ
れる。ここで、被加工材15が小さい場合には、レーザ
ビームで照射された部分からの伝熱により、全体の温度
が上昇する傾向があるが、本実施例では被加工材15が
冷却液中にあるため、冷却液で強制冷却されており、こ
のため、レーザビーム照射部分以外はさほど昇温せず、
レーザビーム照射による昇温部分の冷却が確実であり、
良好に表面硬化をさせることができる。この際、レーザ
発振器10の出力を大きくするか、或いは被加工材15
の移動速度を遅くすることにより、レーザビームによっ
て被加工材15の単位面積当たりに与えるエネルギーを
大きくした場合でも、加熱部分の冷却を確実に行うこと
ができ、このため、表面から深い位置まで焼入硬化を行
うことができる。また、被加工材の全体としての昇温を
抑えている結果、曲がりの発生を少なくできる。
Next, the laser hardening operation using the above apparatus will be described. The work material 15 is placed in the container 16 and the cooling liquid 1
7 is placed so that the liquid level is slightly higher than the upper surface of the workpiece 15. Next, the laser oscillator 10 is operated to irradiate a laser beam, the lens 14 narrows the spot to a desired size, and irradiates the surface of the workpiece 15. In this state, the container 16 is moved in the direction of arrow A at a predetermined speed. Thus, the laser beam spot is the work piece 1
The surface of No. 5 is scanned at a predetermined speed to heat the surface of the workpiece,
Raise the temperature. In the part where the laser beam spot has passed, the heat of the heated part immediately escapes to the part adjacent to it,
Therefore, the temperature rising portion itself is rapidly cooled and hardened. Here, when the work material 15 is small, there is a tendency that the entire temperature rises due to heat transfer from the portion irradiated with the laser beam, but in the present embodiment, the work material 15 enters the cooling liquid. For this reason, it is forcibly cooled with a cooling liquid, and for this reason, the temperature does not rise so much except for the laser beam irradiation portion,
Cooling of the temperature rise part by laser beam irradiation is reliable,
The surface can be satisfactorily hardened. At this time, the output of the laser oscillator 10 is increased or the workpiece 15
By slowing down the moving speed of, the heating portion can be surely cooled even when the energy given per unit area of the work material 15 by the laser beam is increased. Therefore, the baking from the surface to the deep position is performed. Curing and hardening can be performed. Further, as a result of suppressing the temperature rise of the work material as a whole, the occurrence of bending can be reduced.

【0013】上記実施例に用いる冷却液17は、入手が
容易で、取り扱い性が良く、且つレーザビーム吸収の少
なくものが望ましく、通常は水が用いられる。なお、上
記実施例では、被加工材15全体を冷却液17中に沈め
ているが、被加工材15の上面(表面硬化すべき面)は
液面上に露出させるようにしてもよい。その場合におい
ても、被加工材15の大部分を冷却液で冷却しているの
で、レーザビーム照射によって加熱昇温した部分が、そ
の周囲の部分で確実に冷却され、表面硬化を行うことが
できる。また、冷却液は単に容器16内に溜めておく場
合に限らず、容器内を適当に流れる状態としてもよい。
The cooling liquid 17 used in the above embodiment is preferably one that is easily available, easy to handle, and has a small laser beam absorption. Usually, water is used. In the above-described embodiment, the entire work material 15 is immersed in the cooling liquid 17, but the upper surface of the work material 15 (the surface to be surface hardened) may be exposed on the liquid surface. Even in that case, since most of the material to be processed 15 is cooled by the cooling liquid, the portion heated and heated by the laser beam irradiation is surely cooled in the peripheral portion, and the surface can be hardened. . Further, the cooling liquid is not limited to the case of being simply stored in the container 16, and may be in a state of appropriately flowing in the container.

【0014】次に、上記装置を用いて実際に焼入を行っ
た実施例を説明する。
Next, an example in which quenching is actually performed using the above apparatus will be described.

