JPS61230795A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS61230795A
JPS61230795A JP60072084A JP7208485A JPS61230795A JP S61230795 A JPS61230795 A JP S61230795A JP 60072084 A JP60072084 A JP 60072084A JP 7208485 A JP7208485 A JP 7208485A JP S61230795 A JPS61230795 A JP S61230795A
Authority
JP
Japan
Prior art keywords
membrane
water
treatment
treated
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60072084A
Other languages
Japanese (ja)
Inventor
Naoki Okuma
大熊 直紀
Ichiro Nakajima
一郎 中島
Naomichi Mori
直道 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP60072084A priority Critical patent/JPS61230795A/en
Publication of JPS61230795A publication Critical patent/JPS61230795A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To perfectly separate activated sludge from treated water, by contacting a liquid to be treated with a pellet wherein bacteria or activated sludge is immobilized in a polymer carrier before performing membrane treatment. CONSTITUTION:Raw water is introduced into an immobilized bacteria treatment apparatus 15 to be contacted with immobilized bacteria. After a suspended substance such as diatomaceous earth is added to the treated water if necessary, said treated water is gathered to a storage tank 16. When a definite amount of water was gathered, a valve 1 is opened and a valve 2 is further opened to introduce treated water into an ultrafiltration module 17 to perform membrane treatment while treated water transmitted through a membrane is stored in a treated water tank 18 through a valve 9. Conc. water not transmitted through the membrane is again treated through valves 3, 4, 5. The conc. water flowing through the valve 5 is supplied to a microstrainer 20 to collect SS and returned to a biological treatment area from a valve 6 along with raw water.

Description

【発明の詳細な説明】 主1上皇■且分丘 本発明は、廃水の処理方法、特に有機性廃水の処理方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater, particularly a method for treating organic wastewater.

従来坐肢圭 廃水の処理方法には、生物学的な処理方法と物理化学的
な処理方法がある。下水、食品加工業廃水、医薬品工業
廃水、ビル雑廃水等には、有機物が多く含まれているた
め、生物学的な処理方法が主流となっている。従来、生
物学的な処理には、活性汚泥法が行われているが、活性
汚泥法では、汚泥転換率が5〜60%と高いため、この
汚泥を沈澱池から余剰汚泥として引き抜いていた。しか
も、活性汚泥を処理水から完全に分離するのは、困難で
あり、活性汚泥が処理水中に流出しがちであった。その
ため、活性汚泥処理液を再利用する場合には、更に、物
理化学的な凝集沈澱、砂−過等の処理を必要とした。
Conventional methods for treating wastewater include biological treatment methods and physicochemical treatment methods. Since sewage, food processing industry wastewater, pharmaceutical industry wastewater, building wastewater, etc. contain a large amount of organic matter, biological treatment methods have become mainstream. Conventionally, the activated sludge method has been used for biological treatment, but since the activated sludge method has a high sludge conversion rate of 5 to 60%, this sludge has been extracted from the settling tank as surplus sludge. Moreover, it is difficult to completely separate activated sludge from treated water, and activated sludge tends to flow out into treated water. Therefore, when the activated sludge treatment liquid is reused, further physicochemical treatments such as flocculation and sedimentation and sand filtration are required.

これに対して、最近では、活性汚泥処理後の沈澱池及び
凝集沈澱、砂−過処理等の後段処理に代わって、膜処理
を行って再生液を得る方法が提案され、省スペース、省
力化が図られつつある。
In response to this, recently, a method has been proposed in which membrane treatment is performed to obtain regenerated liquid instead of subsequent treatments such as settling tanks, coagulation sedimentation, and sand filtration after activated sludge treatment, which saves space and labor. is being planned.

膜処理とは、圧力を駆動力とし、被処理液を膜を介して
処理液と濃縮液とに分離する処理方法であり、逆浸透法
、限外−適法、精密−適法に区分される。
Membrane treatment is a treatment method in which a liquid to be treated is separated into a treated liquid and a concentrated liquid through a membrane using pressure as a driving force, and is classified into reverse osmosis, ultra-legal, and precision-legal.

りシよ゛と るエ 占 しかし、このような膜処理では、液中の懸濁物質量が膜
処理性能に大きく影響する。即ち、活性汚泥処理後に直
接膜処理を行うと、膜処理する液中の懸濁物質量は20
00〜20000■/lであるため、膜面にこれらの活
性汚泥が堆積し、膜の目詰まりを生じ、膜の一過水量の
低下、処理水質の悪化をきたすという問題があった。
However, in such membrane treatment, the amount of suspended solids in the liquid greatly affects membrane treatment performance. In other words, if membrane treatment is performed directly after activated sludge treatment, the amount of suspended solids in the membrane-treated liquid will be 20
00 to 20,000 .mu./l, this activated sludge accumulates on the membrane surface, clogging the membrane, reducing the amount of water passing through the membrane, and deteriorating the quality of the treated water.

