JPS612327A - Conductance variable valve of semiconductor manufacturing device - Google Patents

Conductance variable valve of semiconductor manufacturing device

Info

Publication number
JPS612327A
JPS612327A JP12210284A JP12210284A JPS612327A JP S612327 A JPS612327 A JP S612327A JP 12210284 A JP12210284 A JP 12210284A JP 12210284 A JP12210284 A JP 12210284A JP S612327 A JPS612327 A JP S612327A
Authority
JP
Japan
Prior art keywords
variable
reaction chamber
valve
conductance
variable blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12210284A
Other languages
Japanese (ja)
Inventor
Toshimitsu Miyata
敏光 宮田
Shigeo Kubota
重雄 窪田
Akihiko Matsuo
松尾 陽彦
Yoshimasa Kondo
近藤 芳正
Toshio Takahashi
敏雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12210284A priority Critical patent/JPS612327A/en
Publication of JPS612327A publication Critical patent/JPS612327A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To manufacture the titled valve with large variable ratio of conductance by a method wherein two rotary variable blades are fixed to be superposed while the space of opening formed by the variable blades is made almost proportional to the revolution of said variable blades. CONSTITUTION:Two rotary and variable blades 19 are fixed to the racks 21 in a valve case 20. The variable blades 19 are superposed by superposing parts 23. The space of opening 25 formed by the two variable blades 19 is made proportional to the revolution thereof. The racks 21 are respectively driven by independent driving devices engaged with the gears 22 of variable blades 19. Said space of opening 25 may be changed by shifting the racks 21 to keep the pressure in a reaction chamber 7 constant. Through these procedures, the pressure in reaction chamber 7 may be finely adjusted since the reaction of variable blades 19 and conductance may be made securely proportional to each other.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は半導体製造装置のコンダクタンス可変バルブ
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a variable conductance valve for semiconductor manufacturing equipment.

〔発明の背景〕[Background of the invention]

プラズマエツチング装置、プラズマCVD装置等の半導
体製造装置においては、反応室内に反応ガスを定量流入
し、反応室と真空ポンプとの間にコンダクタンス可変バ
ルブを設けて、反応室内の圧力を一定に保持することに
より、反応室内を特殊ガス雰囲気として、反応室内で試
料の加工処理を行なっている。
In semiconductor manufacturing equipment such as plasma etching equipment and plasma CVD equipment, a constant amount of reaction gas is introduced into a reaction chamber, and a variable conductance valve is provided between the reaction chamber and a vacuum pump to maintain the pressure inside the reaction chamber constant. As a result, a special gas atmosphere is created in the reaction chamber, and the sample is processed within the reaction chamber.

第2図はマイクロ波放電プラズマエツチング装置を示す
概略図である。図において、1はマグネトロン、3は放
電領域、2はマグネトロンlと放電領域3とを連結する
導波管、4は導波管2の周囲に設けられたソレノイドコ
イル、7は放電領域3と接続された反応室、8は放電領
域3内に活性反応ガスを供給するための管路に設けられ
たガス導入バルブ、5は反応室7内に設置された試料台
、9は試料台5上に載置されたエツチング試料、6は試
料台5の下に取付けられた永久磁石、13は反応室7に
取付けられた試料交換室、12は配管24を介して反応
室7と接続された真空ポンプ、10は配管24に設けら
れたゲートバルブ、11は配管24に設けられたコンダ
クタンス可変バルブである。
FIG. 2 is a schematic diagram showing a microwave discharge plasma etching apparatus. In the figure, 1 is a magnetron, 3 is a discharge region, 2 is a waveguide connecting the magnetron 1 and the discharge region 3, 4 is a solenoid coil provided around the waveguide 2, and 7 is connected to the discharge region 3 8 is a gas introduction valve installed in a conduit for supplying active reaction gas into the discharge region 3, 5 is a sample stage installed in the reaction chamber 7, and 9 is a gas introduction valve installed on the sample stage 5. The etching sample placed therein, 6 a permanent magnet attached under the sample stage 5, 13 a sample exchange chamber attached to the reaction chamber 7, and 12 a vacuum pump connected to the reaction chamber 7 via piping 24. , 10 is a gate valve provided in the pipe 24, and 11 is a variable conductance valve provided in the pipe 24.