【0015】〔実施例1〕図2に示す形状で大きさの異
なる2種類のテスト片A、Bを準備した。各テスト片
A、Bの仕様は次の通りである。 テスト片A:材質 SUJ2 W=8mm、H=7mm、L=100mm、R=3.2
mm テスト片B:材質 SUJ2 W=6mm、H=4mm、L=100mm、R=2.0
mm
Example 1 Two types of test pieces A and B having the shape shown in FIG. 2 and having different sizes were prepared. The specifications of the test pieces A and B are as follows. Test piece A: Material SUJ2 W = 8 mm, H = 7 mm, L = 100 mm, R = 3.2
mm Test piece B: Material SUJ2 W = 6 mm, H = 4 mm, L = 100 mm, R = 2.0
mm

【0016】上記テスト片A、Bを図1に示す容器16
内に、溝形成面が上向きとなるようにセットし、冷却液
として水を図示の状態に入れ、表1に示す条件で、上面
の溝に対するレーザ焼入を行った。また、比較のため、
水を入れない場合についても同様にレーザ焼入を行っ
た。
The test pieces A and B are shown in FIG.
Inside, the groove forming surface was set upward, water was put in the state shown as a cooling liquid, and laser hardening was performed on the groove on the upper surface under the conditions shown in Table 1. Also, for comparison,
Laser quenching was also performed when water was not added.

【0017】表1の条件で焼入を行った後の各テスト片
の断面を、硝酸アルコールでマクロエッチングし、硬化
パターンを観察した。その結果を図3、図4に示す。ま
た、得られた各テスト片の断面の硬度分布を測定した。
その結果を図5〜図8に示す。なお、使用したテスト片
と、図3、図4の関係及び図5〜図8の関係は表2に示
す通りである。また、図5〜図8に示す曲線イ、ロは、
図3、図4の断面イ、ロの硬度分布を示している。更
に、焼入後のテスト片について、曲がり(反り)を測定
した。その結果も表2に示す。
The cross-section of each test piece after quenching under the conditions shown in Table 1 was macro-etched with nitric acid alcohol and the hardening pattern was observed. The results are shown in FIGS. 3 and 4. Further, the hardness distribution of the cross section of each of the obtained test pieces was measured.
The results are shown in FIGS. Table 2 shows the relationship between the used test piece, FIGS. 3 and 4, and the relationships in FIGS. 5 to 8. In addition, the curves a and b shown in FIGS.
The hardness distributions of cross-sections A and B in FIGS. 3 and 4 are shown. Further, the bending (warpage) of the test piece after quenching was measured. The results are also shown in Table 2.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】水中焼入を行ったテスト片では、図3の断
面図から良く分かるように、表面に厚い硬化部3が形成
されており、その背後の加熱部(不十分硬化部)4はき
わめて薄いが、空中焼入を行ったテスト片では、図4の
断面図から良く分かるように、表面の硬化部3′がきわ
めて薄く、その背後の加熱部(不十分硬化部)4′はき
わめて厚くなっていた。また、図5〜8に示す硬度分布
曲線からも明らかなように、水中焼入を行った場合の方
が、深い位置まで硬度が高くなっていた。
As can be seen from the cross-sectional view of FIG. 3, in the test piece which has been quenched in water, a thick hardened portion 3 is formed on the surface, and the heating portion (insufficiently hardened portion) 4 behind it is extremely hard. Although it is thin, in the test piece subjected to in-air quenching, as can be seen from the sectional view of FIG. 4, the surface hardened portion 3'is extremely thin and the heating portion (insufficiently hardened portion) 4'behind it is extremely thick. Was becoming. Further, as is clear from the hardness distribution curves shown in FIGS. 5 to 8, the hardness increased to a deeper position when the underwater quenching was performed.

