JPS6123328A - Flux washing method of semiconductor device - Google Patents
Flux washing method of semiconductor deviceInfo
- Publication number
- JPS6123328A JPS6123328A JP59144661A JP14466184A JPS6123328A JP S6123328 A JPS6123328 A JP S6123328A JP 59144661 A JP59144661 A JP 59144661A JP 14466184 A JP14466184 A JP 14466184A JP S6123328 A JPS6123328 A JP S6123328A
- Authority
- JP
- Japan
- Prior art keywords
- flux
- semiconductor
- zinc chloride
- electrode plates
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83192—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/83801—Soldering or alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/0103—Zinc [Zn]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Die Bonding (AREA)
Abstract
Description
【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体素子の7ラツクス洗浄方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a 7-lux cleaning method for semiconductor devices.
従来、トランジスタやダイオード等の半導体素子の金属
電極部を電極部品に固着させるには、通常状ろう付はマ
ウントが行われている。この方法はソルダードされた半
導体素子を使用する方法と軟ろうペレットを半導体素子
に積層してマウントアッセンブルする方法に大別される
。前者は後者よりマウントアッセンブルを容易にして材
料コストを削減できる。而して、ソルダードされた半導
体素子を得る方法として、シリコンウェハー上に素子の
電極部を複数形成してこれを熔融半田中に浸漬し、電極
部にのみブレソルダーする方法がある。BACKGROUND ART Conventionally, in order to fix the metal electrode part of a semiconductor element such as a transistor or a diode to an electrode component, mounting is usually performed by brazing. This method is roughly divided into a method using a soldered semiconductor element and a method in which soft solder pellets are laminated on the semiconductor element and mounted and assembled. The former allows for easier mount assembly and lower material costs than the latter. As a method of obtaining a soldered semiconductor element, there is a method in which a plurality of electrode parts of the element are formed on a silicon wafer, immersed in molten solder, and only the electrode parts are brace-soldered.
後者には、半導体素子と電極部品との間に軟ろうペレッ
トを積層し、温度を上げて半田熔融面を摩擦する方法も
あるが、通常水素炉中で半田を熔融させるマウント方法
が行われている。The latter method involves laminating soft solder pellets between the semiconductor element and the electrode parts, raising the temperature and rubbing the solder melting surface, but the mounting method that usually involves melting the solder in a hydrogen furnace is used. There is.
従来の軟ろう熔融浸漬°法の最大の欠点は、ウェハーの
大型化やガラスバンベーションされた素子が形成された
ウェハーの場合、ヒートショックによる亀裂や割れの発
生によって歩留や品質の低下を招くこと、及び半田の組
成に制限があるため、使用できる半田が主にpb−sn
系に限られることである。The biggest drawback of the conventional soft wax melt dipping method is that when wafers are large or have glass-battered elements formed on them, cracks and cracks occur due to heat shock, resulting in a decrease in yield and quality. Because of this, and because there are restrictions on the composition of solder, the solder that can be used is mainly pb-sn.
This is limited to systems.
また、半田ペレットを使用する場合は、これを半導体素
子と電極部品の間に介在し、通常水素炉によりマウント
が行われ、それぞれの部品の清浄化が計られている。し
かし、接合部材の表面酸化膜によってボイドが発生し易
く、接合特性を低下して接合部の疲労を招く原因となっ
ている。このようなボイドを除去する手段としては、半
田熔融面を摩擦する方法や接合部材の酸化防止等の方法
が行われている。摩擦法は製品の形状が制約されるし、
酸化防止法も完全な方法は確立されていない。Furthermore, when using solder pellets, they are interposed between the semiconductor element and the electrode parts, and mounting is usually carried out in a hydrogen furnace to clean each part. However, voids are likely to occur due to the surface oxide film of the bonding member, which deteriorates the bonding characteristics and causes fatigue in the bonded portion. As means for removing such voids, methods such as rubbing the solder melting surface and preventing oxidation of the joining member are used. The friction method has restrictions on the shape of the product,
No perfect method for preventing oxidation has been established.
酸化膜を除去する手段として、半田ペーストを使用する
所謂半田付は方法が既に知られているが、半導体素子の
半田付けには一般には使用されていない。その理由は次
の点にある。Although so-called soldering using a solder paste is already known as a means for removing an oxide film, it is not generally used for soldering semiconductor elements. The reason is as follows.
