JPS6334495A - Aluminum heat exchanger - Google Patents

Aluminum heat exchanger

Info

Publication number
JPS6334495A
JPS6334495A JP17808586A JP17808586A JPS6334495A JP S6334495 A JPS6334495 A JP S6334495A JP 17808586 A JP17808586 A JP 17808586A JP 17808586 A JP17808586 A JP 17808586A JP S6334495 A JPS6334495 A JP S6334495A
Authority
JP
Japan
Prior art keywords
tube
fin
heat exchanger
brazing
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17808586A
Other languages
Japanese (ja)
Inventor
Yoshiharu Hasegawa
義治 長谷川
Kenji Nekura
根倉 健二
Ken Yamamoto
憲 山本
Shigenobu Fukumi
重信 福見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP17808586A priority Critical patent/JPS6334495A/en
Publication of JPS6334495A publication Critical patent/JPS6334495A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize the thinning of a fin and achieve the reduction of the weight as well as the cost of the title heat exchanger, by a method wherein a fin is connected to the outer surface of a tube by melting and solidifying the brazing material of aluminum alloy containing at least one kind of Si and Zn applied to the outer surface of the tube through flame spray. CONSTITUTION:A tube 1 consists of an aluminum alloy containing 0.2-1.0wt% of Cu at least one kind of 0.05-0.5wt% of Mn, 0.05-0.3wt% of Cr or 0.05-0.3wt% of Zr, and the remain of aluminum. A brazing material 3, consisting of Al-Si Al-Si-Zn or Al-Zn, is sprayed on the surface of the tube 1 and a corrugate fin 2, which are made of said aluminum alloy, to coat them. The fins are incorporated into the tube and they are heated in a heating furnace to a temperature higher than the melting point of the brazing material, then, the brazing material is melted and solidified, thereby connecting the fin 2 with the tube 1. According to this method, the strength deteriorating phenomenon of the fin member under a high-temperature, which is due to the diffusion of Si into the fin member, will never be generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルミニウム熱交換器に関するもので、例え
ば車両搭載用空気調和装置のコンデンサー、エバポレー
タなどに適用できるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aluminum heat exchanger, and can be applied to, for example, a condenser, an evaporator, etc. of an air conditioner mounted on a vehicle.

〔従来の技術〕[Conventional technology]

車両の軽量化による燃費性能の向上が重要な技術課題を
なしている自動車業界においては、車載空調装置用熱交
換器に対しても軽量化に対策が求められている。
In the automobile industry, where improving fuel efficiency by reducing the weight of vehicles is an important technical issue, measures are also required to reduce the weight of heat exchangers for on-board air conditioners.

コンデンサー、あるいはエバポレータといったこの種の
熱交換器は一般にアルミニウム合金で押出し成形された
冷媒流通用の多穴チューブを蛇行状に折り曲げる。しか
る後、蛇行状チューブの平行部間の間隙に、その表面に
あらかじめろう行用のろう材をクラッドさせた板厚が0
.1611内外のごく薄いアルミニうム合金製のコルゲ
ート加工したフィンを挿入する。そして、治具を用いて
この組合せ構造を保持させたうえで、全体を加熱炉内に
納めてろう材の溶融温度まで加熱することによってろう
付し、チューブとフィンとの組合せを完成させた熱交換
器が用いられてきた。
This type of heat exchanger, such as a condenser or evaporator, is generally made of extruded aluminum alloy and bent into a meandering multi-hole tube for the flow of refrigerant. After that, in the gap between the parallel parts of the serpentine tube, the surface of the plate is clad in advance with a brazing material for soldering, so that the thickness of the plate is 0.
.. Insert corrugated fins made of extremely thin aluminum alloy 1611 inside and outside. Then, after holding this combined structure using a jig, the whole is placed in a heating furnace and heated to the melting temperature of the brazing filler metal to braze it, completing the tube and fin combination. Exchangers have been used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、フィンの表面にあらかじめクラッドされるろ
う材には、融点降下のためにSi成分が多量に配合され
ており、ろう付して、フィン自体の材料強度を低下させ
てしまう現象が現れる。その結果、フィンの座屈現象が
生じやすいという問題点があった。このろう付は時のフ
ィンの座屈現象を回避するには、フィンの板厚を増大さ
せねばならず、フィンの薄肉化による熱交換器全体とし
ての軽量化が困難であった。
By the way, the brazing material that is clad in advance on the surface of the fin contains a large amount of Si component in order to lower the melting point, which causes brazing and reduces the material strength of the fin itself. As a result, there was a problem in that buckling of the fins was likely to occur. In order to avoid the buckling phenomenon of the fins during brazing, it is necessary to increase the plate thickness of the fins, and it is difficult to reduce the weight of the heat exchanger as a whole by thinning the fins.