【0021】〔実施例2〕図9に示すように、断面が6
mm×6mmの棒材20(材質SUJ2)を用意し、そ
の棒材をテスト片として、実施例1と同様に水中焼入を
行い、その時の送り速度を変えることにより焼入れ深さ
を変化させた。得られたテスト片20には、図9に示す
ように、表面に硬化部21が形成されているので、その
中央部で、表面から中心に向かう方向での硬度分布を測
定した。その結果を図10〜図13に示す。また、その
硬度分布から硬化した領域の面積を求め、棒材断面に対
する割合を計算した。その結果、図10では8%、図1
1では10%、図12では12%、図13では16%と
なっていた。更に、その焼入条件と同じ条件で、但し空
気中で焼入を行い、得られたテスト片の硬度分布を測定
した。その結果も合わせて図10〜図13に示す。
[Embodiment 2] As shown in FIG.
A bar material 20 (material SUJ2) having a size of mm × 6 mm was prepared, and the bar material was used as a test piece to perform underwater quenching in the same manner as in Example 1, and the quenching depth was changed by changing the feed rate at that time. . As shown in FIG. 9, the obtained test piece 20 has a hardened portion 21 formed on the surface thereof. Therefore, the hardness distribution in the direction from the surface to the center was measured at the central portion. The results are shown in FIGS. Further, the area of the hardened region was obtained from the hardness distribution, and the ratio to the cross section of the bar was calculated. As a result, 8% in FIG.
It was 10% in FIG. 1, 12% in FIG. 12, and 16% in FIG. Further, quenching was performed under the same conditions as the quenching conditions, but in air, and the hardness distribution of the obtained test piece was measured. The results are also shown in FIGS. 10 to 13.

【0022】図10〜図13の結果から良く分かるよう
に、硬化領域の割合が小さい場合(図10の8%の場
合)では、水中焼入と空中焼入との差は小さいが、図1
1〜図13のように、硬化領域の割合を大きくするに連
れて水中焼入と空中焼入との差が大きくなり、特に図1
3に示す16%の場合では、同じ条件で空気中で焼入を
行ってもほとんど焼が入らず、表面硬化はきわめて小さ
い。これは、空中焼入で深く焼を入れようとして、加熱
熱量を多くすると、棒材全体の温度が高くなり、レーザ
ビーム照射部分の冷却が不足し、焼入不能となるためで
あると思われる。これに対し水中焼入では、棒材を水中
に入れて強制冷却しながら、レーザ焼入を行うので、加
熱熱量を多くしても、硬化すべき部分以外の部分の昇温
を抑制でき、レーザビームで加熱された部分を確実に冷
却でき、深く焼入れを行うことができる。この結果から
分かるように、本発明方法は、1回のレーザビーム照射
によって被加工材の断面の10%以上の領域を硬化させ
る場合に特に有効である。
As is clear from the results of FIGS. 10 to 13, when the ratio of the hardened region is small (8% in FIG. 10), the difference between the underwater quenching and the air quenching is small, but FIG.
As shown in FIGS. 1 to 13, as the ratio of the hardened region is increased, the difference between the underwater quenching and the air quenching becomes large, and in particular, as shown in FIG.
In the case of 16% shown in No. 3, even if quenching is performed in the air under the same conditions, quenching hardly occurs, and the surface hardening is extremely small. This is considered to be because if the amount of heat to be heated is increased in order to deeply quench by air quenching, the temperature of the entire bar becomes high, the cooling of the laser beam irradiation part is insufficient, and quenching becomes impossible. . On the other hand, in underwater quenching, the laser quenching is performed while the bar is put in water and forcibly cooled, so even if the heating heat amount is increased, it is possible to suppress the temperature rise of the part other than the part to be hardened, The portion heated by the beam can be reliably cooled, and deep quenching can be performed. As can be seen from these results, the method of the present invention is particularly effective in the case of hardening 10% or more of the cross section of the workpiece by one laser beam irradiation.