このプラズマエツチング装置においては、ソレノイドコ
イル4、永久磁石6によって放電領域3に磁場が印加さ
れており、放電領域3および反応室7を真空ポンプ12
により真空排気したのち、ガス導入バルブ8を介して活
性反応ガスを放電領域3に定量流入するとともに、マグ
ネトロン1で発生したマイクロ波を導波管2を介して放
電領域3に供給すると、放電が開始し、エツチング試料
9がプラズマエツチング加工される。そして、反応室7
の反応生成ガス、残留反応ガスはゲートバルブ10、コ
ンダクタンス可変バルブ11を介して真空ポンプ12に
より排気されるが、この場合コンダクタンス可変バルブ
11により反応室7内の圧力を一定に保持している。
In this plasma etching apparatus, a magnetic field is applied to the discharge region 3 by a solenoid coil 4 and a permanent magnet 6, and the discharge region 3 and reaction chamber 7 are controlled by a vacuum pump 12.
After evacuation is performed, a fixed amount of active reaction gas is introduced into the discharge region 3 through the gas introduction valve 8, and when microwaves generated by the magnetron 1 are supplied to the discharge region 3 through the waveguide 2, a discharge is caused. Starting, the etching sample 9 is subjected to plasma etching processing. And reaction chamber 7
The reaction product gas and residual reaction gas are exhausted by a vacuum pump 12 via a gate valve 10 and a variable conductance valve 11, but in this case, the pressure inside the reaction chamber 7 is maintained constant by the variable conductance valve 11.

第3図に従来のコンダクタンス可変バルブを示す断面図
、第4図は第3図のA−A断面図である。
FIG. 3 is a sectional view showing a conventional variable conductance valve, and FIG. 4 is a sectional view taken along line AA in FIG.

図において、15は弁箱、14は弁箱15に固定された
弁座、14aは弁座14に設けられた穴、17は駆動装
置、16は駆動装置17に取り付けられたロッド、18
はロッド16に固定された弁で、弁18は弁座14に摺
動可能に密着されている。
In the figure, 15 is a valve box, 14 is a valve seat fixed to the valve box 15, 14a is a hole provided in the valve seat 14, 17 is a drive device, 16 is a rod attached to the drive device 17, 18
is a valve fixed to the rod 16, and the valve 18 is slidably attached to the valve seat 14.

このコンダクタンス可変バルブにおいては、駆動装置1
7によりロッド16を介して弁18を矢印りの方向に移
動させれば、穴14aの開口面積を変化させることがで
き、反応室7の圧力を一定に保持することが可能である
。しかしながら、弁座14と弁18との間でリークが生
じやすいので、穴14aの開口面積を小さくしたとして
も、反応室7内の圧力がかなり低下してしま“い1反応
室7内の圧力を高い値に保持することができないので、
コンダクタンス可変比を大きく取ることができず、また
弁18のわずかな移動により、コンダクタンスが大きく
変化し、しかも弁18の移動量とコンダクタンスとが比
例しないため、反応室7内の圧力を微調整することが困
難である。さらに、穴14aの長さが大きくなると、弁
18のストロークを大きくしなければならず、駆動装置
17が大型化し、耐久性、信頼性が低下する。また、穴
14aを全開としても、穴14aの開口面積は配管24
の断面積よりも小さいから、真空ポンプ12の排気能力
を最大限に発揮することができず、急速排気を行なうこ
とができない。
In this variable conductance valve, the drive device 1
By moving the valve 18 in the direction indicated by the arrow 7 via the rod 16, the opening area of the hole 14a can be changed and the pressure in the reaction chamber 7 can be kept constant. However, since leakage is likely to occur between the valve seat 14 and the valve 18, even if the opening area of the hole 14a is made small, the pressure inside the reaction chamber 7 will drop considerably. cannot be held at a high value, so
Since it is not possible to set a large conductance variable ratio, and a slight movement of the valve 18 causes a large change in conductance, and the amount of movement of the valve 18 is not proportional to the conductance, the pressure inside the reaction chamber 7 is finely adjusted. It is difficult to do so. Furthermore, if the length of the hole 14a increases, the stroke of the valve 18 must be increased, which increases the size of the drive device 17 and reduces its durability and reliability. Furthermore, even if the hole 14a is fully opened, the opening area of the hole 14a is
Since the cross-sectional area of the vacuum pump 12 is smaller than the cross-sectional area of , the evacuation capacity of the vacuum pump 12 cannot be maximized, and rapid evacuation cannot be performed.