、 これを防止するために、膜面に乱流を起こすように
工夫した膜モジュールが使用されているが、それでもこ
の問題は解決されなかった。また、膜モジュールの型式
としては、汚濁物に強いと言われているプレートアンド
フレーム型やチューブラ型が使用されており、単位容積
光たりの処理量が大きいスパイラル型やホローファイバ
ー型は、はとんど使用できず、膜処理装置の小型化が望
まれている。
To prevent this, membrane modules are used that create turbulent flow on the membrane surface, but this still does not solve the problem. In addition, the membrane module types used are the plate-and-frame type and tubular type, which are said to be resistant to contaminants, while the spiral type and hollow fiber type, which have a large throughput per unit volume of light, are unusual. Therefore, it is desired to downsize membrane processing equipment.

従って、本発明は、生物学的処理の後に直接膜処理を行
っても目詰まりを起こさず、更に、膜処理装置を小型化
しうる処理方法を提供することを目的とする。
Therefore, an object of the present invention is to provide a treatment method that does not cause clogging even when membrane treatment is performed directly after biological treatment, and further allows the membrane treatment apparatus to be miniaturized.

占   ゛ 本発明は、生物学的処理に固定化微生物を使用すること
によって前記の問題点を解決したものである。
The present invention solves the above problems by using immobilized microorganisms for biological treatment.

即ち、本発明による廃水の処理方法は、高分子担体内部
に微生物又は活性汚泥を固定化したペレットに被処理液
を接触させた後、圧力を駆動力とする膜処理を行い、膜
を透過しない濃縮液はSS分離器を経て、被処理液ライ
ンに戻すことを特徴とする。
That is, in the wastewater treatment method according to the present invention, after the liquid to be treated is brought into contact with pellets in which microorganisms or activated sludge are immobilized inside a polymer carrier, membrane treatment is performed using pressure as a driving force, so that the membrane does not pass through the membrane. The concentrate is characterized in that it is returned to the treated liquid line through the SS separator.

廃水の生物学的処理を、高分子担体内部に微生物を固定
化したペレットを用いて行うと、発生する懸濁物質量、
即ち、膜処理にかかる懸濁物質量は、従来の活性汚泥処
理の後に沈澱池なしで膜処理を行った場合の1/100
〜1/1000になり、コンパクトなスパイラル型、ホ
ローファイバー型モジュールが使用で基るため、膜処理
装置の設置面積は従来の約l/20となる。
When biological treatment of wastewater is performed using pellets with microorganisms immobilized inside a polymer carrier, the amount of suspended solids generated,
In other words, the amount of suspended solids required for membrane treatment is 1/100 of that when membrane treatment is performed without a sedimentation tank after conventional activated sludge treatment.
~1/1000, and since a compact spiral type or hollow fiber type module is used, the installation area of the membrane treatment device is about 1/20 of the conventional size.

また、微生物が高分子担体内部に包括されているため、
微生物自身の滞留時間が長くなり、高分子担体内部で微
生物が自己消化する。このため、微生物体内の高分子物
質、例えばポリβ−ヒドロキシブチレート(PHB)等
が高分子担体の外部に漏出してくる。更に、微生物の代
謝によるフミン酸、フルボ酸類等も漏出してくる。これ
らの漏出物には、凝集作用があるため、微生物又は活性
汚泥を固定化した高分子担体への接触処理を行った処理
水中の懸濁物質は、従来の活性汚泥法で得られる懸濁物
質よりも粒径が大きくなる。こうした液を膜処理すると
、膜の透過水量が増加する。
In addition, since microorganisms are encapsulated inside the polymer carrier,
The residence time of the microorganisms themselves becomes longer, and the microorganisms self-digestion inside the polymer carrier. As a result, polymeric substances such as poly-β-hydroxybutyrate (PHB) inside the microorganism leak out of the polymer carrier. Furthermore, humic acids, fulvic acids, etc. due to the metabolism of microorganisms also leak out. Since these leaked materials have a flocculating effect, the suspended solids in the treated water that has been subjected to contact treatment with a polymeric carrier on which microorganisms or activated sludge are immobilized are the suspended solids obtained by the conventional activated sludge method. The particle size becomes larger. When such a liquid is treated with a membrane, the amount of water permeated through the membrane increases.

