JPS61235072A - Production of aluminum heat exchanger - Google Patents

Production of aluminum heat exchanger

Info

Publication number
JPS61235072A
JPS61235072A JP7618585A JP7618585A JPS61235072A JP S61235072 A JPS61235072 A JP S61235072A JP 7618585 A JP7618585 A JP 7618585A JP 7618585 A JP7618585 A JP 7618585A JP S61235072 A JPS61235072 A JP S61235072A
Authority
JP
Japan
Prior art keywords
tube
alloy
heat exchanger
fin
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7618585A
Other languages
Japanese (ja)
Inventor
Kenji Nekura
根倉 健二
Yoshiharu Hasegawa
義治 長谷川
Toshio Ohara
敏夫 大原
Hiroshi Kawase
川瀬 寛
Motoyoshi Yamaguchi
山口 元由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Denso Corp
Original Assignee
Furukawa Aluminum Co Ltd
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd, NipponDenso Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP7618585A priority Critical patent/JPS61235072A/en
Publication of JPS61235072A publication Critical patent/JPS61235072A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)

Abstract

PURPOSE:To make a heat exchanger light-weighed and to increase the corrosion resistance by coating Zn-Al alloy layer on the perforated tube side for refrigerant circulation, by bending said tube in meandering shape at either before or after this coating and by joining the corrugated fin. CONSTITUTION:In the production of the heat exchanger of the capacitor for the air conditioner on vehicle the Al or Al alloy made perforated flat tube 1 of the sectional shape shown in the figure is formed by extrusion work. The tube 1 is fed to a flux device A, a flux 6 is coated on the surface thereof and is fed to a hot dipping device C after preheating by a preheating device B. Now the Zn-Al alloy 3' heated beyond the melting point is hot-dipped to the tube 1. The tube 1 of which surface is coated by this Zn-Al alloy layer 3 is bent in meandering shape, a fin 2 is inserted between the parallel part thereof and after fixing and holding by the jig the same flux as the above is coated on this assembly body, which is then heated inside a heating furnace and the tube 1 and fin 2 are joined by melting the layer 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両搭載用空気調和装置のコンデンサ、エバ
ポレータなどに用いられるアルミニウム熱交換器の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an aluminum heat exchanger used in a condenser, evaporator, etc. of a vehicle-mounted air conditioner.

(従来の技術) 車重軽減による燃費性能の向上が重要な技術課題をなし
ている自動車業界においては、車載空調装置用熱交換器
に対しても軽量化対策が求められつつある。コンデンサ
あるいはエバポレータといったこの種の熱交換器の一般
的な製法としては、まずアルミニウム合金で押出し成形
された冷媒流通用の多穴チューブを蛇行状に折り曲げて
本体部分を形成し、しかる後相隣るチューブ間の間隙に
、その表面にあらかじめろう付は用のろう材をクラッド
させた、肉厚が0.16mm内外のごく薄いアルミニウ
ム合金製のコルゲートフィンを挿入し、治具を用いてこ
の組合せ構造を保持させたうえで、全体を加熱炉内に納
めてろう材の溶融温度まで加熱することによって、ろう
付けによるチューブとフィンとの組立を完成させる方法
がとられてきた。
(Prior Art) In the automobile industry, where improving fuel efficiency by reducing vehicle weight is an important technical issue, measures to reduce the weight of heat exchangers for in-vehicle air conditioners are also being sought. The general manufacturing method for this type of heat exchanger, such as a condenser or evaporator, is to first bend an extruded aluminum alloy multi-hole tube for refrigerant flow into a serpentine shape to form the main body, and then Insert into the gap between the tubes an extremely thin aluminum alloy corrugated fin with a wall thickness of about 0.16 mm, the surface of which has been clad with brazing filler metal, and use a jig to create this combined structure. A method has been adopted in which the assembly of the tube and fin is completed by brazing by holding the entire tube in a heating furnace and heating it to the melting temperature of the brazing filler metal.