■ 半導体の分野では、半導体素子の接合特性が特に優
れていることが要求される。このため、素子の電極部と
電極部品間にフラックスを介在することは不適当である
。■ In the field of semiconductors, it is required that semiconductor elements have particularly excellent bonding characteristics. For this reason, it is inappropriate to interpose flux between the electrode portion of the element and the electrode component.
■ 鉛(Pb)が多量に含まれた高温半田が使用される
ため、半導体素子のマウントでは、リフロ一温度が36
0℃以上になる。このため有機系のフラックスでは炭化
し易く良好な接合特性が得られない。■ Because high-temperature solder containing a large amount of lead (Pb) is used, the reflow temperature is 36°C when mounting semiconductor devices.
The temperature becomes 0℃ or higher. For this reason, organic fluxes tend to carbonize and fail to provide good bonding properties.
■ 無機系のフラックスは、有機系のものに比べて炭化
し難いが、完全に洗浄することが難しい。■ Inorganic fluxes are less likely to carbonize than organic fluxes, but they are difficult to clean completely.
しかもペースト化したフラックスが水溶性で強酸性を呈
するため、半田粉と反応し接合特性を劣化し易い。Moreover, since the paste-formed flux is water-soluble and strongly acidic, it easily reacts with solder powder and deteriorates the bonding properties.
■ 無機系のフラックスはペースト化する際に粘性を付
与するために増粘剤を加える必要がある。■ When turning inorganic flux into a paste, it is necessary to add a thickener to give it viscosity.
この増粘剤が接合特性を悪くする。This thickener deteriorates bonding properties.
■ 無機系の7ラツクスに多く含まれる塩化亜鉛は、完
全に洗浄するのは困難であり、残留すると製品の信頼性
低下を招く恐れがある。■ Zinc chloride, which is abundant in inorganic 7lux, is difficult to completely clean, and if it remains, there is a risk of reducing product reliability.
本発明は、接合特性、信頼性に優れた半導体素子の半田
マウントを簡単な製造プロセスで容易に実施できる半導
体素子のフランクス洗浄方法を提供することをその目的
とするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide a franks cleaning method for a semiconductor element that can easily perform solder mounting of a semiconductor element with excellent bonding characteristics and reliability through a simple manufacturing process.
本発明は、塩化亜鉛系水溶性フラックスを用いて電極板
と一体に接合されたベレットを2.5重量%以上の乳酸
水溶液で洗浄することにより、接合特性、信頼性に優れ
た半導体素子の半田マウントを簡華な製造プロセスで容
易に実”施できる半導体素子の7ラツクス洗浄方法であ
る。The present invention provides solder for semiconductor devices with excellent bonding characteristics and reliability by cleaning a pellet integrally bonded with an electrode plate using a zinc chloride-based water-soluble flux with an aqueous lactic acid solution containing 2.5% by weight or more. This is a 7-lux cleaning method for semiconductor devices that can be easily mounted using a simple manufacturing process.
以下、本発明の実施例について図面を参照して説明する
。Embodiments of the present invention will be described below with reference to the drawings.
まず、第1図(A)に示す如く、例えば円柱体の端部に
鍔部を形成した一対の電極板1,1の被接合部2,2に
半田ペースト層3.3を形成する。First, as shown in FIG. 1A, a solder paste layer 3.3 is formed on the bonded parts 2, 2 of a pair of electrode plates 1, 1 each having a flange formed at the end of a cylindrical body, for example.
ここで、半田ペーストは、半田粉85〜90重量%に対
し、下記組成を有するフラックスを10〜15重量%の
比率で混練したものである。Here, the solder paste is obtained by kneading 85 to 90 weight % of solder powder and 10 to 15 weight % of flux having the following composition.
゛ 記 ゛
フラックスの組成 重量%
塩化亜鉛 ゛ 50〜66塩化アンモニウ
ム 5〜O
塩化□錫 ′ 10〜〇アルギン酸ア
ンモニウム 3〜1
ジメチルホルムアミド 3.2〜10.6水
28.−8〜22.4こ
の条件を満たすフランクス組・成としては、例えば次の
ように設定する。゛ Note ゛ Composition of flux Weight % Zinc chloride ゛ 50-66 Ammonium chloride 5-O Tin chloride ' 10-〇 Ammonium alginate 3-1 Dimethylformamide 3.2-10.6 Water
28. -8 to 22.4 The franks composition that satisfies this condition is set as follows, for example.