本発明は上記点に迄みてなされたもので、ろう付は時に
おけるフィンの薄肉化を達成し、かつ耐食性の優れた熱
交換器を提供することを目的としたものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide a heat exchanger that achieves thinning of the fins by brazing and has excellent corrosion resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するために、 (alチューブ材としてCuを0.2〜1.0%含有す
るほかに、Mn0.05〜0.5%、Cr O,05〜
0゜3%、7. r Q、 05〜0.3%の3種から
なる群より選択される1種以上の元素を含有し、残部が
ANおよび不可避不純物よりなるアルミニウム合金を用
いて、その表面にAl−3t、Af−3i−Zn又はA
l−Zn合金からなるろう材として、溶射法により被覆
する。
In order to achieve the above object, the present invention has the following objectives: (In addition to containing 0.2 to 1.0% Cu as an Al tube material, 0.05 to 0.5% Mn, 05 to 05% CrO,
0°3%, 7. rQ, using an aluminum alloy containing one or more elements selected from the group consisting of 05 to 0.3% and the remainder consisting of AN and unavoidable impurities, and having Al-3t and Af on the surface. -3i-Zn or A
A brazing material made of l-Zn alloy is coated by thermal spraying.

(b)前記ろう材が被覆されたアルミニウム合金性チュ
ーブとアルミニウム合金性フィンとを組付ける。
(b) Assemble the aluminum alloy tube coated with the brazing material and the aluminum alloy fin.

(C)このチューブとフィンとは加熱炉内にてろう材の
融点以上の温度に加熱され、ろう材が溶融・凝固するこ
とによな一体に接合される。
(C) The tube and fins are heated in a heating furnace to a temperature higher than the melting point of the brazing material, and the brazing material is melted and solidified, thereby joining them together.

上記チューブに被覆するAj!−3i、Al−3t−Z
n、Al−Zn合金からなるろう再に微少な不可避不純
物が含有されていることはもちろんであり、また必要に
応じてAl、Si、  Zn以外の元素を多少添加する
ことも可能である。具体的に言えばろう付性としてフラ
ックスを用いる方法では添加物は必要ないが、真空ろう
付性を用いる場合にはMgやBiなどの添加が必要とな
る。
Aj to coat the above tube! -3i, Al-3t-Z
It goes without saying that the solder made of Al--Zn alloy contains minute impurities, and it is also possible to add some elements other than Al, Si, and Zn as necessary. Specifically, additives are not required in the method of using flux for brazing properties, but when using vacuum brazing properties, addition of Mg, Bi, etc. is required.

また上記ろう材をチューブ表面に被覆する容射法につい
てはN8ガス雰囲気中で行うことが望ましいが、大気中
でも可能である。
Further, although it is preferable to perform the spraying method of coating the tube surface with the brazing filler metal in an N8 gas atmosphere, it is also possible in the air.

ろう材の被覆厚さとしては通常5〜100μm程度が好
ましい。
The coating thickness of the brazing filler metal is usually preferably about 5 to 100 μm.

〔作用および効果〕[Action and effect]

上記した技術的手段によれば、フィン側に/1−3i系
ろう材のろう材をクラフトすることなくアルミニウム合
金製チューブとフィンとをろう付けできるから、フィン
材へのSt拡散に起因する高温時のフィン材の強度劣化
といった現象が生じない。
According to the above-mentioned technical means, it is possible to braze the aluminum alloy tube and the fin without crafting /1-3i brazing filler metal on the fin side. There is no phenomenon such as deterioration in the strength of the fin material due to aging.

フィン強度の低下に関係する上記の要因を回避もしくは
抑制することができることから、本発明ではフィンの座
屈を回避しつつ、フィンの薄肉化を良好に実現できる。
Since the above-mentioned factors related to a decrease in fin strength can be avoided or suppressed, the present invention can satisfactorily achieve thinning of the fin while avoiding buckling of the fin.