【0023】[0023]

【発明の効果】以上に説明したように、本発明によれ
ば、小型レールガイドや精密小型部品等の小物部品に対
して表面硬化を効率良く且つ深く行うことが可能であ
り、しかも歪みの発生を抑えることができ、製作コスト
の低減及び品質の安定化を図ることができるという効果
が得られる。
As described above, according to the present invention, surface hardening can be efficiently and deeply performed on small parts such as small rail guides and precision small parts, and distortion is generated. Therefore, it is possible to obtain the effect that the manufacturing cost can be reduced and the quality can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に用いる装置の1例を示す概
略側面図
FIG. 1 is a schematic side view showing an example of an apparatus used for carrying out the method of the present invention.

【図2】表面硬化を行うべき被加工材の1例を示す概略
斜視図
FIG. 2 is a schematic perspective view showing an example of a material to be surface-hardened.

【図3】本発明の実施例によって焼入加工を行った被加
工材の硬化マクロパターンを示す端面図
FIG. 3 is an end view showing a hardening macro pattern of a work-hardened material according to an embodiment of the present invention.

【図4】空中焼入(比較例)によって焼入加工を行った
被加工材の硬化マクロパターンを示す端面図
FIG. 4 is an end view showing a hardening macro pattern of a work piece that has been subjected to quenching by air quenching (comparative example).

【図5】条件1(本発明の実施例)で焼入加工を行った
テスト片の断面硬度分布を示すグラフ
FIG. 5 is a graph showing the cross-sectional hardness distribution of a test piece that has been subjected to quenching under condition 1 (example of the present invention).

【図6】条件2(比較例)で焼入加工を行ったテスト片
の断面硬度分布を示すグラフ
FIG. 6 is a graph showing the cross-sectional hardness distribution of a test piece that has been subjected to quenching under condition 2 (comparative example).

【図7】条件3(本発明の実施例)で焼入加工を行った
テスト片の断面硬度分布を示すグラフ
FIG. 7 is a graph showing the cross-sectional hardness distribution of a test piece that has been subjected to quenching under condition 3 (example of the present invention).

【図8】条件4(比較例)で焼入加工を行ったテスト片
の断面硬度分布を示すグラフ
FIG. 8 is a graph showing a cross-sectional hardness distribution of a test piece that has been subjected to quenching under condition 4 (comparative example).

【図9】実施例2で焼入を行った棒材の硬化マクロパタ
ーンを示す端面図
FIG. 9 is an end view showing a hardening macro pattern of a bar material that has been quenched in Example 2;

【図10】実施例2において、或る条件でで焼入を行っ
た棒材の断面硬度分布を示すグラフ
FIG. 10 is a graph showing the cross-sectional hardness distribution of a bar material that has been quenched under certain conditions in Example 2.

【図11】実施例2において、図10のものとは異なる
条件で焼入を行った棒材の断面硬度分布を示すグラフ
11 is a graph showing a cross-sectional hardness distribution of a bar material that has been quenched under conditions different from those of FIG. 10 in Example 2;

【図12】実施例2において、図10、図11のものと
は更に異なる条件で焼入を行った棒材の断面硬度分布を
示すグラフ
FIG. 12 is a graph showing a cross-sectional hardness distribution of a bar material that has been quenched under the conditions different from those of FIGS. 10 and 11 in Example 2;

【図13】実施例2において、図10、図11、図12
のものとは更に異なる条件で焼入を行った棒材の断面硬
度分布を示すグラフ
FIG. 13 is a diagram illustrating a second embodiment of FIGS.
Graph showing the cross-sectional hardness distribution of a bar material quenched under conditions different from those of

【符号の説明】[Explanation of symbols]