このことは、次のように説明できる。膜面に汚濁層がで
きる場合の膜の透過流速は、次式で表される。
This can be explained as follows. The permeation flow rate through the membrane when a polluted layer is formed on the membrane surface is expressed by the following formula.

Jv=  (ΔP−Δyr)/ (Rn+ +Rg )
  ・ ・ (1)c式中、Jvは透過流速を表し、Δ
Pは膜両面の圧力差を表し、Δπは膜面に汚濁層ができ
ている場合には、Δp>>Δπとなるため、無視できる
Jv= (ΔP−Δyr)/(Rn+ +Rg)
・ ・ (1) In formula c, Jv represents the permeation flow rate, and Δ
P represents the pressure difference between both sides of the membrane, and Δπ can be ignored because Δp>>Δπ when a polluted layer is formed on the membrane surface.

R−は膜の抵抗を表し、Rgは汚濁層の抵抗を表す〕。R- represents the resistance of the membrane, and Rg represents the resistance of the contaminated layer].

膜処理時の一過抵抗は、RmとRgの和で表されるが、
汚濁層が膜面に形成されている場合には、Rm<<Rg
となるため、次のコゼニー・カルマy (Kozeny
−Cars+an )の式で表される一過の平均比抵抗
;に置き換えることができる: ただし、5v=6/φC−dp 〔式中冴は一過の平均比抵抗、εは汚濁層の空隙率、ρ
は粒子密度、kはコゼニ一定数、Svは粒子の比表面積
、−〇は形状係数、dpは粒子の代表径を表す〕。
The transient resistance during membrane processing is expressed as the sum of Rm and Rg,
When a contamination layer is formed on the membrane surface, Rm<<Rg
Therefore, the following Kozeny Karmay (Kozeny
-Cars+an) can be replaced by the following equation: where, 5v=6/φC-dp [In the formula, 5v=6/φC-dp [In the formula, Sae is the transient average resistivity, and ε is the porosity of the polluted layer. , ρ
is the particle density, k is the Kozeni constant, Sv is the specific surface area of the particle, -0 is the shape coefficient, and dp is the representative diameter of the particle].

(2)式によれば、懸濁物質の粒径、即ちdpが大きい
程、−が小さくなることが判る。即ち、膜処理時の一過
抵抗が小さいため、(1)式の一過流速が増加すること
になる。
According to equation (2), it can be seen that the larger the particle size of the suspended solids, that is, dp, the smaller - becomes. That is, since the transient resistance during membrane processing is small, the transient flow rate in equation (1) increases.

更に、(2)式から判るように、粒径を大きくすると共
に、空隙率を大きくすると、冴を小さくすることができ
る。この手段としては、一般に一過助剤として使用され
るケイソウ土、カオリン、プラスチックの微粒子等の懸
濁粒子のほか、高分子凝集剤を添加することも有効であ
る。
Furthermore, as can be seen from equation (2), by increasing the particle size and increasing the porosity, the sharpness can be decreased. As a means for this purpose, in addition to suspended particles such as diatomaceous earth, kaolin, and fine plastic particles, which are generally used as temporary aids, it is also effective to add a polymer flocculant.

これらの懸濁粒子の添加量としては、微生物又は活性汚
泥を固定化したペレットで廃水を接触処理した際に発生
した懸濁物質量の10%以上が好ましい。
The amount of these suspended particles added is preferably 10% or more of the amount of suspended solids generated when wastewater is subjected to contact treatment with pellets on which microorganisms or activated sludge are immobilized.

廃水処理に用いる微生物は、細菌、カビ、酵母、放線菌
、藻類等の純粋培養したもの、又は混合培養した微生物
であってよく、下水、産業廃水等の活性汚泥であっても
よい。
The microorganisms used for wastewater treatment may be pure cultures of bacteria, molds, yeasts, actinomycetes, algae, etc., or mixed culture microorganisms, or activated sludge of sewage, industrial wastewater, etc.

高分子担体としては、アクリル系樹脂、エポキシ系樹脂
、アクリルアミド系樹脂、アクリルイミド系樹脂、スチ
レン系樹脂、ポリウレタン系樹脂、ビニル系樹脂、多糖
類誘導体等、又はアルキル化した多孔性ガラス等の無機
担体が挙げられ、常温放置又は微生物が死滅しない程度
の温度で固化し、固化後には微生物を液中に放出しない
ものであれば任意の高分子物質を使用することができる
Examples of polymer carriers include acrylic resins, epoxy resins, acrylamide resins, acrylimide resins, styrene resins, polyurethane resins, vinyl resins, polysaccharide derivatives, and inorganic materials such as alkylated porous glass. Any polymeric substance can be used as long as it solidifies when left at room temperature or at a temperature that does not kill microorganisms and does not release microorganisms into the liquid after solidification.