そして、上記フィンの材質としてはチューブ材料より電
極電位の卑なアルミニウム合金を用い、腐食の起こりや
すい条件下ではフィンの方がチューブより先に腐食され
る、いわゆる犠牲腐食効果を発揮して、チューブの耐食
性向上を図るように考慮されていた。
The material for the fins is an aluminum alloy whose electrode potential is less noble than that of the tube material. Under conditions where corrosion is likely to occur, the fins corrode before the tube, which is a so-called sacrificial corrosion effect. The idea was to improve the corrosion resistance of the steel.

(発明が解決しようとする問題点) ところで、フィンの表面にあらかじめクラッドされるろ
う材には融点降下のためにSi成分が多量に配合されて
おり、ろう付は時の高温下でこのSi成分がフィンの心
材中に移行して、フィン自体の溶融温度をも低下させて
しまう現象が現れるので、ろう付は治具による加圧力に
よってフィンが座屈しやすくなり、このことがフィンの
肉厚節減のための障害をなしていた。
(Problem to be Solved by the Invention) By the way, the brazing material that is clad on the surface of the fin in advance contains a large amount of Si component to lower the melting point, and brazing is performed at high temperatures to remove this Si component. This causes a phenomenon in which the fins migrate into the core material of the fins and lower the melting temperature of the fins themselves. Therefore, during brazing, the fins tend to buckle due to the pressure applied by the jig, and this reduces the thickness of the fins. It was an obstacle for me.

一方、チューブの防食対策の面からみると、チューブの
屈曲部にはフィンが存在セず、前述のごときフィンによ
る犠牲腐食効果を期待できないので、この部分になんら
かの防食手段を講する必要があり、例えば犠牲腐食用の
板材を別に用意して取付けるとか、犠牲腐食性のある被
膜材を塗布するなどの方法が考えられたが、少なからぬ
コストアップを招く点で実用性に乏しかった。
On the other hand, from the perspective of anti-corrosion measures for the tube, there are no fins at the bent portion of the tube, and the sacrificial corrosion effect of the fins as mentioned above cannot be expected, so it is necessary to take some kind of anti-corrosion measure for this part. For example, methods such as preparing and attaching a separate plate for sacrificial corrosion or applying a coating material with sacrificial corrosion properties have been considered, but these methods were impractical as they would increase the cost considerably.

別のチューブ防食対策としては、チューブ表面に亜鉛拡
散処理を施す方法も案出されているが、処理浴廃液の終
始束に支出を要する難点があった。
As another anti-corrosion measure for tubes, a method has been devised in which the tube surface is subjected to zinc diffusion treatment, but this method has the drawback of requiring the expense of collecting treatment bath waste liquid from beginning to end.

さらに組立用のろう材をごく薄肉のコルゲートフィンに
クラッドする代りに、フィンよりはるかに肉厚の厚いチ
ェーブ側にろう材層をクラッドすることによって、前述
のごときろう材中のSi成分の融点降下作用に基づくフ
ィン材の劣化問題を避ける方法も本願発明者などによっ
てすでに試みられているが、フィンの如く単純な平坦な
シート材にろう材層を設けるのと異なり、押出し加工に
よる偏平多穴チューブの場合には、ろう材をクラッドし
たシートを多穴チューブ状に加工する際に、ろう材の一
部がチューブの穴の内側に移動して、チューブとフィン
とのろう付は時に前記穴の内側におけるろう材が溶融し
て、前記穴の通路面積を減じるとか貫通穴が生じるなど
の不具合があった。
Furthermore, instead of cladding the brazing filler metal for assembly onto the very thin corrugated fins, by cladding the brazing filler metal layer on the side of the tube, which is much thicker than the fins, the melting point of the Si component in the filler metal can be lowered as described above. The inventor of the present invention and others have already attempted a method to avoid the problem of deterioration of fin materials due to the action of fins. In this case, when processing a sheet clad with brazing filler metal into a multi-hole tube shape, some of the brazing filler metal moves inside the holes of the tube, and the brazing between the tube and the fins is sometimes difficult. There were problems such as melting of the brazing material on the inside, reducing the passage area of the hole, and creating a through hole.