〔発明の目的〕[Purpose of the invention]

この発明は上述の問題点を解決するためになされたもの
で、コンダクタンス可変比を大きく取ることができ、反
応室内の圧力を微調整することが容易であり、駆動装置
の耐久性、信頼性が向上し、かつ急速排気を行なうこと
が可能な半導体製造装置のコンダクタンス可変バルブを
提供することを目的とする。
This invention was made in order to solve the above-mentioned problems. It is possible to have a large conductance variable ratio, it is easy to finely adjust the pressure inside the reaction chamber, and the durability and reliability of the drive device is improved. It is an object of the present invention to provide a variable conductance valve for semiconductor manufacturing equipment that is improved and capable of performing rapid exhaust.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、この発明においては、2枚の
可変翼を回転可能に取付け、その2枚の可変翼に互いに
重ね合わされる重ね合わせ部を設け、上記2枚の可変翼
によって形成される開口部の面積と上記可変翼の回転量
とをほぼ比例させる。
In order to achieve this object, in the present invention, two variable blades are rotatably attached, and the two variable blades are provided with overlapping portions that are overlapped with each other. The area of the opening and the amount of rotation of the variable blade are made approximately proportional.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明に係る半導体製造装置のコンダクタン
ス可変バルブを示す図、第5図は第1図のB−B断面図
、第6図は第1図のC−C断面図である。図において、
20はバルブ箱、19はバルブ箱20に回転可能に取付
けられた2枚の可変翼、23は2枚の可変翼19にそれ
ぞわ設けられた重ね合わせ部で、重ね合わせ部23は互
いに重ね合わされる。
1 is a diagram showing a variable conductance valve of a semiconductor manufacturing apparatus according to the present invention, FIG. 5 is a sectional view taken along line BB in FIG. 1, and FIG. 6 is a sectional view taken along line CC in FIG. 1. In the figure,
20 is a valve box, 19 is two variable blades rotatably attached to the valve box 20, 23 is an overlapping part provided on each of the two variable blades 19, and the overlapping parts 23 are overlapped with each other. be done.

25は2枚の可変翼によって形成された開口部で、開口
部25の面積つまり開口面積は可変翼19の回転量と比
例する。21はバルブ箱20に移動可能に取付けられた
ラックで、ラック21はそれぞれ独立の駆動装置(図示
せず)により駆動される。22は可変翼19に取付けら
れた歯車で、歯車22はラック21と噛合っている。
Reference numeral 25 denotes an opening formed by two variable blades, and the area of the opening 25, that is, the opening area is proportional to the amount of rotation of the variable blade 19. Reference numeral 21 denotes a rack movably attached to the valve box 20, and each rack 21 is driven by an independent drive device (not shown). 22 is a gear attached to the variable blade 19, and the gear 22 meshes with the rack 21.

このコンダクタンス可変バルブにおいては、ラック21
を移動すれば、可変翼19が回転し、開口面積を変化す
ることができ、反応室7内の圧力を一定に保持すること
が可能である。そして、可変翼19の重ね合わせ部23
が重ね合わさっており、とくに開口面積が小さいときに
は、重ね合わせ部23の重ね合わせ面積が大きいから、
リーク量が非常に少ない。このため、開口面積を小さく
すれば、反応室7内の圧力が低下するのを有効に抑制す
ることができ、反応室7内の圧力を開口面積に応じた高
い値に保持することができるので、コンダクタンス可変
比を大きくすることができ、また可変翼19のわずかな
回転によってコンダクタンスが大きく変化することがな
く、しかも可変翼19の回転量とコンダクタンスとを確
実に比例させることができるため、反応室7内の圧力を
微調整することが容易である。さらに、開口面積を大き
くしたとしても、ラック21のストロークを大きくする
必要がないので、駆動装置を小型にすることができ、耐
久性、信頼性が向上する。また、開口面積を配管24の
断面積とほぼ等しくすることができるから、真空ポンプ
12の排気能力を最大限に発揮することができるので、
急速排気を行なうことが可能である。さらに、可変翼1
9を取外し可能な構造とすれば、第7図に示すような可
変翼26a、26bなどのように、任意の形状を有する
可変翼を可変翼19の代わりに取付けることにより、反
応生成ガスの流量、反応室7内の圧力などを任意に設定
することができる。
In this variable conductance valve, the rack 21
By moving the variable blade 19, the opening area can be changed by rotating the variable blade 19, and the pressure inside the reaction chamber 7 can be kept constant. The overlapping portion 23 of the variable blade 19
are overlapped, and especially when the opening area is small, since the overlapping area of the overlapping portion 23 is large,
The amount of leakage is very small. Therefore, by reducing the opening area, it is possible to effectively suppress the pressure within the reaction chamber 7 from decreasing, and the pressure within the reaction chamber 7 can be maintained at a high value commensurate with the opening area. , the conductance variable ratio can be increased, the conductance will not change greatly due to a slight rotation of the variable blade 19, and the amount of rotation of the variable blade 19 and the conductance can be made reliably proportional, so that the reaction It is easy to finely adjust the pressure within the chamber 7. Furthermore, even if the opening area is increased, there is no need to increase the stroke of the rack 21, so the drive device can be made smaller and its durability and reliability are improved. Furthermore, since the opening area can be made approximately equal to the cross-sectional area of the pipe 24, the exhaust capacity of the vacuum pump 12 can be maximized.
Rapid evacuation is possible. Furthermore, variable wing 1
If 9 has a removable structure, the flow rate of the reaction product gas can be adjusted by attaching a variable blade having an arbitrary shape in place of variable blade 19, such as variable blades 26a and 26b as shown in FIG. , the pressure inside the reaction chamber 7, etc. can be set arbitrarily.