膜処理に用いる膜材質としては、懸濁物質が付着しにく
く、しかも僅かな物理的力で剥離する材料が好ましい。
The membrane material used for membrane treatment is preferably a material to which suspended solids are difficult to adhere and which can be peeled off with a slight physical force.

空気中における水に対する接着仕事で、その膜材質を評
価することができ、超音波洗浄の結果、第1図に示した
ように、80taJ/ld以下の疎水性か、105mJ
/n?以上の親水性の膜材質が好ましい。好ましい材質
としては、例えばテフロン系、ポリカーボネート系、ポ
リスルホン系、酢酸セルロース系、ポリビニルアルコー
ル系、ポリサンカライド系、或いはこれらの変性物系が
挙げられる。
The membrane material can be evaluated by its adhesion work to water in the air, and as a result of ultrasonic cleaning, as shown in Figure 1, it has a hydrophobicity of 80 taJ/ld or less, or 105 mJ.
/n? The above hydrophilic membrane materials are preferred. Preferred materials include, for example, Teflon-based, polycarbonate-based, polysulfone-based, cellulose acetate-based, polyvinyl alcohol-based, polysancharide-based, or modified products thereof.

接着仕事は、膜表面における水滴の接触角を測定するこ
とにより次式から算出できる。
The work of adhesion can be calculated from the following equation by measuring the contact angle of water droplets on the film surface.

WA =Kvo (cosθ+1)−−−−・−(3)
〔式中WAは空気中における水に対する接触仕事、Kv
oは水の表面張力で72.8mJ/rs? (20℃)
であり、θは測定した接触角である〕。
WA=Kvo(cosθ+1)−−−・−(3)
[In the formula, WA is the contact work with respect to water in the air, Kv
o is the surface tension of water, 72.8 mJ/rs? (20℃)
and θ is the measured contact angle].

膜処理時に懸濁物質が膜面に付着した場合に、これらの
膜材質を用いることで、フラッシングや逆洗等の物理的
な洗浄による効果が明らかになる。
When suspended substances adhere to the membrane surface during membrane treatment, the effects of physical cleaning such as flushing and backwashing become clear by using these membrane materials.

例えば、下水を活性汚泥処理した後、直接膜処理を行い
、汚濁層を形成させた後、フラッシング洗浄を行った場
合、接触仕事99.1 taJ/ rdのポリアミド膜
では、洗浄による回復率が5%であったのに対し、接触
仕事? 0.4 taJ/ rdのポリスルホン膜では
、洗浄による回復率は35%であった。
For example, when sewage is treated with activated sludge and then subjected to direct membrane treatment to form a turbid layer and then flushed, a polyamide membrane with a contact work of 99.1 taJ/rd has a recovery rate of 5. %, whereas contact work? For the 0.4 taJ/rd polysulfone membrane, the recovery rate by washing was 35%.

膜の分画分子量に関しては、再利用水のBODを5以下
にする必要があることから、分画分子量100.000
以下の膜の使用が好ましい。
Regarding the molecular weight cutoff of the membrane, since the BOD of recycled water needs to be 5 or less, the molecular weight cutoff is 100.000.
Preference is given to using the following membranes:

次に、図面に基づいて本発明を詳述する。Next, the present invention will be explained in detail based on the drawings.

第2図は、本発明方法の一実施態様を示すフローシート
であり、主として固定化微生物処理装置15、貯槽16
、限外−過モジュール17、処理層18、マイクロスト
レーナ20、超音波発振器21及び沈澱層22からなる
FIG. 2 is a flow sheet showing one embodiment of the method of the present invention, and mainly includes an immobilized microorganism treatment device 15, a storage tank 16
, an ultra-violet module 17, a treatment layer 18, a microstrainer 20, an ultrasonic oscillator 21 and a precipitation layer 22.