本発明は、上述の諸点に鑑みてなされたもので、アルミ
ニウム熱交換器の軽量化と耐食性向上を図ることができ
る製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a manufacturing method that can reduce the weight of an aluminum heat exchanger and improve its corrosion resistance.

(問題点を解決するための手段) 本発明は上記目的を達成するために、 (a)押出し加工により多数の穴を有するアルミニウム
製チューブを成形し、 山)該チューブの表面にZn−Al1合金を被覆し、(
c)このZn−Al合金の被覆工程の前後のいずれかに
おいて前記チューブを蛇行状に折り曲げ、(d)前記チ
ューブの平行部間にアルミニウム製コルゲートフィンを
挿入した後、 (e)前記Zn−Al合金の溶融温度に加熱して前記チ
ューブと前記コルゲートフィンを前記Zn−A4合金層
を介して一体に接合するという技術的手段を採用する。
(Means for Solving the Problems) In order to achieve the above objects, the present invention has the following steps: (a) An aluminum tube having a large number of holes is formed by extrusion, and (
c) Bend the tube into a serpentine shape either before or after the Zn-Al alloy coating step, (d) insert an aluminum corrugated fin between the parallel parts of the tube, and (e) A technical means is adopted in which the tube and the corrugated fin are integrally joined through the Zn-A4 alloy layer by heating to the melting temperature of the alloy.

(作 用) 上記技術的手段によれば、押出し成形された多穴チュー
ブ表面に予め被覆したZn−Aj!合金層を介して多穴
チューブとコルゲートとを接合しているので、従来のご
とくコルゲートフィンにAl−3i合金からなるろう材
をクラッドしておく必要がなくなり、そのためフィン接
合時にSi成分量化を図ることができる。
(Function) According to the above technical means, the surface of the extruded multi-hole tube is coated in advance with Zn-Aj! Since the multi-hole tube and the corrugate are joined through the alloy layer, there is no need to clad the corrugated fin with a brazing material made of Al-3i alloy as in the past, and therefore it is possible to increase the Si content when joining the fins. be able to.

しかも、Zn−Al合金はチューブ材に比して電極電位
が十分界であり、犠牲腐食効果を有しており、またチュ
ーブ全面に亘って施されているので、従来のような特別
の後工程を要することなく、チューブの耐食性を大幅に
向上できる。
Moreover, Zn-Al alloy has a sufficiently high electrode potential compared to tube material, has a sacrificial corrosion effect, and since it is applied over the entire surface of the tube, special post-processing is not required. The corrosion resistance of the tube can be significantly improved without the need for

また、Zn−Al合金は、従来のAA−3t系ろう材よ
り融点が低いため、多穴チューブの表面に比較的低温度
にて溶融メッキ等により容易に被覆することができ、作
業性を向上することができる。
In addition, Zn-Al alloy has a lower melting point than conventional AA-3t brazing filler metals, so it can be easily coated on the surface of multi-hole tubes by hot-dip plating at relatively low temperatures, improving workability. can do.

(実施例) 以下本発明を図に示す実施例に基づいて説明する。(Example) The present invention will be explained below based on embodiments shown in the drawings.