塩化亜鉛 66重」%
アルギン酸アンモニウム 2
ジメチルホルムアミド 6
水 26また、半
田ペーストとしては、Pb−1%sn半田粉を使用して
上記フラックスを12重量%混和してペーストにしたも
のを用いる。ペースト層3.3の形成は、例えばステン
シル法にて電極板1.1の被接合2,2に半田ペースト
を20m+g塗布することにより行う。Zinc chloride 66% by weight Ammonium alginate 2 Dimethylformamide 6 Water 26 Also, as a solder paste, a paste made by mixing 12% by weight of the above flux with Pb-1%sn solder powder is used. The paste layer 3.3 is formed by applying 20 m+g of solder paste to the electrode plates 1.1 to be bonded 2, 2 using, for example, a stencil method.
次いで、第1図(B)に示す如く、6Mφのダイオード
用の半導体ベレット4を電極板1.1の間に介在し、窒
素、水素等からなる還元性雰囲気中で360〜390℃
温度に設定して王者を一体に接合する。Next, as shown in FIG. 1(B), a semiconductor pellet 4 for a diode of 6Mφ is interposed between the electrode plates 1.1, and heated at 360 to 390°C in a reducing atmosphere consisting of nitrogen, hydrogen, etc.
Set the temperature and join the king together.
次に、第1図(C)に示す如く、一体化された電極板1
.1および半導体ペレット4を還元性雰囲気から取り出
し、半導体ペレット4の側部を密封するように電極板1
,1の間に例えばシリコン樹脂を封着して保護層5を形
成する。Next, as shown in FIG. 1(C), the integrated electrode plate 1
.. 1 and the semiconductor pellet 4 are removed from the reducing atmosphere, and the electrode plate 1 is removed so as to seal the sides of the semiconductor pellet 4.
, 1, for example, a silicone resin is sealed to form a protective layer 5.
然る後、第1図(D)に示す如く、電極板1゜1の電極
面が外部に露出するようにして電極板1゜1及び保護層
5の周囲を例えばエポキシ樹脂からなる封止体6で樹脂
封止し、所定の仕様に満した半導体装置10を得る。Thereafter, as shown in FIG. 1(D), a sealing body made of, for example, epoxy resin is placed around the electrode plate 1.1 and the protective layer 5 so that the electrode surface of the electrode plate 1.1 is exposed to the outside. The semiconductor device 10 is sealed with resin in Step 6 to obtain a semiconductor device 10 that meets predetermined specifications.
なお、半田ペーストの塗布は、半導体ペレット4の被接
合部に塗布しても良いことは勿論である。Note that it goes without saying that the solder paste may be applied to the portion of the semiconductor pellet 4 to be bonded.
このようにして得られた半導体装置10を、第2図に示
す如く、水に対する乳酸の量を0〜10重量%の範囲で
変化した乳酸水溶液を用いて、50℃の温度下で15分
間超音波洗浄した後、純水洗浄、5重量%のカセーソー
ダ溶液の3分間ボイルによる洗浄、純水洗浄、アセトン
洗浄し、これを乾燥して塩化亜鉛の除去を行った。この
ときの乳酸濃度の変化に対する洗浄液中に溶出した亜鉛
の量を原子吸光法にて測定したところ、第3図に特性線
(I)にて示す結果を得た。同図から2゜5重量%以上
の乳酸水溶液によって塩化亜鉛を確実に除去できること
が判る。As shown in FIG. 2, the semiconductor device 10 thus obtained was heated at a temperature of 50° C. for more than 15 minutes using an aqueous lactic acid solution in which the amount of lactic acid relative to water was varied in the range of 0 to 10% by weight. After sonic cleaning, washing with pure water, boiling with 5% by weight caustic soda solution for 3 minutes, washing with pure water, washing with acetone, and drying to remove zinc chloride. At this time, the amount of zinc eluted into the cleaning solution with respect to the change in lactic acid concentration was measured by atomic absorption spectrometry, and the results shown by characteristic line (I) in FIG. 3 were obtained. It can be seen from the figure that zinc chloride can be reliably removed by a lactic acid aqueous solution of 2.5% by weight or more.
次に、上述と同様の洗浄法を採用し、今度は乳酸水溶液
を2.5重量%溶液、温度を50℃に固定し、洗浄時間
を30秒〜10分と変化させて1個の半導体装置10か
らのZnの溶出量を分析したところ、第4図に特性線(
n)にて示す結果を得た。同図の結果か、ら30秒以上
の洗浄で充分にフラックスを洗浄できることが判る。Next, a cleaning method similar to that described above was adopted, this time using a 2.5% by weight lactic acid aqueous solution, the temperature was fixed at 50°C, and the cleaning time was varied from 30 seconds to 10 minutes to clean one semiconductor device. When the amount of Zn eluted from No. 10 was analyzed, the characteristic line (
The results shown in n) were obtained. From the results shown in the figure, it can be seen that the flux can be sufficiently cleaned by cleaning for 30 seconds or more.