この装置において廃水の処理を実施する場合には、まず
、原水を固定化微生物処理装置15に導入し、ここで固
定化微生物と接触させ、その後、必要に応じてケイソウ
上等の懸濁物質を添加した後、貯槽16に集める。一定
量の水が集まったら、バルブ1を開き、更に、バルブ2
を開き、ポンプ14により、限外?過モジュール17へ
導入し、膜処理する。l1ll!を透過した処理水はバ
ルブ9を経て処理水18に貯留される。膜を透過しない
濃縮水はバルブ3.4及び5を経て再処理される。バル
ブ5を経て流れる濃縮水は、超音波発振器21付きのマ
イクロストレーナ20によりSSを捕捉され、バルブ6
より原水と共に再び微生物処理に戻される。
When treating wastewater in this device, raw water is first introduced into the immobilized microorganism treatment device 15, where it is brought into contact with the immobilized microorganisms, and then, if necessary, suspended solids such as diatoms are removed. After addition, it is collected in storage tank 16. When a certain amount of water has collected, open valve 1, then open valve 2.
, and pump 14 causes the limit? The sample is introduced into the filter module 17 and subjected to membrane treatment. l1ll! The treated water that has passed through passes through the valve 9 and is stored in the treated water 18. The retentate that does not pass through the membrane is reprocessed via valves 3.4 and 5. Concentrated water flowing through valve 5 has SS captured by a micro strainer 20 equipped with an ultrasonic oscillator 21, and then passes through valve 6.
The water is then returned to microbial treatment along with the raw water.

この装置において、上記とは別の流路をとることもでき
る。叩ち、バルブ7を開き、バルブ2を閉じ、バルブ7
から被処理水を限外−過モジュール17へ導入し、濃縮
水をバルブ8より流出させる流路を取ることもできる。
In this device, other flow paths than those described above can also be used. Hit, open valve 7, close valve 2, close valve 7
It is also possible to provide a flow path in which the water to be treated is introduced into the ultrafiltration module 17 and the concentrated water is discharged from the valve 8.

このように、流路を変えると、モジュールへの流入水の
方向が逆転するので、モジュール内の閉塞を防止するこ
とができる。従って、これらの流路を一定時間間隔で切
り換えて使用するのが好ましい。
In this way, changing the flow path reverses the direction of water flowing into the module, thereby preventing blockage within the module. Therefore, it is preferable to switch and use these channels at regular time intervals.

流路を切り換えて一定時間運転した後、ポンプ及びライ
ン中の原水を押し出すため、バルブ1.4.6.8及び
9を閉じ、バルブ2.3.5.7、l0111及び13
を開き、バルブ12を調整バルブとして処理水槽18内
の処理水を流す。その際処理水ラインが汚染されないよ
うにカートリッジフィルタ19を設置しである。
After switching the flow path and operating for a certain period of time, close valves 1.4.6.8 and 9 to push out the raw water in the pump and lines, and then close valves 2.3.5.7, l0111 and 13.
is opened, and the treated water in the treated water tank 18 is allowed to flow using the valve 12 as an adjustment valve. At this time, a cartridge filter 19 is installed to prevent the treated water line from being contaminated.

次に、限外?過モジュール17を逆洗する。この逆洗は
、前記の原水押し出し工程に続いてバルブ7を閉じるこ
とによって行われる。この装置においては、逆洗水をバ
ルブ3及び5よりマイクロストレーナ20に入れ、超音
波発振器21のスイッチをオンにし、マイクロストレー
ナ20で捕捉されたSSを超音波で洗浄し、沈澱槽22
でSSを沈澱、分離し、・汚泥として回収する。上澄水
は再び原水ラインに戻す。
Next, limit? The filter module 17 is backwashed. This backwashing is performed by closing the valve 7 following the raw water extrusion step described above. In this device, backwash water is introduced into the micro strainer 20 through valves 3 and 5, the ultrasonic oscillator 21 is turned on, the SS captured by the micro strainer 20 is cleaned with ultrasonic waves, and the sedimentation tank 22 is washed with ultrasonic waves.
SS is precipitated and separated, and recovered as sludge. The supernatant water is returned to the raw water line.

前記のような装置により、ただ1個のポンプを使用して
長時間にわたって安定して処理を実施することができる
Such a device allows stable treatment over long periods of time using only one pump.

実土輿 次に、実施例に基づいて本発明を詳述するが、本発明は
これに限定されるものではない。
EXAMPLES Next, the present invention will be explained in detail based on Examples, but the present invention is not limited thereto.

実施例1 ssso■/l、BOD52■/1の原水を第2図に示
した装置で処理する。
Example 1 Raw water with ssso/l and BOD of 52/1 was treated with the apparatus shown in FIG.