これにより、熱交換器全体としての軽量化、コスト低減
を達成できる実用上の効果が大である。
This has a great practical effect of reducing the weight and cost of the heat exchanger as a whole.

また、チューブ材としてAj!−Cu合金にMn。Also, Aj! as a tube material! -Mn in Cu alloy.

Cr、Zrを適正量添加することによって材料自体の再
結晶温度を上昇することができるため、ろう付は時の熱
による結晶の粗大化が生じにくくなるので、もっと耐食
性を劣化させる不純物の集合が抑制されるため、耐食性
の劣化が少なく、良好な耐食性が保持される。
By adding appropriate amounts of Cr and Zr, the recrystallization temperature of the material itself can be raised, making it difficult for the crystals to coarsen due to the heat during brazing, which further reduces the aggregation of impurities that degrade corrosion resistance. Therefore, deterioration of corrosion resistance is suppressed and good corrosion resistance is maintained.

次に本発明におけるチューブ材の化学成分範囲を定めた
理由を説明する。
Next, the reason for determining the range of chemical components of the tube material in the present invention will be explained.

Cuはアルミニウム合金の機械的強度および電極電位を
高める上で不可決の元素であり、0.2%未満では、こ
れらの効果が発揮されない。また、1、0%を越えて添
加すると押出し加工性が著しく劣化するので、1.0%
を越える添加は好ましくない。
Cu is an essential element for increasing the mechanical strength and electrode potential of aluminum alloys, and if it is less than 0.2%, these effects will not be exhibited. In addition, if it is added in excess of 1.0%, the extrusion processability will deteriorate significantly, so 1.0%
It is not preferable to add more than

Mn、Cr、Zrは何れもサブグレインを強化し再結晶
を抑制するので、ろう付は時の熱により耐食性の劣化を
抑制する元素であり、目的達成のためには、これらのう
ち少なくとも1種を何れの元素についても0.05%以
上含有させなければならない。しかし、何れの元素も添
加量が多すぎると押出し加工性が低下するので、Mnに
ついては0.5%、またCr、Zrについては0.3%
以下に抑える必要がある。また、Mn、Cr、Zrは材
料強度も増加させるため、チューブ自体の薄肉化も可能
となる。
Since Mn, Cr, and Zr all strengthen the subgrain and suppress recrystallization, brazing is an element that suppresses deterioration of corrosion resistance due to the heat of time, and in order to achieve the purpose, at least one of these must be used. Each element must be contained in an amount of 0.05% or more. However, if the amount of any element added is too large, extrusion processability will deteriorate, so Mn should be added at 0.5%, and Cr and Zr should be added at 0.3%.
It is necessary to keep it below. Moreover, since Mn, Cr, and Zr also increase material strength, it is possible to reduce the thickness of the tube itself.

しかしながら、融雪塩の散布が近年増加しており、耐食
性の要求も一段と厳しくなっているが、さらに一層の耐
食性向上を図るためには、ろう材として一般的なAl−
3i合金に代わりAf−3i−Zn合金や、A1−Zn
合金を用いたり、フィン材にチューブ材より電極電位の
卑な材料を用いることが好ましい。
However, the use of snow-melting salt has increased in recent years, and the requirements for corrosion resistance have become even more stringent.
Af-3i-Zn alloy or A1-Zn instead of 3i alloy
It is preferable to use an alloy or to use a material with a less noble electrode potential than the tube material for the fin material.

チューブとろうを被覆する手段としては、本発明で特徴
とする溶射法の他に溶射めっきや電気めっきなどが考え
られるが、溶射法は他の方式と比べて必要な部分のみの
ろう材を被覆しやすく、チューブを押出し成形した直後
行えば、ろう材の被覆沿うと素材との密着性が良好で、
チューブ曲げ加工時のろう材層の剥離はなく、良好な加
工性が得られるなどの特徴を有する。 ・ 〔実施例〕 以下、本発明を図に示す実施例について説明する。
In addition to the thermal spraying method featured in the present invention, thermal spray plating and electroplating can be considered as a means of coating the tube and the solder material, but compared to other methods, the thermal spraying method allows only the necessary parts to be coated with the solder material. It is easy to do, and if you do it immediately after extruding the tube, it will have good adhesion to the material along the brazing filler metal coating.
It has features such as no peeling of the brazing material layer during tube bending and good workability. - [Example] Hereinafter, an example of the present invention shown in the drawings will be described.