また、第2図に示す基本洗浄工程(但し乳酸液洗浄は5
%、50℃、6分間超音波洗浄)を全て経た半導体装置
10(ボタンダイオード)の10ケをまとめて市販のオ
メガメータ(米国KENCO社)にてその残留イオン汚
染度の測定したところ、その電気抵抗に全て変化がなく
安全に洗浄されている事を確認した。更に、これらの半
導体装置(ボタンダイオード)を分解してその半導体素
子の側面部をオージェ分析で分析し、付着元素の確認を
したところZnの残留は全く認められなかった。In addition, the basic cleaning process shown in Figure 2 (however, lactic acid solution cleaning is
%, ultrasonic cleaning at 50°C for 6 minutes), the residual ion contamination level of 10 semiconductor devices (button diodes) was measured using a commercially available Omegameter (KENCO, USA). It was confirmed that there was no change in resistance and that the cleaning was done safely. Further, when these semiconductor devices (button diodes) were disassembled and the side surfaces of the semiconductor elements were analyzed by Auger analysis to check for attached elements, no residual Zn was found.
以上の実施例の結果から2.5重量%以上の乳酸水溶液
(温度50℃)を用いて超音波洗浄30秒以上を施すこ
とにより、塩化亜鉛が加水分解せずに洗浄作用として働
き、塩化亜鉛を含むフラックスの洗浄を容易に且つ完全
にできること判る。From the results of the above examples, by performing ultrasonic cleaning for 30 seconds or more using a 2.5% by weight or more lactic acid aqueous solution (temperature 50°C), zinc chloride acts as a cleaning action without being hydrolyzed, and zinc chloride It has been found that cleaning of flux containing chlorine can be done easily and completely.
従って、その後に充分な水洗と従来からよく行われてい
るカセーソーダによる若干の半導体素子側面のエツチン
グを組合わせることにより、半導体素子のフラックス洗
浄を達成できることが判るここのようにして得られた半
導体装[10(ボタンダイオード)は、使用した半田ペ
ーストに含まれるフラックスが完全に洗浄されており、
電気的に優れ、信頼性の高いものであることが確認され
た。Therefore, it can be seen that flux cleaning of the semiconductor element can be achieved by combining sufficient water rinsing with etching of the side surface of the semiconductor element using caustic soda, which has been commonly done in the past. [10 (button diode) has been completely cleaned of the flux contained in the solder paste used,
It was confirmed that it has excellent electrical properties and is highly reliable.
このようにこの半導体装置のフラックス洗浄方法によれ
ば、次のような効果を有する。As described above, this semiconductor device flux cleaning method has the following effects.
■ 半導体装置10は、塩化亜鉛を含む水溶性フラック
スを用い、半導体素子と電極部品の半田マラントが可能
となるので半田マウントのプロセスを容易にし且つ優れ
た接合性を有している。(2) The semiconductor device 10 uses a water-soluble flux containing zinc chloride to enable soldering of the semiconductor element and electrode parts, thereby facilitating the solder mounting process and providing excellent bonding properties.
■ リフロー後のフラックスの洗浄が容易に且つ安全に
出来るので製品の信頼性が高い。■ Product reliability is high because cleaning of flux after reflow can be done easily and safely.
■ 水溶性による洗浄方式なので洗浄のコストが低く且
つ」産性がある。■ Since it is a water-soluble cleaning method, cleaning costs are low and productivity is high.
1、■ ダイオード以外の一般軟ろう接合後の洗浄にも
適用出来る。′
〔発明の効果〕
以上説明した如く、本発明に係る半導体素子のフラック
ス洗浄方法によれば、接合特性、信頼性に優れた半導体
素子の半田マウントを簡単な製造プロセスで容易に実施
できるものである。1. ■ Can also be applied to cleaning after general soft solder bonding other than diodes. [Effects of the Invention] As explained above, according to the flux cleaning method for semiconductor devices according to the present invention, it is possible to easily perform solder mounting of semiconductor devices with excellent bonding characteristics and reliability through a simple manufacturing process. be.