その際、活性汚泥を常法でポリアクリルアミドゲルに包
括固定し、馴養を行い、活性化したペレットを汚泥濃度
がaoooo■/l、充填率が30%にになるように容
量5j!の固定化微生物処理装置に充填した。
At that time, the activated sludge was comprehensively fixed in a polyacrylamide gel using a conventional method, acclimatized, and the volume of the activated pellets was 5J! of immobilized microorganisms.

また、限外−過モジュールには、分画分子量が5000
0で、内径が1.1 m++mのポリスルホン系中空糸
から成り、接着仕事が70.4 mJ/ rdの膜を膜
面積610dとして使用した。
In addition, the ultra-violet module has a molecular weight cut-off of 5000.
A membrane made of polysulfone hollow fibers with an inner diameter of 1.1 m++m and an adhesion work of 70.4 mJ/rd was used with a membrane area of 610 d.

原水を固定化微生物処理装置内に流入させ、装置内で滞
留時間3時間で固定化微生物と接触させると、5S19
■/l、BODI O■/βの処理水が得られた。この
処理水にケイソウ±100■/Itを添加し、貯槽16
において攪拌した後、膜処理を行う。まず、バルブ2か
ら限外−過モジュールへ導入して膜処理を15分間行い
、次いで、バルブ7を通る流路に切り換え、同様に15
分膜処理を行い、この切り換えを4回行って合計60分
間、通常運転を行った。濃縮水はバルブ4及び5を経て
原水ラインに戻した。
When raw water flows into an immobilized microorganism treatment device and is brought into contact with immobilized microorganisms within the device for a residence time of 3 hours, 5S19
Treated water with a BODI of ■/l and a BODI of O■/β was obtained. Diatom ±100■/It was added to this treated water, and the storage tank 16
After stirring at , membrane treatment is performed. First, membrane treatment was carried out for 15 minutes by introducing the ultrafiltration module through valve 2, and then switching to the flow path passing through valve 7, and doing the same for 15 minutes.
Separation membrane treatment was performed, and this switching was performed four times to perform normal operation for a total of 60 minutes. The concentrated water was returned to the raw water line via valves 4 and 5.

その後、処理水をバルブl0111及び7から10秒間
流して、ポンプ及びライン中の原水を押し出した。次い
で、バルブ2及び7を閉じて、限外−過モジュールを逆
洗するため処理水を3kg/−の圧力になるように30
秒流した。逆洗水をメツシュ幅100μmのマイクロス
トレーナに通した。更に、超音波により20秒間マイク
ロストレーナの洗浄を行った。
Thereafter, treated water was allowed to flow through valves 1011 and 7 for 10 seconds to push out the raw water in the pump and lines. Then, valves 2 and 7 are closed, and the treated water is pumped to a pressure of 3 kg/- for backwashing the ultrafiltration module.
Seconds passed. The backwash water was passed through a microstrainer with a mesh width of 100 μm. Furthermore, the microstrainer was cleaned using ultrasonic waves for 20 seconds.

以上のサイクルを繰り返すことにより、ss濃度はほぼ
Oであり、BODが2■/lより低い処理水が30 f
/dの処理効率で得られた。
By repeating the above cycle, the ss concentration is almost O and the treated water with a BOD of less than 2■/l is reduced to 30 f
/d processing efficiency.

実施例2 原水として、下水の初沈溢流水を用いて、次の3種の処
理実験を行った。
Example 2 The following three types of treatment experiments were conducted using initial settling overflow water of sewage as raw water.

(A)従来の活性汚泥処理(MLSS=2000■/l
)の後、直接、接着仕事99.1 mJ/ rylのポ
リアミド系膜の中空糸型モジュールで膜処理した場合(
比較例)。
(A) Conventional activated sludge treatment (MLSS=2000■/l
), and then directly treated with a hollow fiber module made of polyamide membrane with an adhesion work of 99.1 mJ/ryl (
comparative example).

(B)実施例1で使用した固定化活性汚泥ペレットを流
動床とし、好気状態で下水を処理し、得られた懸濁物質
量20■/Itの処理水を(A)と同じモジュールで膜
処理した場合(本発明1)(C)(B)の膜モジュール
の代わりに、接着仕事70.4 mJ/ rrlのポリ
スルホン系膜の中空糸型モジュールを使用した場合(本
発明2)。
(B) The fixed activated sludge pellets used in Example 1 were used as a fluidized bed to treat sewage under aerobic conditions, and the resulting treated water with an amount of suspended solids of 20 μ/It was passed through the same module as in (A). In the case of membrane treatment (Invention 1) (C) In place of the membrane module of (B), a hollow fiber module of polysulfone membrane with an adhesion work of 70.4 mJ/rrl was used (Invention 2).