第1図は本発明の製法によって作られた車載空調装置用
コンデンサとしての熱交換器の斜視図であって、第2図
の斜視図にみられるように、流体(冷媒)の流れ方向に
沿って内部に複数条の仕切壁1aを設けて多数の六1b
を形成した偏平チューブ1を所定間隙を保って蛇行状に
折り曲げることによって、熱交換器の主体成分が構成さ
れており、偏平チューブ1の平行部間には、アルミニウ
ムまたはアルミニウム合金製のごく薄肉の伝熱面積増大
用コルゲートフィン2が挿入され、このチューブ1とフ
ィン2とは、チューブ1の表面にあらかじめ被覆しであ
るZn−Aj?合金層3の溶融時接合力によって一体的
に半田付またはろう付接合されている。チューブ1の両
開口端には、冷媒配管に接続するためのバイブ接手4お
よび5がろう付されている。
FIG. 1 is a perspective view of a heat exchanger as a condenser for an on-vehicle air conditioner manufactured by the manufacturing method of the present invention, and as seen in the perspective view of FIG. A plurality of partition walls 1a are provided inside and a large number of partition walls 1b are provided inside.
The main component of the heat exchanger is formed by bending the flat tube 1 in a serpentine shape with a predetermined gap, and between the parallel parts of the flat tube 1 there is a very thin wall made of aluminum or aluminum alloy. A corrugated fin 2 for increasing the heat transfer area is inserted, and the tube 1 and fin 2 are made of Zn-Aj?, which has been previously coated on the surface of the tube 1. They are integrally joined by soldering or brazing by the joining force of the alloy layer 3 when it is melted. Vibe joints 4 and 5 are brazed to both open ends of the tube 1 for connection to refrigerant piping.

次に本発明の製法を工程順に説明する。まず、押出し成
形機にて前述した断面形状(第2図参照)を有するアル
ミニウムあるいはアルミニウム合金製の多穴偏平チュー
ブ1を成形する。この偏平チューブ1は、第3図におい
て左方から右方に連続的に供給され、始めにフラックス
塗布装置Aに送り込まれて、その表面に噴流ポンプDに
よってフラックス6が塗布される。ここで、フラックス
6としては、1nc1.を主成分とするものを用いる。
Next, the manufacturing method of the present invention will be explained step by step. First, a multi-hole flat tube 1 made of aluminum or aluminum alloy and having the above-described cross-sectional shape (see FIG. 2) is molded using an extrusion molding machine. The flat tube 1 is continuously supplied from the left to the right in FIG. 3, and is first fed into a flux coating device A, where a jet pump D coats the surface of the tube with flux 6. Here, as the flux 6, 1nc1. The main component is used.

フラックス6を塗布されたチューブ1は、次に予熱装置
Bに送入される。この予熱装置BはガスバーナEによっ
てチューブ1を100〜200℃程度の温度に予熱する
。次いで、チューブ1は溶融メッキ装置Cに送入される
。この溶融メッキ装置Cでは、溶融メッキを行なうZn
−Al合金3゛をその融点以上に加熱して、Zn−Aj
!合金3“を溶融状態に維持している。ここで、Zn−
Al合金3゛の共晶成分(Zn95wt%−Al5wt
%)の場合、その融点は382℃である。
The tube 1 coated with the flux 6 is then fed into a preheating device B. This preheating device B uses a gas burner E to preheat the tube 1 to a temperature of about 100 to 200°C. Next, the tube 1 is sent to a hot-dip plating apparatus C. In this hot-dip plating apparatus C, Zn is hot-dip plated.
-Heating Al alloy 3゛ above its melting point, Zn-Aj
! Alloy 3" is maintained in a molten state. Here, Zn-
Eutectic component of Al alloy 3゛ (Zn95wt%-Al5wt%
%), its melting point is 382°C.

溶融メッキ方式として、本例では噴流ポンプFによって
供給されるZn−A6合金3゛の噴流中にチューブ1を
通すことによ、って、チューブ1の表面にZn−A42
合金3゛を溶融メンキする。従来用いられていたAj!
−3i系合金の共晶成分の融点(577℃)に比してZ
n−Al合金3′の融点ぼ大幅に低下できるので、実際
の製造工程上、作業がし易くなり、作業性が向上する。
As a hot-dip plating method, in this example, Zn-A42 is coated on the surface of the tube 1 by passing the tube 1 through a jet of Zn-A6 alloy 3' supplied by a jet pump F.
Melt and peel Alloy 3. The conventionally used Aj!
-Z compared to the melting point (577°C) of the eutectic component of the 3i alloy
Since the melting point of the n-Al alloy 3' can be significantly lowered, it becomes easier to work in the actual manufacturing process and improves workability.