また、一方の可変翼19を固定し、他方の可変翼19の
みを回転させれば、2枚の可変翼19を同時に回転させ
た場合と比較して、反応室7内の圧力をさらに微小に変
化させることができる。
Furthermore, by fixing one variable blade 19 and rotating only the other variable blade 19, the pressure inside the reaction chamber 7 can be made even smaller than when two variable blades 19 are rotated at the same time. It can be changed.

第8図は、反応生成ガスを定量流入し、コンダクタンス
可変バルブ11を完全開放し、反応室7内の圧力p。を
1.3X10−”Paにしたときの、コンダクタンスバ
ルブの開口度と完全開放時の圧力p。
FIG. 8 shows the pressure p in the reaction chamber 7 after a fixed amount of reaction product gas is introduced and the variable conductance valve 11 is completely opened. The opening degree of the conductance valve and the pressure p when it is fully opened when is set to 1.3X10-''Pa.

および反応室7内の圧力Pとの圧力比P / P oの
関係を示すグラフである。曲線(a)は第1図に示した
この発明に係るコンダクタンス可変翼バルブの一方の可
変翼19を回転させ、次に他方の可変翼19を回転させ
た場合を示し、また曲線(b)は第3図に示した従来の
コンダクタンス可変バルブの場合を示す。両者の場合の
反応室7の最高圧力を同一としている。このグラフから
明らかなように、従来のコンダクタンス可変バルブにお
いては、反応室7内の圧力を約1.3 X 10−1〜
1.3Paの範囲でしか変化させることができないのに
対して、この発明に係るコンダクタンス可変バルブにお
いては、反応室7内の圧力を約1.3X10−”−1,
3Paの範囲で変化させることができ、従来のコンダク
タンス可変バルブに比較してこの発明のコンダクタンス
可変バルブのコンダクタンス可変比は約10倍である。
2 is a graph showing the relationship between the pressure P and the pressure ratio P/P o in the reaction chamber 7. Curve (a) shows the case where one variable vane 19 of the variable conductance vane valve according to the present invention shown in FIG. 1 is rotated, and then the other variable vane 19 is rotated, and curve (b) The case of the conventional variable conductance valve shown in FIG. 3 is shown. The maximum pressure in the reaction chamber 7 in both cases is the same. As is clear from this graph, in the conventional variable conductance valve, the pressure inside the reaction chamber 7 is approximately 1.3
In contrast, in the variable conductance valve according to the present invention, the pressure inside the reaction chamber 7 can be changed only within a range of 1.3 Pa.
It can be varied within a range of 3 Pa, and the variable conductance ratio of the variable conductance valve of the present invention is about 10 times that of the conventional variable conductance valve.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明に係る半導体製造装置の
コンダクタンス可変バルブにおいては、コンダクタンス
可変比を大きく取ることができ、反応室内の圧力を微調
整することが容易であり、駆動装置の耐久性、信頼性が
向上し、かつ急速排気を行なうことが可能であるから、
反応室内の圧力を確実にかつ精度よく制御することがで
きるので、半導体製造装置の性能を向上することが可能
である。このように、この発明の効果は顕著である。
As explained above, in the variable conductance valve for semiconductor manufacturing equipment according to the present invention, the variable conductance ratio can be set to a large value, the pressure inside the reaction chamber can be easily finely adjusted, and the durability of the drive device can be improved. Because reliability is improved and rapid exhaust is possible,
Since the pressure inside the reaction chamber can be controlled reliably and accurately, it is possible to improve the performance of semiconductor manufacturing equipment. As described above, the effects of this invention are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る半導体製造装置のコンダクタン
ス可変バルブを示す図、第2図はプラズマエツチング装
置を示す概略図、第3図は従来の半導体製造装置のコン
ダクタンス可変バルブを示す断面図、第4図は第3図の
A−A断面図、第5図は第1図のB−B断面図、第6図
は第1図のC−C断面図、第7図は他の可変翼を示す図
、第8図はコンダクタンス可変バルブの開口度と反応室
の圧力との関係を示すグラフである。 7・反応室
FIG. 1 is a diagram showing a variable conductance valve of a semiconductor manufacturing apparatus according to the present invention, FIG. 2 is a schematic diagram showing a plasma etching apparatus, and FIG. 3 is a sectional view showing a variable conductance valve of a conventional semiconductor manufacturing apparatus. Figure 4 is a cross-sectional view taken along line A-A in Figure 3, Figure 5 is a cross-sectional view taken along line B-B in Figure 1, Figure 6 is a cross-sectional view taken along line C-C in Figure 1, and Figure 7 shows other variable blades. FIG. 8 is a graph showing the relationship between the opening degree of the variable conductance valve and the pressure in the reaction chamber. 7.Reaction chamber