1 被加工材 2 溝 3、3′ 硬化部 4、4′ 加熱部(不十分硬化部) 10 レーザ発振器 11 レーザビーム 15 被加工材 16 容器 17 冷却液 DESCRIPTION OF SYMBOLS 1 Worked material 2 Groove 3, 3'hardened part 4, 4'heating part (insufficiently hardened part) 10 Laser oscillator 11 Laser beam 15 Worked material 16 Container 17 Coolant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被加工材表面にレーザビームを照射して
表面硬化させるレーザ焼入方法において、被加工材を強
制冷却しながらレーザビーム照射を行うことを特徴とす
るレーザ焼入方法。
1. A laser hardening method for irradiating a surface of a material to be processed with a laser beam for surface hardening, wherein the laser beam irradiation is performed while forcibly cooling the material to be processed.
【請求項2】 1回のレーザビーム照射によって被加工
材の断面の10%以上の領域を硬化させることを特徴と
する請求項1記載のレーザ焼入方法
2. The laser hardening method according to claim 1, wherein a region of 10% or more of the cross section of the workpiece is hardened by one laser beam irradiation.
【請求項3】 被加工材を冷却液内に入れた状態でレー
ザビーム照射を行うことを特徴とする請求項1又は2記
載のレーザ焼入方法。
3. The laser hardening method according to claim 1, wherein the laser beam irradiation is performed in a state where the material to be processed is placed in the cooling liquid.
【請求項4】 被加工材に水スプレー又はミスト冷却を
施しながらレーザビーム照射を行うことを特徴とする請
求項1又は2記載のレーザ焼入方法。
4. The laser hardening method according to claim 1, wherein the laser beam irradiation is performed while water spraying or mist cooling the material to be processed.
JP14564393A 1993-05-25 1993-05-25 Laser quenching method Pending JPH06330156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14564393A JPH06330156A (en) 1993-05-25 1993-05-25 Laser quenching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14564393A JPH06330156A (en) 1993-05-25 1993-05-25 Laser quenching method

Publications (1)

Publication Number Publication Date
JPH06330156A true JPH06330156A (en) 1994-11-29

Family

ID=15389761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14564393A Pending JPH06330156A (en) 1993-05-25 1993-05-25 Laser quenching method

Country Status (1)

Country Link
JP (1) JPH06330156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506232A (en) * 2015-12-10 2016-04-20 武汉华工激光工程有限责任公司 Laser compound treatment process capable of adjusting hardness of steel
CN113528760A (en) * 2020-09-18 2021-10-22 上海炬辰激光技术有限公司 Laser quenching hardening treatment process for shaft hub of reed damper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506232A (en) * 2015-12-10 2016-04-20 武汉华工激光工程有限责任公司 Laser compound treatment process capable of adjusting hardness of steel
CN113528760A (en) * 2020-09-18 2021-10-22 上海炬辰激光技术有限公司 Laser quenching hardening treatment process for shaft hub of reed damper

Similar Documents

Publication Publication Date Title
US5618114A (en) Hardened guide rail for linear guide apparatus
JP3934679B2 (en) Cutting die and method for manufacturing the same
CN107245551A (en) Lift the laser-quenching technique of autobody sheet intensity
JPH06330156A (en) Laser quenching method
JP2000054027A (en) Production of linear guide rail
CN108486348B (en) Heat treatment process for cutting edge of pliers
JP2009155685A (en) Quenching method
CN114774639B (en) Laser tempering quenching method
US3923561A (en) Method of heat treating saw
CN108130402A (en) A kind of laser-quenching method of rack
JP4223995B2 (en) Heat treatment method for iron-based sintered workpieces
JP3368341B2 (en) Method and apparatus for quenching steel
JP6191630B2 (en) Workpiece manufacturing method
JP2008101235A (en) Heat treatment method
JP2897946B2 (en) Method and apparatus for quenching steel
KR100330862B1 (en) Heat treatment hardening method of steel and its apparatus
JPS6350417A (en) Method and apparatus for laser heat treatment
JP2021066911A (en) Surface hardening treatment method of metal work by laser
JPS6013045B2 (en) Hardening processing method for carbon steel parts
JPH0543940A (en) Method for heat-treating tracking surface of guide rail for linear guide
US11873873B2 (en) System and method of making an enhanced brake rotor with improved wear resistance
JP7232452B2 (en) Plating film surface modification method and apparatus
JP2007231367A (en) Heat treatment method and device
JP2007239039A (en) Induction-hardening method, induction-hardening facility and induction-hardened article
JPS5848620A (en) Hardening method by laser