なお、Zn−A42合金3゛はZn量が減少すると融点
が高くなり、溶融メッキの作業性が低下するので、Zn
量は60wt%(Zn60wt%場合、Zn−Al合金
の融点は約550℃)以上とすることが好ましい。ここ
で、Zn−Al合金3′ とは、ZnおよびAnを主成
分とするものであるが、不可避的不純物をある程度含有
していることはもちろんであり、また必要に応じZn、
Ai!以外の適宜の成分を多少添加してもよい。
Note that Zn-A42 alloy 3' has a higher melting point when the amount of Zn decreases, reducing the workability of hot-dip plating.
The amount is preferably 60 wt% or more (in the case of 60 wt% Zn, the melting point of the Zn-Al alloy is about 550°C). Here, the Zn-Al alloy 3' is one whose main components are Zn and An, but it goes without saying that it contains some unavoidable impurities, and if necessary, Zn,
Ai! Other appropriate components may be added to some extent.

第4図は上記Zn−Aj!合金3′を被覆したチューブ
lの横断面を示す。Zn−Am!合金層3で表面を覆わ
れたチューブ1は、その後、所定の間隙を保って蛇行状
に折り曲げて熱交換器本体部分を形成し、次にチューブ
1の平行部間にフィン2を挿入し、治具で固定保持した
後、前述の溶融メッキ時に用いたフラックスと同じフラ
ックスをスプレーにてチューブ1とフィン2の組付体に
塗布する。
Figure 4 shows the above Zn-Aj! Figure 3 shows a cross section of tube l coated with alloy 3'. Zn-Am! The tube 1 whose surface is covered with the alloy layer 3 is then bent into a serpentine shape while maintaining a predetermined gap to form the heat exchanger body, and then the fins 2 are inserted between the parallel parts of the tube 1. After fixing and holding with a jig, spray the same flux as used during the hot-dip plating described above to the assembled body of tube 1 and fin 2.

次に、この組付体を450℃〜500℃に保たれた加熱
炉内で約10分間加熱し、Zn−Al合金層3を溶融さ
せることによってチューブ1とフィン2との接合を完了
する。
Next, this assembled body is heated in a heating furnace kept at 450° C. to 500° C. for about 10 minutes to melt the Zn-Al alloy layer 3, thereby completing the joining of the tube 1 and the fin 2.

前述のフラックスはZnCj!、を主成分とするもので
あって、腐食性を有しているので、上記の接合工程終了
後に組付体を水洗により洗浄してフラックス残渣を除去
する。
The aforementioned flux is ZnCj! , and is corrosive. Therefore, after the above bonding process is completed, the assembled body is washed with water to remove flux residue.

コルゲートフィン2の肉厚は、従来のフィン表面にろう
材のクラッド層を設ける方法によれば、ろう材中のSi
成分に由来する前述の座屈強度低下現象のために最低限
0.13mmを保つ必要があったが、本発明製法によれ
ば、この種の座屈現象はほとんど起こり得ないので、肉
厚のより薄いフィン2を用いても、フィン2とチューブ
lを良好に接合し得る。
According to the conventional method of providing a cladding layer of brazing material on the fin surface, the thickness of the corrugated fin 2 is determined by the Si in the brazing material.
It was necessary to maintain a minimum thickness of 0.13 mm due to the above-mentioned buckling strength reduction phenomenon caused by the components, but according to the manufacturing method of the present invention, this type of buckling phenomenon almost never occurs, so the wall thickness Even if thinner fins 2 are used, the fins 2 and tube l can be joined well.

そこで、フィン2の肉厚を0.16〜0.06mmの範
囲でさまざまに変えた場合に、フィン接合時の座屈現象
がどのくらいの厚さ以下になった時、起こり始めるか従
来の熱交換器の製法と、本発明の製法とを比較しつつ実
験を行なった。第1表はその実験結果を示すものである
Therefore, when the wall thickness of the fin 2 is varied in the range of 0.16 to 0.06 mm, at what thickness does the buckling phenomenon when joining the fins begin to occur? An experiment was conducted while comparing the method of manufacturing the vessel with the method of the present invention. Table 1 shows the experimental results.