なお、膜処理の条件はいずれの場合も、下記のとおりで
ある。有効膜面積は47ai1、分画分子量は5000
0、操作圧力はl kg / ca、流量は11/分、
15分に1回の割合でt過水による逆圧洗浄(圧力3k
g/cm)を行った。
In addition, the conditions for membrane treatment are as follows in any case. Effective membrane area is 47ai1, molecular weight cutoff is 5000
0, operating pressure is l kg/ca, flow rate is 11/min,
Back pressure washing with overwater (pressure 3k) once every 15 minutes.
g/cm).

処理を50時間行い、透過水量の経時変化を測定し、結
果を第3図に示す。
The treatment was carried out for 50 hours, and the change in the amount of permeated water over time was measured. The results are shown in FIG.

本発明によれば、SSによる膜の目詰まり、即ち透過水
量の低下を防止できることが判る。
According to the present invention, it is possible to prevent clogging of the membrane due to SS, that is, a decrease in the amount of permeated water.

実施例3 廃水として、下水の初沈溢流水を用いた、処理装置は、
前段の生物処理部と後段の膜処理部と膜濃縮液ラインの
マイクロストレーナから構成した。
Example 3 A treatment device using initial settling overflow water of sewage as wastewater was as follows:
It consists of a biological treatment section at the front stage, a membrane treatment section at the rear stage, and a micro strainer in the membrane concentrate line.

前段においては、活性汚泥をポリアクリルアミドで包括
固定したペレットを汚泥濃度が30000■/l、充填
率が30%になるように1.22の反応槽に充填した。
In the first stage, pellets of activated sludge entrapping and fixing with polyacrylamide were filled into a 1.22 reaction tank so that the sludge concentration was 30,000 μ/l and the filling rate was 30%.

流入水量は9.61/dであり、膜処理部へはlAl1
1分で通水し、濃縮液はマイクロストレーナを経て、前
段処理部へ循環した。
The amount of inflow water is 9.61/d, and lAl1 flows into the membrane treatment section.
Water was passed for 1 minute, and the concentrated liquid was circulated to the pre-processing section through a micro strainer.

膜処理部は、内径1.5 taya、長さ10cmのポ
リスルホン中空糸10本で構成されている。
The membrane processing section is composed of 10 polysulfone hollow fibers each having an inner diameter of 1.5 taya and a length of 10 cm.

15分に1回の割合で一過水による逆洗を行って、50
時間運転した後、透過水量は0,5rrr/1rid(
25℃)であった。
Perform backwashing with temporary water once every 15 minutes, and
After operating for an hour, the amount of permeated water is 0.5rrr/1rid (
25°C).

上記実験において膜処理前に、セライト535〔商標、
ジョーンズ−マンビル(Johns−Manvi 11
e)社製の力焼珪藻土粒子〕を生物処理水中の懸濁物質
量の50%になるように添加し、膜表面に懸濁物質層を
形成させ、上記と同じ実験を行った。その結果、運転開
始50時間後の透過水量は1.22#d(25℃)で増
加した。
In the above experiment, Celite 535 [trademark,
Johns-Manvi 11
e) Force-calcined diatomaceous earth particles] were added to account for 50% of the amount of suspended solids in the biologically treated water to form a layer of suspended solids on the membrane surface, and the same experiment as above was conducted. As a result, the amount of permeated water 50 hours after the start of operation increased by 1.22#d (25°C).

発」廊B九展 本発明により、固定化微生物処理と膜処理を組み合わせ
ることにより、SSによる膜の目詰まりを防止すること
ができ、長時間効率よく処理を行うことができる。即ち
、本発明によれば、透過水量の低下を防止することがで
きる。更に、本発明おいて特定の材質の膜を膜処理に使
用すると、目詰まりの防止効果は著しく増加する。また
、膜処理の前に被処理水にカオリン等の懸濁粒子を添加
すると、目詰まりの防止効果は顕著になる。
According to the present invention, by combining immobilized microorganism treatment and membrane treatment, clogging of the membrane due to SS can be prevented, and treatment can be carried out efficiently for a long time. That is, according to the present invention, a decrease in the amount of permeated water can be prevented. Furthermore, in the present invention, when a membrane made of a specific material is used for membrane treatment, the clogging prevention effect is significantly increased. Furthermore, if suspended particles such as kaolin are added to the water to be treated before membrane treatment, the effect of preventing clogging becomes significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、膜の接着仕事とSSの剥離率との関係図、第
2図は本発明方法の一実施態様を示すフローシート、第
3図は実施例2の結果を示す透過水量の経時変化を示す
グラフである。
Fig. 1 is a diagram showing the relationship between the adhesion work of the membrane and the peeling rate of SS, Fig. 2 is a flow sheet showing an embodiment of the method of the present invention, and Fig. 3 is a graph showing the results of Example 2 of the amount of permeated water over time. It is a graph showing changes.