第1図は本発明実施例である車両搭載用空調装置用熱交
換器であるコンデンサーの斜視図であって、第2図の一
部断面斜視図に見られるように、偏平チューブlには流
体(冷媒)の流れ方向に沿って、内部に複数条の仕切壁
1aを設けて多数の六1bが形成しである。
FIG. 1 is a perspective view of a condenser which is a heat exchanger for a vehicle air conditioner according to an embodiment of the present invention. As seen in the partially sectional perspective view of FIG. Along the flow direction of the refrigerant, a plurality of partition walls 1a are provided inside to form a large number of partition walls 1b.

この偏平チューブ1を所定間隙を保って蛇行状に折り曲
げることによって、熱交換器の主体成分が構成されてい
る。偏平チューブ1の平行部間にはアルミニウム合金の
ごく薄肉の伝熱面積増大用のコルゲートフィン2が挿入
され、このチューブlとフィン2とはチューブ1の表面
にあらかじめ被覆しであるAj!−3t、AJ−3i−
Zn、又はAj!−Zn合金層3のろう材によって、ろ
う付けされ、一体内に接合されている。
The main component of the heat exchanger is constructed by bending this flat tube 1 in a meandering manner while maintaining a predetermined gap. A very thin corrugated fin 2 made of aluminum alloy for increasing the heat transfer area is inserted between the parallel parts of the flat tube 1, and the tube 1 and the fin 2 are coated on the surface of the tube 1 in advance. -3t, AJ-3i-
Zn or Aj! - They are brazed and joined together by the brazing material of the Zn alloy layer 3.

チューブ1の両開口端には、冷凍サイクルの冷媒配管に
接続するためのパイプ接手4および5がろう付けされて
いる。
Pipe fittings 4 and 5 are brazed to both open ends of the tube 1 for connection to refrigerant piping of a refrigeration cycle.

次に、本発明の製造を工程順に説明する。Next, the manufacturing process of the present invention will be explained step by step.

まず〔表1〕にチューブ材として示す合金を調合して大
きさ直径150 fin、長さ600 鰭のビレットを
製造し、これを約400℃に予熱して第3図中Aで示す
押出しプレスにて前述した断面形状(第2図参照)を有
するアルミニウム合金製の多穴偏平チューブ1を成形す
る。押出し成形した直後の高温時に、上下方向より第3
図中Bで示す2台の溶射機を用いて、偏平チューブの表
面に〔表1〕にろう材として示すAl−3i、Al−3
i−Zn又はA1−Zn合金を溶射した。その際に用い
た合金の形成は直径1.5 龍のワイヤーであり、吹き
つける気体としてはN、ガスを用いた。
First, the alloy shown as the tube material in [Table 1] was prepared to produce a billet with a diameter of 150 fins and a length of 600 fins, which was preheated to about 400°C and placed in an extrusion press shown as A in Fig. 3. Then, a multi-hole flat tube 1 made of aluminum alloy having the above-described cross-sectional shape (see FIG. 2) is formed. At high temperature immediately after extrusion molding, the third
Using two thermal spraying machines shown as B in the figure, Al-3i and Al-3 shown as brazing materials in [Table 1] were applied to the surface of the flat tube.
i-Zn or A1-Zn alloy was sprayed. The alloy used at that time was formed using a wire with a diameter of 1.5 mm, and N and gas were used as the gas to be blown.

第4図は上記ろう材を被覆したチューブ1の横断面を示
す、ろう材3で表面を覆われたチューブ1は、その後所
定の間隙を保って蛇行状に折り曲げて熱交換器本体部分
を形成し、次にチューブ1の平行部間に波形状に成形さ
れたコルゲートフィン2を挿入し、治具で固定保持した
後、フラックスとしてフルオロアルミニウム酸カリウム
(K/l!F a、 K zA I F s・H2Oの
混合物)を水に希釈した水溶液をスプレーにて噴霧して
チューブ1とフィン2の組付体表面に塗布する。
FIG. 4 shows a cross section of the tube 1 covered with the brazing material 3. The tube 1 whose surface is covered with the brazing material 3 is then bent into a meandering shape keeping a predetermined gap to form the main body of the heat exchanger. Next, a corrugated fin 2 formed into a wave shape is inserted between the parallel parts of the tube 1 and held fixed with a jig, and then potassium fluoroaluminate (K/l!F a, K zA I F An aqueous solution prepared by diluting a mixture of s.H2O) with water is sprayed onto the surface of the assembly of tube 1 and fin 2.