(以下余白) 第1表 〈フィンの接合実験結゛果〉 この第1表から明らかなように、フィンの表面にあらか
じめろう材をクラッドしてお〈従来法では、フィン肉厚
が0゜12mm以下に下がると確実に座屈が起こうたの
に対して、本発明の製法によった場合には、フィン肉厚
が0.06mm以下に下がった時、初めて座屈を生じる
ことがわかり、本発明の製法が製品の軽量化に大きく役
立つことが実証された。
(Left below) Table 1 <Results of fin bonding experiments> As is clear from Table 1, the surface of the fin is clad with brazing filler metal in advance. Whereas buckling would definitely occur if the fin thickness decreased to 0.06 mm or less, in the case of the manufacturing method of the present invention, it was found that buckling only occurred when the fin wall thickness decreased to 0.06 mm or less. It has been demonstrated that the manufacturing method of the present invention greatly helps in reducing the weight of products.

次に、熱交換器の製法と製品の耐食性との関連について
、特に腐食の最も生じやすいチューブ1の屈曲部分に着
目して評価テストを行った結果を下記第2表A−Bにま
とめた。
Next, regarding the relationship between the manufacturing method of the heat exchanger and the corrosion resistance of the product, an evaluation test was conducted focusing on the bent portion of the tube 1 where corrosion is most likely to occur, and the results are summarized in Table 2 AB below.

(以下余白) 第2表B チューブの腐食試験結果(従来品)上表にお
ける材料組成の数字はwt%を示す。
(Leaving space below) Table 2 B Corrosion test results for tubes (conventional product) The numbers for material composition in the above table indicate wt%.

テストは3種類のチューブ材料を用い、それぞれ従来製
法と本発明製法によって熱交換器を作り、J I S 
DO201に規定する腐食試験(cASS試験法)を試
みた。上記第2表A、Bに明らかなように、従来製法に
よった製品はチューブの材質の如何にかかわらず、テス
ト開始後300〜500時間後に、チューブ1の屈曲部
から漏れが生じ始めたのに対して、本発明の製法による
ものは、テストした3種類の材質のいずれについても、
700時間経過後においても冷媒洩れが認められず、耐
食性の優秀さを確認することができた。
In the test, three types of tube materials were used, and heat exchangers were made using the conventional manufacturing method and the manufacturing method of the present invention.
A corrosion test (cASS test method) specified in DO201 was attempted. As is clear from Table 2 A and B above, products produced using the conventional method started to leak from the bent part of tube 1 300 to 500 hours after the start of the test, regardless of the material of the tube. On the other hand, the manufacturing method of the present invention has no effect on any of the three types of materials tested.
Even after 700 hours, no refrigerant leakage was observed, confirming the excellent corrosion resistance.

上記の実施例は、自動車搭載用空調機の熱交換器に関す
るものであるが、これと同種の構造をもったさまざまな
熱交換器についても本発明を同様に適用できることはも
ちろんである。また上記実施例では、チューブ1を蛇行
状に曲げ加工する前にZn−Al合金3′を溶融メッキ
しているが、チュー・ブ1を蛇行状に曲げ加工した後に
、チューブ1の表面にZn−Al合金3゛を溶融メッキ
してもよい。
Although the above-mentioned embodiment relates to a heat exchanger for an air conditioner installed in an automobile, it goes without saying that the present invention can be similarly applied to various heat exchangers having the same type of structure. Furthermore, in the above embodiment, the Zn-Al alloy 3' is hot-dip plated before the tube 1 is bent into a serpentine shape. - Al alloy 3' may be hot-dip plated.

(発明の効果) 上述したように本発明によれば、フィン接合時にSi成
分によってコルゲートフィンが座屈しやすくなるという
現象を解消できるので、フィンの薄肉化が可能となり、
熱交換器の軽量化を図ることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to eliminate the phenomenon in which corrugated fins tend to buckle due to the Si component during fin joining, so it is possible to reduce the thickness of the fins.
It is possible to reduce the weight of the heat exchanger.