Claims (3)

【特許請求の範囲】[Claims] (1)高分子担体内部に微生物又は活性汚泥を固定化し
たペレットに被処理液を接触させた後、圧力を駆動力と
する膜処理を行い、膜を透過しない濃縮液はSS分離器
を経て、被処理液ラインに戻すことを特徴とする廃水の
処理方法。
(1) After the liquid to be treated is brought into contact with pellets in which microorganisms or activated sludge are immobilized inside a polymer carrier, membrane treatment is performed using pressure as the driving force, and the concentrated liquid that does not pass through the membrane is passed through an SS separator. , a method for treating wastewater characterized by returning it to a treated liquid line.
(2)空気中における水に対する接触仕事が80mJ/
m^2以下或いは105mJ/m^2以上である材質の
膜から構成される膜モジュールを用いて膜処理を行う特
許請求の範囲第1項記載の処理方法。
(2) The contact work for water in the air is 80 mJ/
2. The processing method according to claim 1, wherein the membrane treatment is carried out using a membrane module made of a membrane of a material having a power of less than m^2 or more than 105 mJ/m^2.
(3)膜処理前にケイソウ土、カオリン、プラスチック
の微粒子等の懸濁粒子又は高分子凝集剤を添加する特許
請求の範囲第1項又は第2項記載の方法。
(3) The method according to claim 1 or 2, wherein suspended particles such as diatomaceous earth, kaolin, plastic particles, or a polymer flocculant are added before the membrane treatment.
JP60072084A 1985-04-05 1985-04-05 Treatment of waste water Pending JPS61230795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60072084A JPS61230795A (en) 1985-04-05 1985-04-05 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60072084A JPS61230795A (en) 1985-04-05 1985-04-05 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPS61230795A true JPS61230795A (en) 1986-10-15

Family

ID=13479181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60072084A Pending JPS61230795A (en) 1985-04-05 1985-04-05 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS61230795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150329394A1 (en) * 2012-12-07 2015-11-19 Sijing Wang Use of activated carbon in a membrane bioreactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150329394A1 (en) * 2012-12-07 2015-11-19 Sijing Wang Use of activated carbon in a membrane bioreactor
US10486992B2 (en) * 2012-12-07 2019-11-26 Bl Technologies, Inc. Use of activated carbon in a membrane bioreactor

Similar Documents

Publication Publication Date Title
CA2174847C (en) Method and apparatus for recovering water from a sewer main
Madaeni The application of membrane technology for water disinfection
Ghernaout et al. Water reuse: Extenuating membrane fouling in membrane processes
JP3198923B2 (en) Cleaning method of membrane
CN105347539A (en) Integrated and automatic device for recycling water in industrial wastewater
CN102633394B (en) Integrative coagulation ultrafiltration-immersion membrane module combination water purification system
JPH04227099A (en) Method for purifying underground water and waste water
CN109499378B (en) Cleaning method for organic dirt blockage of hollow fiber ultrafiltration membrane
Seo et al. The fouling characterization and control in the high concentration PAC membrane bioreactor HCPAC-MBR
JP2000140585A (en) Operation of membrane separation apparatus, and membrane separation apparatus
JP2002248324A (en) Membrane separation apparatus and its backwashing method
KR101693100B1 (en) Smart Membrane-Filteration Water Treating System
KR100352740B1 (en) Pretreatment Method of Water Reuse System using Air Flotation and Continuous Microfilter
JPH07275671A (en) Operation of external pressure type hollow yarn ultrafiltration membrane module
Ericsson et al. Membrane applications in raw water treatment with and without reverse osmosis desalination
CN205892904U (en) A integration equipment for automaticallying process sewage
JPS61230795A (en) Treatment of waste water
Abdel-Fatah et al. Industrial wastewater treatment by membrane process
JP2011041907A (en) Water treatment system
JPH09174094A (en) Raw water treatment method
Jacangelo et al. Membranes in water treatment
JP2002346347A (en) Method and apparatus for filtration
ZA200205320B (en) Method and device for effluent treatment.
JP3697938B2 (en) Wastewater treatment equipment
JP3185398B2 (en) Water purification equipment