Claims (1)

【特許請求の範囲】[Claims] 反応ガスが定量流入される反応室と真空ポンプとの間に
設けられ、上記反応室の圧力を一定に保持するための半
導体製造装置のコンダクタンス可変バルブにおいて、2
枚の可変翼を回転可能に取付け、その2枚の可変翼に互
いに重ね合わされる重ね合わせ部を設け、上記2枚の可
変翼によって形成される開口部の面積と上記可変翼の回
転量とがほぼ比例することを特徴とする半導体製造装置
のコンダクタンス可変バルブ。
In a variable conductance valve of a semiconductor manufacturing apparatus, which is provided between a reaction chamber into which a quantitative amount of reaction gas is introduced and a vacuum pump, and is used to maintain a constant pressure in the reaction chamber,
A number of variable blades are rotatably attached, and the two variable blades are provided with overlapped portions that overlap each other, and the area of the opening formed by the two variable blades and the amount of rotation of the variable blade are A variable conductance valve for semiconductor manufacturing equipment characterized by almost proportional conductance.
JP12210284A 1984-06-15 1984-06-15 Conductance variable valve of semiconductor manufacturing device Pending JPS612327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12210284A JPS612327A (en) 1984-06-15 1984-06-15 Conductance variable valve of semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12210284A JPS612327A (en) 1984-06-15 1984-06-15 Conductance variable valve of semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JPS612327A true JPS612327A (en) 1986-01-08

Family

ID=14827688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12210284A Pending JPS612327A (en) 1984-06-15 1984-06-15 Conductance variable valve of semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JPS612327A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174367A (en) * 1986-01-29 1987-07-31 Toray Ind Inc High vacuum apparatus
US7472581B2 (en) * 2005-03-16 2009-01-06 Tokyo Electron Limited Vacuum apparatus
JP2012191070A (en) * 2011-03-11 2012-10-04 Toshiba Corp Pressure control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174367A (en) * 1986-01-29 1987-07-31 Toray Ind Inc High vacuum apparatus
US7472581B2 (en) * 2005-03-16 2009-01-06 Tokyo Electron Limited Vacuum apparatus
JP2012191070A (en) * 2011-03-11 2012-10-04 Toshiba Corp Pressure control device

Similar Documents

Publication Publication Date Title
JP2942239B2 (en) Exhaust method and exhaust apparatus, plasma processing method and plasma processing apparatus using the same
JPH0864578A (en) Semiconductor manufacturing device and cleaning of semiconductor manufacturing device
JPH0577329B2 (en)
JPH03271374A (en) Thin film forming device
JPS612327A (en) Conductance variable valve of semiconductor manufacturing device
DE69838823T2 (en) Inductive type plasma treatment chamber
CN115206824A (en) Controllable multi-air-inlet-pipeline combined air inlet device and etching method
WO2000019501A1 (en) Method and apparatus for plasma processing
JPH1199327A (en) Vacuum treatment apparatus
JPH05196149A (en) Magnetic fluid seal device
JP3347794B2 (en) Semiconductor manufacturing equipment
JPS61236971A (en) Sealing method for magnetic fluid seal
JPS6325921A (en) Evacuator
JP2946733B2 (en) Vacuum exhaust device
JP2870410B2 (en) Vacuum processing equipment
JPH03232224A (en) Plasma processor
CN115011949A (en) Precursor circulation type atomic layer deposition equipment and method
JPS5881975A (en) Gas line exhaust system of plasma etching apparatus and similar apparatus
JPH0513002Y2 (en)
JPH0336274A (en) Plasma device
JPH0746853Y2 (en) Differential exhaust system
JPH03245526A (en) Plasma treatment apparatus
JPH0453126A (en) Surface treatment device
JPH01125933A (en) Method and apparatus for vacuum treatment
KR0170823B1 (en) Metal deposition cart and operation method