次にこの組付体を上記ろう材3の要点以上の温度に保持
された加熱炉内で約10分間加熱し、ろう材3を)容融
させることによってチューブ1とフイン2との接合(ろ
う付)を完了する。第5図はこのチューブ1とフィン2
の接合状態を示している。
Next, this assembled body is heated for about 10 minutes in a heating furnace maintained at a temperature higher than the temperature of the brazing filler metal 3 to melt the brazing filler metal 3, thereby joining the tube 1 and the fin 2 (brazing filler metal 3). complete). Figure 5 shows this tube 1 and fin 2.
shows the bonded state.

(以下余白) コルゲートフィン2の肉厚は、従来のフィン表面にろう
付のクラッド層を設ける方法によれば、ろう材中のSi
成分の拡散等に由来する座屈強度低下現象のために最低
限0.13 **を保つ必要があったが、本実施例によ
れば、この種の座屈現象を良好に回避できるので、肉厚
のより薄いフィン2を用いても、フィン2とチューブ1
を良好に接合し得る。そこで、フィン2の肉厚を0.1
6 +n〜0゜06Bの範囲で種々変えた場合に、フィ
ン接合時の座屈現象がどのくらいの厚さ以下になった時
、起こり始めるか、従来の熱交換器と、本発明実施例と
を比較しつつ実験を行った。
(Left below) The wall thickness of the corrugated fin 2 is determined by the thickness of the Si in the brazing filler metal according to the conventional method of providing a brazed cladding layer on the fin surface.
It was necessary to maintain a minimum value of 0.13** due to the buckling strength reduction phenomenon caused by the diffusion of components, etc., but according to this example, this type of buckling phenomenon can be avoided well. Even if a thinner fin 2 is used, the fin 2 and tube 1
can be bonded well. Therefore, the thickness of fin 2 was set to 0.1
6. When the thickness is varied in the range of +n to 0°06B, below what thickness does the buckling phenomenon occur when joining the fins? We conducted an experiment while making comparisons.

〔表2〕は、その実験結果を示すものである。[Table 2] shows the experimental results.

(以下余白) 〔表2〕 フィンの接合実験結果 ○ 座屈発生ナシ この〔表2〕から明らかなように、フィンの表面にあら
かじめろう材をクラッドしてお〈従来例では、フィン肉
厚が0.12u以下に下がると確実に座屈が起こったの
に対して、本発明実施例によった場合には、フィン肉厚
が0.06鶴以下に下がった時、初めて座屈を生じるこ
とがわかり、本発明実施例では製品の軽量化に大きく役
立つことが実証された。
(Leaving space below) [Table 2] Fin joining experiment results ○ No buckling As is clear from this [Table 2], the surface of the fin is clad with brazing metal in advance (in the conventional example, the fin wall thickness is While buckling definitely occurred when the fin thickness decreased to 0.12u or less, in the case of the embodiment of the present invention, buckling did not occur for the first time when the fin wall thickness decreased to 0.06u or less. It was found that the examples of the present invention are greatly useful for reducing the weight of products.

熱交換器の耐食性評価結果を〔表1〕に示すが、ここで
フィン材としては犠牲腐食作用を示すAI−1,2M 
n −1,52n合金を採用したので、腐食の最も生じ
やすいチューブ1の屈曲部分に着目して評価テストとし
てCASSテストを行った。
The corrosion resistance evaluation results of the heat exchanger are shown in [Table 1], where the fin materials used were AI-1 and 2M, which exhibit sacrificial corrosion.
Since the n-1,52n alloy was adopted, a CASS test was conducted as an evaluation test, focusing on the bent portion of the tube 1 where corrosion is most likely to occur.