しかも、Zn−Al合金層はチューブ材に比して電極電
位が十分環であり、犠牲腐食効果を有しており、またチ
ューブ全面に亘って施されているので、従来のような特
別の後工程を要することなく、チューブの耐食性を大幅
に向上できる。
Moreover, the Zn-Al alloy layer has a sufficiently low electrode potential compared to the tube material, has a sacrificial corrosion effect, and is applied over the entire surface of the tube, so it does not require special post-treatment as in the past. The corrosion resistance of the tube can be significantly improved without requiring any additional steps.

また、Zn−Aj!合金は、従来のAl−3i系ろう材
より融点が低いため、多穴チューブの表面に比較的低温
度にて溶融メッキ等により容易に被覆することができ、
作業性を向上することができる。
Also, Zn-Aj! The alloy has a lower melting point than conventional Al-3i brazing materials, so it can be easily coated on the surface of a multi-hole tube by hot-dip plating or the like at a relatively low temperature.
Work efficiency can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製法によって作られた熱交換器の斜視
図、第2図は第1図に示す熱交換器においてチューブの
折り曲げ形状を示す一部断面斜視図、第3図は本発明製
法の一実施例を示す工程概要図、第4図は本発明製法に
よりZn−Aj!合金層を被覆したチューブの横断面図
である。 1・・・チューブ、2・・・フィン、3・・・Zn−A
l合金層、3゛・・・Zn−Al合金、A・・・フラッ
クス塗布装置、B・・・予熱装置、C・・・溶融メッキ
装置。 代理人弁理士  岡 部   隆 第1図 第2図
FIG. 1 is a perspective view of a heat exchanger manufactured by the manufacturing method of the present invention, FIG. 2 is a partial cross-sectional perspective view showing the bent shape of the tube in the heat exchanger shown in FIG. 1, and FIG. 3 is a perspective view of the heat exchanger manufactured by the method of the present invention A process outline diagram showing an example of the manufacturing method, FIG. 4, shows Zn-Aj! by the manufacturing method of the present invention. FIG. 2 is a cross-sectional view of a tube coated with an alloy layer. 1...Tube, 2...Fin, 3...Zn-A
1 alloy layer, 3゛...Zn-Al alloy, A... flux coating device, B... preheating device, C... hot-dip plating device. Representative Patent Attorney Takashi Okabe Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)(a)押出し加工により多数の穴を有するアルミ
ニウム製チューブを成形し、 (b)該チューブの表面にZn−Al合金を被覆し、(
c)このZn−Al合金の被覆工程の前後のいずれかに
おいて前記チューブを蛇行状に折り曲げ、(d)前記チ
ューブの平行部間にアルミニウム製コルゲートフィンを
挿入した後、 (e)前記Zn−Al合金の溶融温度に加熱して前記チ
ューブと前記コルゲートフィンを前記Zn−Al合金層
を介して一体に接合することを特徴とするアルミニウム
熱交換器の製法。
(1) (a) Form an aluminum tube with many holes by extrusion, (b) coat the surface of the tube with Zn-Al alloy, (
c) Bend the tube into a serpentine shape either before or after the Zn-Al alloy coating step, (d) insert an aluminum corrugated fin between the parallel parts of the tube, and (e) A method for manufacturing an aluminum heat exchanger, characterized in that the tube and the corrugated fin are integrally joined via the Zn-Al alloy layer by heating to the melting temperature of the alloy.
(2)前記Zn−Al合金を溶融メッキにより前記チュ
ーブの表面に被覆することを特徴とする特許請求の範囲
第1項記載のアルミニウム熱交換器の製法。
(2) The method for manufacturing an aluminum heat exchanger according to claim 1, characterized in that the surface of the tube is coated with the Zn-Al alloy by hot-dip plating.
(3)前記Zn−Al合金におけるZn含有量が60w
t%以上であることを特徴とする特許請求の範囲第1項
または第2項記載のアルミニウム熱交換器の製法。
(3) Zn content in the Zn-Al alloy is 60w
The method for manufacturing an aluminum heat exchanger according to claim 1 or 2, characterized in that the aluminum heat exchanger is t% or more.
JP7618585A 1985-04-10 1985-04-10 Production of aluminum heat exchanger Pending JPS61235072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7618585A JPS61235072A (en) 1985-04-10 1985-04-10 Production of aluminum heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7618585A JPS61235072A (en) 1985-04-10 1985-04-10 Production of aluminum heat exchanger