第1図(A)乃至同図(D)は、本発明方法にて洗浄す
る半導体装置を製造する工程を示す説明図、第2図は、
本発明方法にて適用する洗浄過程を示すブロック図、第
3図は、亜鉛の溶出量と乳酸の濃度との関係を示す特性
図、第4図は、亜鉛の溶出量と洗浄時間との関係を示す
特性図である。
1・・・電極板、2・・・被接合部、3・・・半田ペー
スト層、4・・・半導体ベレット、5・・・保護層、6
・・・封止体、10・・・半導体装置。
出願人代理人 弁理士 鈴江武彦
第1図1(A) to 1(D) are explanatory diagrams showing the steps of manufacturing a semiconductor device to be cleaned by the method of the present invention, and FIG.
A block diagram showing the cleaning process applied in the method of the present invention, Figure 3 is a characteristic diagram showing the relationship between the amount of zinc eluted and the concentration of lactic acid, and Figure 4 is the relationship between the amount of zinc eluted and the cleaning time. FIG. DESCRIPTION OF SYMBOLS 1... Electrode plate, 2... Part to be joined, 3... Solder paste layer, 4... Semiconductor pellet, 5... Protective layer, 6
... Sealed body, 10... Semiconductor device. Applicant's agent Patent attorney Takehiko Suzue Figure 1
Claims (1)
ーストを用いて電極板と半導体ペレットとを還元性また
は保護雰囲気中で一体に接合した後、該半導体ペレット
を2.5重量%以上の乳酸水溶液で洗浄することを特徴
とする半導体素子のフラックス洗浄方法。After bonding the electrode plate and the semiconductor pellet together in a reducing or protective atmosphere using a solder paste consisting of a zinc chloride-based water-soluble flux and solder powder, the semiconductor pellet is treated with a lactic acid aqueous solution containing 2.5% by weight or more. 1. A flux cleaning method for semiconductor devices, characterized by cleaning them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59144661A JPS6123328A (en) | 1984-07-12 | 1984-07-12 | Flux washing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59144661A JPS6123328A (en) | 1984-07-12 | 1984-07-12 | Flux washing method of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6123328A true JPS6123328A (en) | 1986-01-31 |
Family
ID=15367280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59144661A Pending JPS6123328A (en) | 1984-07-12 | 1984-07-12 | Flux washing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6123328A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007045268A1 (en) * | 2005-10-21 | 2007-04-26 | Freescale Semiconductor, Inc. | Method for removing etch residue and chemistry therefor |
-
1984
- 1984-07-12 JP JP59144661A patent/JPS6123328A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007045268A1 (en) * | 2005-10-21 | 2007-04-26 | Freescale Semiconductor, Inc. | Method for removing etch residue and chemistry therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2589239B2 (en) | Thermosetting adhesive and electrical component assembly using the same | |
US6307160B1 (en) | High-strength solder interconnect for copper/electroless nickel/immersion gold metallization solder pad and method | |
KR19990023187A (en) | Electrode Structure of Silicon Semiconductor Devices | |
US6395583B1 (en) | Semiconductor device with a coating of Pb-free Sn-base solder and manufacturing method therefor | |
US10985096B2 (en) | Electrical device terminal finishing | |
JP2020534695A (en) | Alloy diffusion barrier layer | |
JP3356649B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH0955464A (en) | Surface-mount semiconductor device semiconductor mounted part, and their manufacture | |
US4603805A (en) | Method for enhancing the solderability of nickel layers | |
JPS6123328A (en) | Flux washing method of semiconductor device | |
US6756687B1 (en) | Interfacial strengthening for electroless nickel immersion gold substrates | |
US7309647B1 (en) | Method of mounting an electroless nickel immersion gold flip chip package | |
JP2007027346A (en) | Manufacturing method of semiconductor device and a manufacturing equipment | |
JP3566269B2 (en) | Lead frame, manufacturing method thereof, and semiconductor device. | |
JP2000101014A (en) | Semiconductor device | |
JPS60186028A (en) | Soldering method of semiconductor element | |
JP3590603B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH028459B2 (en) | ||
JPS60143636A (en) | Electronic component parts | |
JPH07142491A (en) | Semiconductor device and formation of solder bump therefor | |
JPS60143637A (en) | Electronic component parts | |
JPS62291951A (en) | Lead frame with oxidation resistant nickel plating resistant to release of solder | |
Scharr et al. | Outer lead and die bond reliability in high density TAB | |
JP3344254B2 (en) | Semiconductor device manufacturing method | |
JPS6034265B2 (en) | electronic components |