結果よりわかるごとく、本発明実施例は比較品として示
す従来品に比較して洩れまでの時間が長く耐食性が良好
である。
As can be seen from the results, the examples of the present invention have a longer time until leakage and better corrosion resistance than the conventional products shown as comparative products.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を説明するためのもので、第1
図は本発明の熱交換器の斜視図、第2図は第1図に示す
熱交換器において、チューブの折り曲げ形状を示す一部
断面斜視図、第3図は本発明品の一実施例を示す工程概
要図、第4図はろう材を被覆したチューブの横断面図、
第5図はチューブとフィンの接合部を示す部分拡大断面
図である。 1・・・チューブ、2・・・フィン、3・・・ろう材、
A・・・押出しプレス、B・・・溶射機、a・・・ダイ
ス、b・・・溶射ガン。
The drawings are for explaining one embodiment of the present invention.
Figure 2 is a perspective view of the heat exchanger of the present invention, Figure 2 is a partial cross-sectional perspective view showing the bent shape of the tube in the heat exchanger shown in Figure 1, and Figure 3 is an embodiment of the product of the present invention. Figure 4 is a cross-sectional view of a tube coated with brazing material.
FIG. 5 is a partially enlarged sectional view showing the joint between the tube and the fin. 1...tube, 2...fin, 3...brazing metal,
A...Extrusion press, B...Thermal spray machine, a...Dice, b...Thermal spray gun.

Claims (2)

【特許請求の範囲】[Claims] (1) 被熱交換流体が内部を通過するチューブと、こ
のチューブの外壁にろう付によって接合されるアルミニ
ウム製のフィンとを備えるアルミニウム熱交換器におい
て、 前記チューブは、銅(Cu)を0.2〜1.0重量%含
有し、かつ、0.05〜0.5重量%のマンガン(Mn
)、0.05〜0.3重量%のクロム(Cr)、0.0
5〜0.3重量%のジルコニア(Zr)のうち、少なく
とも一種以上を含有し、残部がアルミニウム(Al)お
よび不可避不純物よりなるアルミニウム合金から成形さ
れ、 前記チューブの外表面は、シリコン(Si)、亜鉛(Z
n)のうち少なくとも1種を含むアルミニウム合金より
なるろう材が溶射されることにより被覆され、 前記ろう材を溶融・凝固させることにより前記フィンと
前記チューブとが接合されるアルミニウム熱交換器。
(1) An aluminum heat exchanger comprising a tube through which a fluid to be heat exchanged passes, and aluminum fins joined to the outer wall of the tube by brazing, in which the tube is made of copper (Cu) at 0.5%. 2 to 1.0% by weight, and 0.05 to 0.5% by weight of manganese (Mn
), 0.05-0.3% by weight chromium (Cr), 0.0
The tube is formed from an aluminum alloy containing at least one type of zirconia (Zr) in an amount of 5 to 0.3% by weight, and the remainder is aluminum (Al) and unavoidable impurities, and the outer surface of the tube is made of silicon (Si). , zinc (Z
An aluminum heat exchanger that is coated by thermal spraying with a brazing material made of an aluminum alloy containing at least one of n), and in which the fins and the tube are joined by melting and solidifying the brazing material.
(2) 前記フィンは芯材のみからなる裸材より構成さ
れる特許請求の範囲第1項記載のアルミニウム熱交換器
(2) The aluminum heat exchanger according to claim 1, wherein the fins are made of a bare material consisting only of a core material.
JP17808586A 1986-07-29 1986-07-29 Aluminum heat exchanger Pending JPS6334495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17808586A JPS6334495A (en) 1986-07-29 1986-07-29 Aluminum heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17808586A JPS6334495A (en) 1986-07-29 1986-07-29 Aluminum heat exchanger

Publications (1)

Publication Number Publication Date
JPS6334495A true JPS6334495A (en) 1988-02-15

Family

ID=16042363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17808586A Pending JPS6334495A (en) 1986-07-29 1986-07-29 Aluminum heat exchanger

Country Status (1)

Country Link
JP (1) JPS6334495A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448107A (en) * 1989-12-29 1995-09-05 Sumitomo Electric Industries, Ltd. Radiating fin having an improved life and thermal conductivity
WO1998017841A1 (en) * 1996-10-21 1998-04-30 Carrier Corporation Advanced galvanic corrosion protection
CN1052438C (en) * 1992-12-29 2000-05-17 昭和铝株式会社 Corrosion-proof aluminium for soldering and manufacture of same
WO2000050664A1 (en) * 1999-02-26 2000-08-31 Carrier Corporation Article exhibiting improved resistance to galvanic corrosion
US6186222B1 (en) 1997-07-16 2001-02-13 The Furukawa Electric Co., Ltd Aluminum alloy tube and heat exchanger, and method of metal-spraying a filler alloy
US6604572B2 (en) * 1999-04-14 2003-08-12 Mitsubishi Denki Kabushiki Kaisha Pipeline device and method for its production, and heat exchanger
JP2017008356A (en) * 2015-06-19 2017-01-12 三菱アルミニウム株式会社 Aluminum alloy tube for heat exchanger and production method for the same, and heat exchanger core