Publications (1)

Publication Number Publication Date
JPS61235072A true JPS61235072A (en) 1986-10-20

Family

ID=13598062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7618585A Pending JPS61235072A (en) 1985-04-10 1985-04-10 Production of aluminum heat exchanger

Country Status (1)

Country Link
JP (1) JPS61235072A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901908A (en) * 1987-09-09 1990-02-20 Nippondenso Co., Ltd. Aluminum material for brazing, method of manufacturing same, and method of manufacturing heat exchanger made of aluminum alloy
JP2009192191A (en) * 2008-02-18 2009-08-27 Hitachi Cable Ltd Heat exchanger and its manufacturing method
CN108302455A (en) * 2016-09-01 2018-07-20 法雷奥照明公司 Motor vehicles lighting module with cooling component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145268A (en) * 1984-01-04 1985-07-31 Nippon Denso Co Ltd Production of heat exchanging element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145268A (en) * 1984-01-04 1985-07-31 Nippon Denso Co Ltd Production of heat exchanging element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901908A (en) * 1987-09-09 1990-02-20 Nippondenso Co., Ltd. Aluminum material for brazing, method of manufacturing same, and method of manufacturing heat exchanger made of aluminum alloy
JP2009192191A (en) * 2008-02-18 2009-08-27 Hitachi Cable Ltd Heat exchanger and its manufacturing method
CN108302455A (en) * 2016-09-01 2018-07-20 法雷奥照明公司 Motor vehicles lighting module with cooling component

Similar Documents

Publication Publication Date Title
US4891275A (en) Aluminum shapes coated with brazing material and process of coating
US4732311A (en) Process of producing lightweight and corrosion-resistant heat exchanger
US5005285A (en) Method of producing an aluminum heat exchanger
US3855682A (en) Method of soldering together an aluminum part and a ferrous or cuprous metal part
US4615952A (en) Aluminum shapes coated with brazing material and process of coating
JP2002011569A (en) Heat exchanger and its manufacture
JP5101812B2 (en) High corrosion resistance tube for heat exchanger, heat exchanger and method for producing the same
US3689941A (en) Method of fabricating and soldering stainless steel parts
JPS61235072A (en) Production of aluminum heat exchanger
JPS6334495A (en) Aluminum heat exchanger
CA1253046A (en) Aluminium shapes coated with brazing material and process of coating
JPS6171173A (en) Manufacture of aluminum heat exchanger
CN102146543A (en) Aluminum alloy extrusion material for a connector which is excellent in extrusion property and sacrificial anode property
JP2009275246A (en) Brazing sheet for heat exchanger made of aluminum alloy, heat exchanger made of aluminum alloy, and method for producing heat exchanger made of aluminum alloy
JPS6284868A (en) Manufacture of aluminum heat exchanger
JPS62234657A (en) Manufacture of aluminum made heat exchanger
JPS6174771A (en) Production of aluminum heat exchanger
JPH02127973A (en) Manufacture of heat exchanger made of aluminum
JP3151152B2 (en) Evaporator with excellent corrosion resistance
JPH1177292A (en) Manufacture of aluminum heat exchanger
JPS62148080A (en) Manufacture of heat exchanger made of aluminum
JPS6383595A (en) Tube for heat exchanger made of aluminum
JPS6174770A (en) Production of aluminum heat exchanger
JPS60255262A (en) Manufacture of lightweight and corrosion-resistant heat exchanger
JPH0284261A (en) Brazing method for shape tube in heat exchanger made of aluminum