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448107A (en) * 1989-12-29 1995-09-05 Sumitomo Electric Industries, Ltd. Radiating fin having an improved life and thermal conductivity
CN1052438C (en) * 1992-12-29 2000-05-17 昭和铝株式会社 Corrosion-proof aluminium for soldering and manufacture of same
US6200642B1 (en) * 1992-12-29 2001-03-13 Showa Aluminum Corporation Method of producing brazeable aluminum material
WO1998017841A1 (en) * 1996-10-21 1998-04-30 Carrier Corporation Advanced galvanic corrosion protection
US6186222B1 (en) 1997-07-16 2001-02-13 The Furukawa Electric Co., Ltd Aluminum alloy tube and heat exchanger, and method of metal-spraying a filler alloy
WO2000050664A1 (en) * 1999-02-26 2000-08-31 Carrier Corporation Article exhibiting improved resistance to galvanic corrosion
US6604572B2 (en) * 1999-04-14 2003-08-12 Mitsubishi Denki Kabushiki Kaisha Pipeline device and method for its production, and heat exchanger
JP2017008356A (en) * 2015-06-19 2017-01-12 三菱アルミニウム株式会社 Aluminum alloy tube for heat exchanger and production method for the same, and heat exchanger core

Similar Documents

Publication Publication Date Title
US4901908A (en) Aluminum material for brazing, method of manufacturing same, and method of manufacturing heat exchanger made of aluminum alloy
WO2015056669A1 (en) Aluminum alloy heat exchanger
US3855682A (en) Method of soldering together an aluminum part and a ferrous or cuprous metal part
JP2003528280A (en) Aluminum alloy composites with improved electrical conductivity and high strength and methods of making and using
US20120292001A1 (en) Soldered aluminum heat exchanger
JPH10265881A (en) Composite pipe for inner pipe of oil cooler and its production method and double pipe type oil cooler/ integrated heat exchanger
JP2006145060A (en) Aluminum heat exchanger
JPS6334495A (en) Aluminum heat exchanger
JP5101812B2 (en) High corrosion resistance tube for heat exchanger, heat exchanger and method for producing the same
JPH11335764A (en) Manufacture of high strength aluminum extruding alloy for heat exchanger, excellent in extrudability, and high strength aluminum alloy extruded material for heat exchanger
KR20050084231A (en) Aluminum alloy brazing material, brazing member, brazed article and brazing method therefor using said material, brazing heat exchanging tube, heat exchanger and manufacturing method thereof using said brazing heat exchanging tube
EP1716266B1 (en) Tube for use in heat exchanger, method for manufacturing said tube, and heat exchanger
JPH09137245A (en) Aluminum tubular body for heat exchanger and aluminum-made heat exchanger using the same body
JPH0246969A (en) Production of brazed flat aluminum tube for heat exchanger
JP2011000610A (en) Aluminum alloy cladding material for tube for heat exchanger, and heat exchanger core using the same
JP4554389B2 (en) HEAT EXCHANGER TUBE, ITS MANUFACTURING METHOD, AND HEAT EXCHANGER
JPS61235072A (en) Production of aluminum heat exchanger
JPS6171173A (en) Manufacture of aluminum heat exchanger
JPH03114654A (en) Heat exchanger
JP2017155308A (en) Aluminum alloy-made brazing fin material for heat exchanger and aluminum alloy-made heat exchanger using the same
JP2004202579A (en) Aluminum alloy brazing filler metal, brazing material, article and manufacturing method using it, brazing heat exchange tube, heat exchanger using it and its manufacturing method
JP3291042B2 (en) Aluminum alloy fin material and method for manufacturing aluminum alloy heat exchanger
JPH02142672A (en) Manufacture of aluminum heat exchanger
Fortin et al. Aluminum materials and processes for automotive heat exchanger applications
JPS6174771A (en) Production of aluminum heat exchanger